Master Program in Statistics (MPS) **Module Handbook** Version/Revisio 1/1 Page 1/3 | Module name | | Computational Biodiversity | | | | | |---|---------------|---|--------------------------------------|-------------------------------|-----------------|--| | Module level, if applicable | | Master's degree in 1st year | | | | | | Code, if applicable | | MST-535 | | | | | | Semester(s) in which the module is taught | | 2 nd (second) | | | | | | Person responsible for the module | | Rohmatul Fajriyah | | | | | | Lecturer | | Rohmatul Fajriyah | | | | | | Language | | Bahasa Indonesia | | | | | | Relation to curr | | Compulsory course | e in the first year (2 nd | | Degree | | | Types of teaching and learning | Class size | Attendance time (hours per week per semester) | Form of active participation | Workload
(hours per semest | er) | | | Interactive
Lecturing | < 20 | 2.5 | Problem solving | Face to face teaching | 35 | | | | | | | Structured activities | 48 | | | 1 | | | | Independent study | | | | | | | | Exam | 5 | | | Total Workload | | 136 hours | | | | | | Credit points | | 3 CUs / 5.1 ECTS | | | | | | Requirements a | | Minimum attendance at lectures is 75%. Final score is evaluated based | | | | | | the examination | | on quiz, assignment, mid-term exam, and final exam. | | | | | | Recommended | prerequisites | - | | | | | | Related course | | - | | | | | | Module objectives/intended learning outcomes | | After completing this course, the students have ability to: CO 1. Compose a structured scientific report based on biodiversity data analysis CO 2. Analyze and develop a biodiversity model based with modern statistical method and R/python programming CO 3. Understand the biodiversity and conservation fundamental concept, and about law and ethics on biodiversity conservation CO 4. Analyzed of biodiversity data with conventional statistical methods with R/python programming | | | | | | Content | | Biodiversity and conservation concept Statistical Descriptive for biodiversity data in R Univariate statistical method for biodiversity data analysis in R Data preparation Data mining for biodiversity analysis: Clustering and Classification Policy and laws of biodiversoty and conservation -related | | | | | | | | The final mark will be weighted as follows: | | | | | | Study and examination requirements and forms of | | | | | | | | | | No Assessment components 1 CO 1 | Assessment tv | • | eight (percenta | | | Master Program in Statistics | |-------------------------------------| | (MPS) | Module HandbookVersion/Revisio1/1Page2/3 | | C | 5%
5% | | | |----------------|--|--|--|--| | Media employed | Google Classroom, relevant websites, slides (power points), video, interactive media, white-board, laptop, LCD projector | | | | | Reading list | Krishnamurthy, K. V. 2003. Textbook of Biodive Publication. Gupta, R. (Ed.) 2012.Plant Taxonomy: Past, Future. Dr.Pritipal Singh Festschrift, The Energy a Institute (TERI)Press. Abbott et al.1985.Taxonomic analysis in biolog models, and databases Columbia University [Chapter 7, covering phenetic methods]. Singh, G.2008. Plant Systematics: Theory a Oxford&IBH Publishing Co.Pvt.Ltd. Simpson,M.G. 2006.Plant Systematics. Elsev Press. Neal, D. 2004. Introduction to Population Biolo University Press Hamilton, M. 2009. Population Genetics. Wi Publications, USA Lockwood, M., Vorboys, G. and Kothari A. (Ed. Protected Areas Stuart, C., Spalding, M and Jenkins, M. the wor Areas: Status, Values and prospects in 21st centur Turner, M.G., Gardner, R. H. and ONeill, R. ecology in theory and practice: pattern and proces Gareth James and Daniela Witten, An In Statistical Learning with Applications in R, Sprint Andy Field, Jeremy Miles, and Zoe Field, Statistics Using R, Sage Publication Susan Holmes and Wolfgang Huber, (2018), Monfor Modern Biology, Cambridge University Press, 14. Fajriyah, R. (2024). Lecture Notes on Bioinforma Universitas Islam Indonesia Fajriyah, R. (2024). Seri Komputasi R Statistika Nonparametrik Elementer, UII, Jogjakarta Fajriyah, R, and Riantika, I. 2024, Machine Learn Analisis Penyakit K a n k e r P a r u - P a r u - P a r u , SBR Analisis Data Kesehatan 2.01, UII, Jogjakarta Fajriyah, Rohmatul, and Imtikhanah A. Mahmudia Masyarakat Indonesia 2013: SBRC Series Analisis Kesehatan 1.01. Edited by Winoto, Darmawan E. I. Aksara, 2023. | Present, and and Resources sy: computers, y Press, NY and Practice. Fier academic gy.Cambridge fley-Blackwell d.). Managing fld's Protected y V. Landscape is troduction to ger Discovering dern Statistics, UK tika I. Universitas and d a l a m RC S e r i e s seti. Kesehatan Data | | | ## Master Program in Statistics (MPS) | Module Handbook | | | | | | | |-----------------|-----|------|-----|--|--|--| | Version/Revisio | 1/1 | Page | 3/3 | | | | | n | | | | | | | | Date: | Date: | Date: Sept 5, 2024 | |--------------------------------------|---|--| | Authorized by Head of Study Program: | Examined by Coordinator of Cluster Interest | Prepared by Lecturer/Coordinator of Lecturers: | | | | | | | | | | Rohmatul Fajriyah | Rohmatul Fajriyah | Rohmatul Fajriyah |