
State of GPU Scheduling 
sunnyps@ 
 
The aim of this document is to describe how scheduling in the GPU service works currently and 
capture all essential aspects that need to be retained in any changes made to GPU scheduling. 

Flush Ordering of Contexts 
Contexts on the same GPUChannel (which means same process at the moment) are ordered 
with the OrderingBarrierCHROMIUM, ShallowFlush and Flush commands. This is a 
consequence of the contexts sharing the same IPC channel and the GPU service processing all 
incoming IPC messages in order (with a very few exceptions). All of these update the put offset 
of the command buffer in different ways. 
 
The underlying primitive for sending the put offset to the GPU service is called AsyncFlush. It 
uses an asynchronous IPC and gets intercepted by GpuCommandBufferStub on the service 
side. The commands may start running on the GPU process main thread if the GPU service is 
idle and the channel is not blocked for some other reason. The order in which contexts 
(belonging to the same GPUChannel) run on the GPU service depends on the order in which 
the AsyncFlush IPCs were sent. 
 
OrderingBarrierCHROMIUM just updates the put offset on the client side and performs an 
AsyncFlush only when another command buffer does an AsyncFlush or when the command 
buffer is full. 
 
ShallowFlush updates the put offset and performs an AsyncFlush immediately. 
 
Flush is like ShallowFlush but also adds a glFlush command into the command buffer before 
updating the put offset. 
 

Sync Points 
Sync points are the primary synchronization primitive across channels. The way sync points are 
used is by calling InsertSyncPoint in one command buffer and adding a WaitSyncPoint 
command (with the return value of InsertSyncPoint) in another command buffer. This ensures 
that the latter command buffer does not execute past the WaitSyncPoint command until the 
former command buffer has executed past the InsertSyncPoint command. 



 
The above properties and flush based ordering imply the following: 

1.​ As soon as InsertSyncPoint returns a sync point identifier, any context can wait for that 
sync point immediately. This is because InsertSyncPoint uses (necessarily) a 
synchronous IPC. 

2.​ Waiting on a sync point in a context blocks all work on the channel that context belongs 
to (except for synchronous IPC messages handled in GPUChannelMessageFilter) - the 
associated command buffer stub becomes “descheduled”. This is a consequence of 
flush based ordering. 

3.​ Waiting on a non-existent sync point is always safe - the wait becomes a no-op. 
 

Client Side Waits 
There are a few ways for the client to block on execution of commands on the GPU service. 
These include: 

1.​ InsertToken which allows the client to insert a token into the command buffer that can be 
waited on with WaitForToken/WaitForTokenInRange. 

2.​ WaitForGetOffsetInRange which allows the client to wait until the get offset (which is the 
point until which the service has read) reached a point. 

 

Command Buffer Descheduling 
On the service side a command buffer can be descheduled if: 

1.​ The command buffer is waiting for a sync point. 
2.​ A command returns the kDeferCommandUntilLater error when run. The command is 

expected to deschedule the command buffer if it returns this error. 
 
The command buffer can be preempted if its channel is preempted by another channel. In this 
case the command buffer isn’t considered to be descheduled. 
 
In both the descheduled and the preempted states the command buffer doesn’t process any 
commands. 
 
A command buffer can be scheduled again if: 

1.​ The sync point the command buffer is waiting for is signalled. 
2.​ The command that was deferred reschedules the command buffer. 

 



Channel Preemption 
Channel preemption exists to prevent a renderer context (say WebGL) from preventing a 
browser context from running. The channel preemption logic is shared between four classes: 
GPUChannel, GPUChannelMessageFilter, GPUCommandBufferStub and GPUScheduler. 
 
Channels have two flags - a preempting flag and a preemption flag. The channel owns its 
preempting flag. A channel’s preemption flag may be set to another channel’s preempting flag 
which allows the latter channel to preempt the former channel. When a channel is said to be 
preempting it sets its preempting flag which allows it to preempt other channels. 
 
Preempting other channels only makes sense if there are pending IPC messages to process in 
the channel - transition from IDLE to WAITING in the state diagram below. 
 
Channels are not allowed to preempt other channels too often - a channel can only preempt 
other channels once every two frame intervals (kPreemptWaitTime) - transition from state 
WAITING to CHECKING. 
 
When a channel preempts another channel it must be to service an IPC message from the client 
that’s old - at least two frame intervals old (kPreemptWaitTime) - transitions from CHECKING to 
PREEMPTING/WOULD-PREEMPT-DESCHEDULED. 
 
If any command buffer of the channel is descheduled (which implies it can’t process any IPC 
messages) it itself is prevented from preempting other channels - transitions from 
CHECKING/PREEMPTING to WOULD-PREEMPT-DESCHEDULED. 
 
If a channel doesn’t have a message that’s old enough (kStopPreemptThreshold) it stops 
preempting other channels - transitions from 
PREEMPTING/WOULD-PREEMPT-DESCHEDULED to IDLE. 
 

 



State Diagram 

 


	State of GPU Scheduling 
	Flush Ordering of Contexts 
	Sync Points 
	Client Side Waits 
	Command Buffer Descheduling 
	Channel Preemption 
	State Diagram 


