State of GPU Scheduling

sunnyps@

The aim of this document is to describe how scheduling in the GPU service works currently and
capture all essential aspects that need to be retained in any changes made to GPU scheduling.

Flush Ordering of Contexts

Contexts on the same GPUChannel (which means same process at the moment) are ordered
with the OrderingBarrierCHROMIUM, ShallowFlush and Flush commands. This is a
consequence of the contexts sharing the same IPC channel and the GPU service processing all
incoming IPC messages in order (with a very few exceptions). All of these update the put offset
of the command buffer in different ways.

The underlying primitive for sending the put offset to the GPU service is called AsyncFlush. It
uses an asynchronous IPC and gets intercepted by GpuCommandBufferStub on the service
side. The commands may start running on the GPU process main thread if the GPU service is
idle and the channel is not blocked for some other reason. The order in which contexts
(belonging to the same GPUChannel) run on the GPU service depends on the order in which
the AsyncFlush IPCs were sent.

OrderingBarrierCHROMIUM just updates the put offset on the client side and performs an
AsyncFlush only when another command buffer does an AsyncFlush or when the command
buffer is full.

ShallowFlush updates the put offset and performs an AsyncFlush immediately.

Flush is like ShallowFlush but also adds a gIFlush command into the command buffer before
updating the put offset.

Sync Points

Sync points are the primary synchronization primitive across channels. The way sync points are
used is by calling InsertSyncPoint in one command buffer and adding a WaitSyncPoint
command (with the return value of InsertSyncPoint) in another command buffer. This ensures
that the latter command buffer does not execute past the WaitSyncPoint command until the
former command buffer has executed past the InsertSyncPoint command.



The above properties and flush based ordering imply the following:

1. As soon as InsertSyncPoint returns a sync point identifier, any context can wait for that
sync point immediately. This is because InsertSyncPoint uses (necessarily) a
synchronous IPC.

2. Waiting on a sync point in a context blocks all work on the channel that context belongs
to (except for synchronous IPC messages handled in GPUChannelMessageFilter) - the
associated command buffer stub becomes “descheduled”. This is a consequence of
flush based ordering.

3. Waiting on a non-existent sync point is always safe - the wait becomes a no-op.

Client Side Waits

There are a few ways for the client to block on execution of commands on the GPU service.
These include:
1. InsertToken which allows the client to insert a token into the command buffer that can be
waited on with WaitForToken/WaitForTokenlnRange.
2. WaitForGetOffsetinRange which allows the client to wait until the get offset (which is the
point until which the service has read) reached a point.

Command Buffer Descheduling

On the service side a command buffer can be descheduled if:
1. The command buffer is waiting for a sync point.
2. A command returns the kDeferCommandUntilLater error when run. The command is
expected to deschedule the command buffer if it returns this error.

The command buffer can be preempted if its channel is preempted by another channel. In this
case the command buffer isn’'t considered to be descheduled.

In both the descheduled and the preempted states the command buffer doesn’t process any
commands.

A command buffer can be scheduled again if:
1. The sync point the command buffer is waiting for is signalled.
2. The command that was deferred reschedules the command buffer.



Channel Preemption

Channel preemption exists to prevent a renderer context (say WebGL) from preventing a
browser context from running. The channel preemption logic is shared between four classes:
GPUChannel, GPUChannelMessageFilter, GPUCommandBufferStub and GPUScheduler.

Channels have two flags - a preempting flag and a preemption flag. The channel owns its
preempting flag. A channel’s preemption flag may be set to another channel’s preempting flag
which allows the latter channel to preempt the former channel. When a channel is said to be
preempting it sets its preempting flag which allows it to preempt other channels.

Preempting other channels only makes sense if there are pending IPC messages to process in
the channel - transition from IDLE to WAITING in the state diagram below.

Channels are not allowed to preempt other channels too often - a channel can only preempt
other channels once every two frame intervals (kPreemptWaitTime) - transition from state
WAITING to CHECKING.

When a channel preempts another channel it must be to service an IPC message from the client
that’s old - at least two frame intervals old (kPreemptWaitTime) - transitions from CHECKING to
PREEMPTING/WOULD-PREEMPT-DESCHEDULED.

If any command buffer of the channel is descheduled (which implies it can’t process any IPC
messages) it itself is prevented from preempting other channels - transitions from
CHECKING/PREEMPTING to WOULD-PREEMPT-DESCHEDULED.

If a channel doesn’t have a message that’s old enough (kStopPreemptThreshold) it stops
preempting other channels - transitions from
PREEMPTING/WOULD-PREEMPT-DESCHEDULED to IDLE.



State Diagram

kPreemptWaitTime = 2 x VSync

kMaxPreemptTime = VSync

kStopPreemptThreshold = VSync

Waiting
If pending messages non-empty

Check pending Wait for
messages kPreemptWaitTime,

time ran out

Checking

Wait until

there's a
no pending messages OR if message that's
there's a message that's at least
newer than kPreemptWaitTime
kStopPreemptThreshold

no stub descheduled

Preempting

stub descheduled

Spend no longer

Would Preempt -

than
kMaxPreemptTime
in this state total

no stub descheduled

Descheduled




	State of GPU Scheduling 
	Flush Ordering of Contexts 
	Sync Points 
	Client Side Waits 
	Command Buffer Descheduling 
	Channel Preemption 
	State Diagram 


