
 ​ Taints and Tolerations Design for Firmament/Poseidon
Scheduler

1. Motivation​ 1
1.1. Goals​ 2
1.2. User Stories​ 2

1.2.1. Story 1​ 2
1.2.2. Story 2​ 2
1.2.2. Story 3​ 2

2. Proposed Design​ 2
2.1. Firmament Design Details​ 2

2.1.1. CPU-Memory Cost Model Overview​ 2
2.1.2. Key Processing Design Details​ 4

2.1.3. Constraints for Taints/Tolerations​ 5
2.1.3.1 Hard Constraint​ 5
2.1.3.2 Soft Constraint​ 5

2.2. Poseidon Design Details​ 5

1. Motivation
Firmament CPU/Memory multi-dimensional cost model (scheduling policy) typically does a
reasonable placement (e.g. spread your pods across nodes, not place the pod on a node with
insufficient free resources, etc.) but there are some circumstances where taints and tolerations
allow the node to control which pods should (or should not) be scheduled on them.

This feature allows you to mark (“taint”) a node so that no pods can schedule onto it unless a
pod explicitly “tolerates” the taint. Marking nodes instead of pods (as in node affinity/anti-affinity)
is particularly useful for situations where most pods in the cluster should avoid scheduling onto
the node.

Tolerations are applied to pods, and allow (but do not require) the pods to schedule onto nodes
with matching taints.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate
nodes. One or more taints may be applied to a node, this marks that the node should not accept
any pods that do not tolerate these taints.

Purpose of this design document is to enable such node taints and pod tolerations functionality
within Poseidon/Firmament scheduling environment.

1.1. Goals

●​ Kubernetes checks if the pod is allowed to schedule onto the node. If the tolerations field
in pod spec matches the taint on nodes , a pod with matching toleration would be able to
schedule onto the node on which taint is applied.

1.2. User Stories

1.2.1. Story 1

Suppose node1 is applied taint using command kubectl taint nodes node1
key=value:NoSchedule. The taint has key “key”, value “value”, and taint effect “NoSchedule”.
This means that no pod will be able to schedule onto node1 unless it has a matching toleration.
A toleration “matches” a taint if the keys are the same and the effects are the same, and:

●​ the operator is Exists (in which case no value should be specified), or
●​ the operator is Equal and the values are equal.
●​ the operator defaults to Equal if not specified.

1.2.2. Story 2

Suppose toleration field in a pod spec has an empty key with operator “Exists”, it means the pod
will tolerate everything. The effect in the pod spec in this case be either of “NoSchedule” or
“PreferNoSchedule” or “NoExecute”.

1.2.2. Story 3

Suppose the toleration field in the pod spec has an empty effect , it means the pod matches all
the effects with key “key”.

2. Proposed Design
2.1. Firmament Design Details

Kubernetes processes multiple taints and tolerations is like a filter i.e. start with all of a node’s
taints, then ignore the ones for which the pod has a matching toleration; the remaining
un-ignored taints have the indicated effects on the pod.

2.1.1. CPU-Memory Cost Model Overview

As a quick brief overview, Firmament scheduler models scheduling problem as a
constraint-based optimization over a flow network graph. A min-cost flow algorithm is leveraged
for deriving the implied workload placements. A flow network is a directed graph whose arcs
carry flow from source nodes (i.e., pod nodes) to a sink node for a feasible solution to the
optimization problem. A cost and capacity associated with each arc constrain the flow, and
specify preferential routes for it.

In the CPU-Memory cost model, the task equivalence class (EC) gets created based on the
task’s cpu and memory request. Each machine will have a set of predefined number of machine
ECs (M0EC1, M0EC2,.., M2EC2) in order to do load distribution across filtered machines during each
scheduling iteration.

It is important to highlight that if we have only one arc from task EC node to machine node, then
there is a chance that all the incoming flows (tasks) flow across the single arc, and overloading
the single machine with so many tasks even though there are machines with lot of available
resources. So to avoid scheduling many tasks on a same machine, we use multiple arcs
between task EC and machine nodes using intermediate machine EC nodes. We connect task
EC to multiple machine ECs and then these machine ECs are connected to corresponding
machine node. The capacity on the arc (task EC to machine EC) and arc (machine EC to
machine node) is set to 1. And costs on arcs between task EC and machine ECs are assigned
incrementally as shown in figure 1 below.

(Figure 1: CPU-Memory Cost Model Diagram)

Let us take an example where there are three machines M0, M1 & M2 and each machine has a
capacity of 2 flows. Load distribution is achieved by assigning two arcs via corresponding
machine ECs and the cost on each arc increases incrementally. In this case, arcs connecting to
machine ECs for machine M0 have value of cost 100 and 200 respectively. Capacity on these
arcs would be 1 each. In a nutshell, for each unit of capacity, there would be corresponding
machine EC. The cost on these arcs would increase incremental in order to achieve load
distribution across machines.

2.1.2. Key Processing Design Details

Taints are applied to a node through the node specification (NodeSpec) and apply tolerations to
a pod through the pod specification (PodSpec). A taint on a node instructs the node to repel all
pods that do not tolerate the taint.

Taints and tolerations consist of a key, value, and effect. An operator allows you to leave one of
these parameters empty.

Toleration field can have three types of effects:

●​ NoSchedule: If there is at least one un-ignored taint with effect “NoSchedule” then
Kubernetes will not schedule the pod onto that node. But if there are already existing
pods on the node before the taint with this effect is applied, then they continue to remain
in the node.

●​ PreferNoSchedule: If there is no un-ignored taint with effect NoSchedule but there is at
least one un-ignored taint with effect “PreferNoSchedule” then Kubernetes will try to not
schedule the pod onto the node.

●​ NoExecute: If there is at least one un-ignored taint with effect “NoExecute” then the pod
will be evicted from the node (if it is already running on the node), and will not be
scheduled onto the node (if it is not yet running on the node).

If a taint with effect NoExecute is added to a node, then any pods that do not tolerate the
taint will be evicted immediately, and any pods that do tolerate the taint will never be
evicted. However, a toleration with NoExecute effect can specify an optional
tolerationSeconds field that dictates how long the pod will stay bound to the node after
the taint is added.

A toleration matches a taint:
●​ If the operator parameter is set to Equal:

○​ the key parameters are the same;
○​ the value parameters are the same;
○​ the effect parameters are the same.

●​ If the operator parameter is set to Exists:
○​ the key parameters are the same;
○​ the effect parameters are the same.

There are the following default tolerations which the Kubernetes adds:

●​ If the user pod configuration does not have a toleration for node.kubernetes.io/not-ready
, kubernetes adds the toleration for node.kubernetes.io/not-ready with
tolerationSeconds=300.

●​ If the user pod configuration does not have a toleration for
node.alpha.kubernetes.io/unreachable, kubernetes adds the toleration for
node.alpha.kubernetes.io/unreachable with tolerationSeconds=300.

These automatically-added tolerations ensure that the default pod behavior of remaining bound
for 5 minutes after one of these problems is detected is maintained.

2.1.3. Constraints for Taints/Tolerations

2.1.3.1 Hard Constraint

If the effect of taint on nodes is “NoSchedule” or “NoExecute” and if the pod cannot tolerate
these taints on the node, firmament should restrict the scheduling of pods onto this node.
A node with no taint should not be restricted for scheduling pods .

First, all the tolerations for a given pod spec is stored in a map with key as “toleration key +
toleration effect” and value as “toleration value”. Then all the taints of an incoming node is
matched to the key value pair of the map. The nodes for which key, value of all the taints is
found in the map is said to be tolerant and arc is drawn from the task EC to machine EC.
However, arcs are not drawn from the task EC to machine EC, to prevent scheduling of the
pods that are intolerant to the taints with effect NoSchedule/NoExecute of nodes.

2.1.3.2 Soft Constraint

Taints-tolerations priority only takes care about the taints and tolerations that have effect
“PreferNoSchedule”.

If the effect of taint on node is “PreferNoSchedule” and is intolerable, the cost for the node
should be more. So the cost for all the nodes is based on the number of intolerable taints on the
node. Higher the count of intolerable taints of a pod with effect PreferNoSchedule, higher the
cost.

First, all the tolerations for a given pod spec is stored in a map with key as “toleration key” with
“PreferNoSchedule” effect and value as “toleration value”. Then all the taints with
“PreferNoSchedule” effect of an incoming node is matched to the key value pair of the map. The
nodes for which key, value of all the taints is found in the map is said to be tolerant and cost is
not affected. But if any intolerable taints exist for a node, then the cost is incremented by the
count of intolerable taints.

Suppose there are 5 taints with effect “PreferNoSchedule” for a given node, out of which only 3
taints are tolerable by a pod. So the cost of the node will be incremented by 2.

(Figure 2: CPU-Memory Cost Model Diagram with a node with 1 intolerable taint)

2.2. Poseidon Design Details

Firstly, Kubernetes toleration and taint protobuf message structure from generated.proto is
mapped to Firmament's task descriptor protobuf message structure and Firmament's resource
descriptor protobuf message respectively.

The toleration data structure from kubernetes pod.spec is parsed to the Poseidon data structure
by calling ParsePod function. The Poseidon data structure, in turn, is then converted to the
toleration structure of task descriptor.
The task descriptor data is then sent to the firmament by calling function addTasktoJob function
within Poseidon.

The taint data structure from kubernetes node.spec is parsed to the Poseidon data structure by
calling ParseNode function. The Poseidon data structure, in turn, is then converted to the taint
structure of resource descriptor.
The resource descriptor data is then sent to the firmament by calling function
createResourceTopologyForNode function within Poseidon.

	 ​Taints and Tolerations Design for Firmament/Poseidon Scheduler
	1. Motivation
	1.1. Goals
	1.2. User Stories
	1.2.1. Story 1
	1.2.2. Story 2
	1.2.2. Story 3

	2. Proposed Design
	2.1. Firmament Design Details
	2.1.1. CPU-Memory Cost Model Overview
	2.1.2. Key Processing Design Details
	2.1.3. Constraints for Taints/Tolerations
	2.1.3.1 Hard Constraint
	2.1.3.2 Soft Constraint

	2.2. Poseidon Design Details

