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2.1 Numerical Differentiation 

 

Fig 2.1 Step function and sigmoid function – the gradient of a step function is 0 at 

almost all positions, while the gradient of a sigmoid function (tangent) is never 0 

 

The gradient method uses information from the gradient to determine which direction 

to follow.  

what a gradient is and its characteristics? 

Beginning with a "derivative." 

 

Derivative 

A derivative indicates the amount of change at "a certain moment." 

Example: 2 km in 10 minutes from the start of a full marathon. You can calculate the 

speed as 2 / 10 = 0.2 [km/minute]. You ran at a speed of 0.2 km per minute.- "running 

distance" changed over "time." 

Therefore, by minimizing the time of 10 minutes (the distance in the last 1 minute, the 

distance in the last 1 second, the distance in the last 0.1 seconds, and so on), you can 

obtain the amount of change at a certain moment (instantaneous speed). 



 

a derivative indicates the amount of change at a certain moment. This is defined by the 

following equation: 

 

​  

Equation (4.4) indicates the derivative of a function. The left-hand side indicates the 

derivative of f(x) with respect to x – the degree of changes of f(x) with respect to x. The 

derivative expressed by equation (4.4) indicates how the value of the function, f(x), 

changes because of a "slight change" in x. Here, the slight change, h, is brought close to 0 

infinitely, which is indicated as  . 

 

+                                           

                           

rounding error occurs here 

The following example shows a rounding error in Python: 

 

first improvement. You can use 10−4 as the small value, h. It is known that a value of 

around 10−4 brings about good results. 

The second improvement is in terms of the difference in the function, f. The preceding 

implementation calculates the difference in the function f between x + h and x. You 

should observe that this calculation causes an error in the first place. 

​

Fig 2.2 True derivative (true tangent) and numerical differentiation (tangent by 

approximation) are different in value 



a numerical differential contains an error. To reduce this error, you can calculate the 

difference of the function, (f), between (x + h) and (x - h). This difference is called a 

central difference because it is calculated around x (on the other hand, the difference 

between (x + h) and x is called a forward difference). Now, let's implement a numerical 

differentiation (numerical gradient) based on these two improvements: 

 

Calculating a derivative by using a very small value difference is called numerical 

differentiation. 

 

Examples of Numerical Differentiation 

 

 

The following shows the code for drawing a graph and the resulting graph 

 

 



Fig 2. 3 Graph of f (x) = 0.01x2 + 0.1x 

Now calculate the differentials of the function when x=5 and x=10: 

 

The differential calculated here is the amount of change of f(x) for x, which corresponds 

to the gradient of the function. By the way, the analytical solution of f (x) = 0.01x2 + 0.1x 

is = 0.02x + 0.1. The true derivative when x=5 and 10 are 0.2 and 0.3, respectively. They 

are not strictly identical to the results from numerical differentiation, but the error is 

very small. Actually, the error is so small that they can be regarded as almost identical 

values: 

 

Fig 2.4 Tangents when x = 5 and x = 10 – using the values from numerical 

differentiation as the gradients of lines 

Partial Derivative 

 

 

To calculate the derivative of equation. Here, please note that equation (4.6) has two 

variables. Therefore, you must specify for which of the two variables, x0 and x1, the 

differentials are calculated. The derivative of a function that consists of multiple 

variables is called a partial derivative. 

Question 1: Calculate the partial derivative, for x0 when x0 = 3 and x1 = 4: 



 

Question 2: Calculate the partial derivative, for x1 when x0 = 3 and x1 = 4: 

 

To solve these problems, a function with one variable is defined, and the derivative for 

the function is calculated. 

 For example, in Question 1, a new function for x1=4 is defined, and the function, which 

has only one variable, x0, is passed to the function to calculate a numerical 

differentiation. Based on the results, the answer to Question 1 is 6.00000000000378, 

and the answer to Question 2 is 7.999999999999119. They are mostly the same as 

the solutions from analytical differentiation. 

 

2.2 Gradient 

In the previous example, the partial derivatives of x0 and x1 were calculated for each 

variable. Now, we want to calculate the partial derivatives of x0 and x1 collectively. For 

example, let's calculate the partial derivatives of (x0, x1) when x0 = 3 and x1 = 4 as

The vector that collectively indicates the partial differentials of all the variables, 

such as  is called a gradient. 

 



 

Note :  np.zeros_like(x) generates an array that has the same shape as x and whose 

elements are all zero. 

The numerical_gradient(f, x) function takes the f (function) and x (NumPy array) 

arguments and obtains numerical differentiations for each element of the NumPy array, 

x. 

Example: obtain the gradients at points (3, 4), (0, 2), and (3, 0): 

 

Note  

The actual result is [6.0000000000037801, 7.9999999999991189], but [6., 8.] is 

returned. This is because a returned NumPy array is formatted to enhance the visibility 

of the values. 

 

What do these gradients mean? To understand this, let's look at the gradients of . Here, 

we will make the gradients negative and draw the vectors  

The gradients of   are shown as the vectors (arrows) that have the 

direction toward the lowest point. 



 

In the above figure the gradients point at the lowest position, but this is not always the 

case. In fact, gradient points in the lower direction at each position. To be more precise, 

the direction of a gradient is the direction that reduces the value of the function 

most at each position. 

 

Gradient Method 

Many machine learning problems look for optimal parameters during training. A neural 

network also needs to find optimal parameters (weights and biases) during training. 

The optimal parameter here is the parameter value when the loss function takes the 

minimum value. However, a loss function can be complicated. The parameter space is 

vast, and we cannot guess where it takes the minimum value. A gradient method makes 

good use of gradients to find the minimum value (or the smallest possible value) of the 

function. 

A gradient shows the direction that reduces the value of the function most at each 

position. 

Actually, in a complicated function, the direction that a gradient points to is not the 

minimum value in most cases. 

In the gradient method, you move a fixed distance from the current position in the 

gradient direction. By doing this, you obtain a gradient at the new position and move in 

the gradient direction again. Thus, you move in the gradient direction repeatedly. 

Reducing the value of a function gradually by going in the gradient direction repeatedly 

is known as the gradient method. This method is often used in optimization problems 

for machine learning. It is typically used when training neural networks. 



 

The method for the minimum value is called the gradient descent method, while the 

method for the maximum value is called the gradient ascent method. 

 

let's express a gradient method with an equation.  

 

η adjusts the amount to be updated. This is called a learning rate in neural network. A 

learning rate determines how much needs to be learned and how much to update the 

parameters. 

The above equation is an update equation for one training instance, and the step is 

repeated. Each step updates the variable values, and the step is repeated several times 

to reduce the value of the function gradually. This example has two variables, but even 

when the number of variables is increased, a similar equation—a partial differential 

value for each variable—is used for updating. 

specify the value of the learning rate, such as 0.01 and 0.001, in advance. 

 

Generally, if this value is too large or too small, you cannot reach a "good place." In 

neural network training, we usually check whether training is successful by changing 

the value of the learning rate. 

Generally, if this value is too large or too small, you cannot reach a "good place." In 

neural network training, we usually check whether training is successful by changing 

the value of the learning rate. 

 

 



The f argument is a function to optimize,  

the init_x argument is an initial value,  

the lr argument is a learning rate, and  

the step_num argument is the number of repetitions in a gradient method.  

The gradient of the function is obtained by numerical_gradient(f, x) and the gradient 

updated by multiplying it by the learning rate, which is repeated the number of times 

specified by step_num. 

 

Question: Obtain the minimum value for the below function with a gradient method: 

 

 

 

Updating  the given function with a gradient method – the dashed lines show the 

contour lines of the function 

an overly large or small learning rate does not achieve good results. Let's do some 

experiments regarding both cases here: 



 

The result diverges to a large value if the learning rate is too large. On the other hand, 

almost no updates occur if the learning rate is too small. Setting an appropriate learning 

rate is important. 

A parameter such as a learning rate is called a hyperparameter. It is different from the 

parameters (weights and biases) of a neural network in terms of its characteristics. 

Weight parameters in a neural network can be obtained automatically with training data 

and a training algorithm, while a hyperparameter must be specified manually. Generally, 

you must change this hyperparameter to various values to find a value that enables good 

training. 

 

Gradients for a Neural Network 

The gradients here are those of a loss function for weight parameters. For example, let's 

assume that a neural network has the weight W (2x3 array) only, and the loss function is 

L. In this case, we can express the gradient as . The following equation shows this: 

 

Each element of  is the partial derivative for each element. 



For example, the element at the first row and column, , indicates how a slight 

change in w11 changes the loss function, L. What is important here is that the shape of  

is the same as that of W. 

 

 

 

 

 

 

Program that calculates a gradient by taking an easy neural network as 

 

Here, the softmax and cross_entropy_error methods in common/functions.py are 

being used. The numerical_gradient method in common/gradient.py is also being 

used. The simpleNet class has only one instance variable, which is the weight 

parameters with a shape of 2x3. It has two methods: one is predict(x) for prediction, 

and the other is loss(x, t) for obtaining the value of the loss function. Here, the x 

argument is the input data and the t argument is a correct label. 



 

 

Next, let's obtain the gradients,using numerical_gradient(f, x). The f(W) function 

defined here takes a dummy argument, W. Because the f(x) function is executed inside 

numerical_gradient(f, x), f(W) is defined for consistency: 

 

The f argument of numerical_gradient(f, x) is a function and the x argument is the 

argument to the function, f. Therefore, a new function, f, is defined here. It takes net.W 

as an argument and calculates the loss function. The newly defined function is passed to 

numerical_gradient(f, x). 

 

numerical_gradient(f, net.W) returns dW, which is a two-dimensional 2x3 array. dW 

shows that  for  is around 0.2, for example. This indicates that when w11 is 

increased by h, the value of the loss function increases by 0.2h. is about -0.5, which 

indicates that when w23 is increased by h, the value of the loss function decreases by 

0.5h. Therefore, to reduce the loss function, you should update w23 in a positive 

direction and w11 in a negative direction. You can also see that updating w23 

contributes to the reduction more than updating w11. 



use a lambda notation to write and implement a simple function 

 

 

2.3 Implementing a Training Algorithm  

A neural network has adaptable weights and biases. Adjusting them so that they fit the 

training data is called "training." Neural network training consists of four steps. 

Step 1 (mini-batch) 

Select some data at random from the training data. The selected data is called a 

mini-batch. The purpose here is to reduce the value of the loss function for the 

mini-batch. 

Step 2 (calculating gradients) 

To reduce the loss function for the mini-batch, calculate the gradient for each weight 

parameter. The gradient shows the direction that reduces the value of the loss function 

the most. 

Step 3 (updating parameters) 

Update the weight parameters slightly in the gradient direction. 

Step 4 (repeating) 

Repeat steps 1, 2, and 3. 

This method uses a gradient descent method to update parameters. Because the data 

used here is selected at random as a mini-batch, it is referred to as stochastic gradient 

descent. "Stochastic" means "selecting data at random stochastically." Therefore, 

stochastic gradient descent means "the gradient descent method for randomly selected 

data." In many deep learning frameworks, stochastic gradient descent is usually 

implemented as the SGD function. 

 

TRY: 

 

A Two-Layer Neural Network as a Class 

https://cs231n.github.io/ 

import sys, os 

sys.path.append(os.pardir)   

from common.functions import * 

https://cs231n.github.io/


from common.gradient import numerical_gradient 

import numpy as np 

class TwoLayerNet: 

 

    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01): 

        

        self.params = {} 

        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size) 

        self.params['b1'] = np.zeros(hidden_size) 

        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 

        self.params['b2'] = np.zeros(output_size) 

 

    def predict(self, x): 

        W1, W2 = self.params['W1'], self.params['W2'] 

        b1, b2 = self.params['b1'], self.params['b2'] 

     

        a1 = np.dot(x, W1) + b1 

        z1 = sigmoid(a1) 

        a2 = np.dot(z1, W2) + b2 

        y = softmax(a2) 

         

        return y 

         

    # x: 

    def loss(self, x, t): 

        y = self.predict(x) 

         

        return cross_entropy_error(y, t) 

     

    def accuracy(self, x, t): 

        y = self.predict(x) 

        y = np.argmax(y, axis=1) 

        t = np.argmax(t, axis=1) 



         

        accuracy = np.sum(y == t) / float(x.shape[0]) 

        return accuracy 

         

    # x: 

    def numerical_gradient(self, x, t): 

        loss_W = lambda W: self.loss(x, t) 

         

        grads = {} 

        grads['W1'] = numerical_gradient(loss_W, self.params['W1']) 

        grads['b1'] = numerical_gradient(loss_W, self.params['b1']) 

        grads['W2'] = numerical_gradient(loss_W, self.params['W2']) 

        grads['b2'] = numerical_gradient(loss_W, self.params['b2']) 

         

        return grads 

         

    def gradient(self, x, t): 

        W1, W2 = self.params['W1'], self.params['W2'] 

        b1, b2 = self.params['b1'], self.params['b2'] 

        grads = {} 

         

        batch_num = x.shape[0] 

         

        # forward 

        a1 = np.dot(x, W1) + b1 

        z1 = sigmoid(a1) 

        a2 = np.dot(z1, W2) + b2 

        y = softmax(a2) 

         

        # backward 

        dy = (y - t) / batch_num 

        grads['W2'] = np.dot(z1.T, dy) 

        grads['b2'] = np.sum(dy, axis=0) 



         

        dz1 = np.dot(dy, W2.T) 

        da1 = sigmoid_grad(a1) * dz1 

        grads['W1'] = np.dot(x.T, da1) 

        grads['b1'] = np.sum(da1, axis=0) 

 

        return grads 

 

 

 

 

 

Variables used in the TwoLayerNet class: 

 

 

Methods used in the TwoLayerNet class 



 

The TwoLayerNet class has two dictionary variables, params and grads, as instance 

variables. The params variable contains the weight parameters. For example, the weight 

parameters for layer 1 are stored in params['W1'] as a NumPy array. You can access the 

bias for layer 1 using params['b1']. Here is an example: 

 

the params variable contains all the parameters required for this network. The weight 

parameters contained in the params variable are used for predicting (forward 

processing). You can make a prediction as follows: 

 

The grads variable contains the gradient for each parameter so that it corresponds to 

the params variable. When you calculate gradients by using the numerical_gradient() 

method, gradient information is stored in the grads variable, as follows: 



 

 

 

implementation of the methods in TwoLayerNet 

The __init__ (self, input_size, hidden_size, output_size) method is the initialization 

method of the class ( called when TwoLayerNet is generated) 

The arguments are the numbers of neurons in the input layer, in the hidden layer, and 

the output layer in order from left to right. 

For handwritten digit recognition, a total of 784 input images that are 28x28 in size are 

provided and 10 classes are returned. Therefore, we specify the input_ size=784 and 

output_size=10 arguments and set an appropriate value for hidden_size as the 

number of hidden layers. 

Here, the weights are initialized by using the random numbers based on Gaussian 

distribution, and the biases are initialized by 0. 

The loss(self, x, t) method calculates the value of the loss function. It obtains a 

cross-entropy error based on the result of predict() and the correct label. 

The remaining numerical_gradient(self, x, t) method calculates the gradient of each 

parameter. It uses numerical differentiation to calculate the gradient for the loss 

function of each parameter. 

 

Implementing Mini-Batch Training 



In mini-batch training, we extract some data randomly from training data (called a 

mini-batch) and use it to update the parameters using a gradient method. Let's conduct 

training for the TwoLayerNet class by using the MNIST dataset 

import sys, os 

sys.path.append(os.pardir)   

import numpy as np 

import matplotlib.pyplot as plt 

from dataset.mnist import load_mnist 

from two_layer_net import TwoLayerNet 

(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) 

network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10) 

# Hyper-parameters 

iters_num = 10000   

train_size = x_train.shape[0] 

batch_size = 100 

learning_rate = 0.1 

 

train_loss_list = [] 

train_acc_list = [] 

test_acc_list = [] 

 

iter_per_epoch = max(train_size / batch_size, 1) 

 

for i in range(iters_num): 

    batch_mask = np.random.choice(train_size, batch_size) 

    x_batch = x_train[batch_mask] 

    t_batch = t_train[batch_mask] 

     

   # Calculate a gradient 

    #grad = network.numerical_gradient(x_batch, t_batch)# fast version! 

    grad = network.gradient(x_batch, t_batch) 

     

    # Update the parameters 



    for key in ('W1', 'b1', 'W2', 'b2'): 

        network.params[key] -= learning_rate * grad[key] 

    # Record learning progress 

    loss = network.loss(x_batch, t_batch) 

    train_loss_list.append(loss) 

     

    if i % iter_per_epoch == 0: 

        train_acc = network.accuracy(x_train, t_train) 

        test_acc = network.accuracy(x_test, t_test) 

        train_acc_list.append(train_acc) 

        test_acc_list.append(test_acc) 

        print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc)) 

markers = {'train': 'o', 'test': 's'} 

x = np.arange(len(train_acc_list)) 

plt.plot(x, train_acc_list, label='train acc') 

plt.plot(x, test_acc_list, label='test acc', linestyle='--') 

plt.xlabel("epochs") 

plt.ylabel("accuracy") 

plt.ylim(0, 1.0) 

plt.legend(loc='lower right') 

plt.show() 

Here, the size of a mini-batch is 100. Each time, 100 pieces of data (image data and 

correct label data) are extracted randomly from 60,000 pieces of training data. Then, 

gradients are obtained for the mini-batch, and the parameters are updated using 

stochastic gradient descent (SGD). Here, the number of updates made by a gradient 

method;that is, the number of iterations is 10,000. At each update, the loss function for 

the training data is calculated, and the value is added to the array. Figure  shows the 

graph of how the value of this loss function changes. 

Figure  shows that, as the number of training increases, the value of the loss function 

decreases. It indicates that training is successful. The weight parameters of the neural 

network are adapting to the data gradually. The neural network is indeed learning. By 

being exposed to data repeatedly, it is approaching the optimal weight parameters: 



 

Transition of the loss function – the image on the left shows the transition up to 

10,000 iterations, while the image on the right shows the transition up to 1,000 

iterations 

Using Test Data for Evaluation 
The reduction in the value of the loss function for the training data indicates that the 
neural network is learning well. However, this result does not prove that it can handle a 
different dataset as well as this one. 
In neural network training, we must check whether data other than training data can be 
recognized correctly. We must check whether "overfitting" does not occur. Overfitting 
means that only the number of images contained in the training data can be recognized 
correctly, and those that are not contained there cannot be recognized. 
The goal of neural network training is to obtain generalization capability. To do that, we 
must use data that is not contained in the training data to evaluate the generalization 
capability of the neural network. In the next implementation, we will record the 
recognition accuracy for the test data and the training data periodically during training. 
We will record the recognition accuracy for the test data and the training data for each 
epoch. 
Note  

An epoch is a unit. One epoch indicates the number of iterations when all the training 
data has been used for training. For example, let's assume that 100 mini-batches are 
used to learn 10,000 pieces of training data. After a stochastic gradient descent method 
is repeated 100 times, all the training data has been seen. In this case, 100 iterations = 
1 epoch. 
change the previous implementation slightly to gain a correct evaluation. Here, the 
differences from the previous implementation are shown in bold: 



 

 

 



 

Transition of recognition accuracy for training data and test data. The horizontal 

axis shows the epochs 

we can see that the two recognition accuracies are almost the same as the two lines 

mostly overlap. This indicates that overfitting did not occur here. 

Updating Parameters 

The purpose of neural network training is to find the parameters that minimize the 

value of the loss function. The problem is finding the optimal parameters—a process 

called optimization. 

2.4 In a deep network, it is more difficult because the number of parameters is huge. 

So far, we have depended on the gradients (derivatives) of the parameters to find the 

optimal parameters. By repeatedly using the gradients of the parameters to update the 

parameters in the gradient direction, we approach the optimal parameters gradually. 

This is a simple method called stochastic gradient descent (SGD), but it is a "smarter" 

method than searching the parameter space randomly. 

 

 

 



 

2.4.1 SGD 

 

Here, the weight parameters to update are W and the gradients of the loss function for 

W are  . η is the learning rate. 

SGD is a simple method that moves a certain distance in the gradient direction. 

 

The learning rate is retained as an instance variable. We will also define the 

update(params, grads) method, which is called repeatedly in SGD. The arguments, 

params and grads, are dictionary variables (as in the implementation of neural 

networks so far). Like params['W1'] and grads['W1'], each element stores a weight 

parameter or a gradient. By using the SGD class, you can update the parameters in a 

neural network as follows (the following code is pseudocode that doesn't run): 

 

optimizer, means a "person who optimizes." Here, SGD plays this role. The optimizer 

variable takes responsibility for updating the parameters. 

Disadvantage of SGD 

consider a problem that calculates the minimum value of the following function: 

 



The shape of the function represented by equation looks like a "bowl" stretched in the 

x-axis direction 

 

 

 

 

These gradients are large in the y-axis direction and small in the x-axis direction. In 

other words, the inclination in the y-axis direction is steep, while in the x-axis direction, 



it's gradual. Note that the position of the minimum value of equation  is (x, y) = (0, 0) 

but that the gradients in Figure 6 do not point to the (0, 0) direction in many places. 

Let's apply SGD to the function that has the shape shown in the following plots. It starts 

searching at (x, y) = (−7.0, 2.0) (initial values). 

 

Update path of optimization by SGD – inefficient because it moves in a zigzag to 

the minimum value (0, 0) 

SGD moves in a zigzag. The disadvantage of SGD is that its search path becomes 

inefficient if the shape of a function is not isotropic—that is, if it is elongated. So, we 

need a method that is smarter than SGD that moves only in the gradient direction. The 

root cause of SGD's search path being inefficient is that the gradients do not point to the 

correct minimum values. 

To improve the disadvantage of SGD, we will introduce three alternative methods: 

Momentum, AdaGrad, and Adam. 

 

2.4.2 Momentum 

Momentum is related to physics; it means the "quantity of motion." The Momentum 

technique is represented by the following equations 



 

W is the weight parameter to update,  is the gradients of the loss function for W, and 

η is the learning rate. 

v, is the "velocity" in physics. Equation represents a physical law stating that an object 

receives a force in the gradient direction and is accelerated by this force. In Momentum, 

update functions are used as if a ball had been rolled on the ground, as shown in the 

following diagram: 

 

Image of Momentum – a ball rolls on the slope of the ground 

The term αv in equation  slows the object down gradually when it receives no force (a 

value such as 0.9 is set for α). This is the friction created by the ground or air resistance. 

 

The instance variable, v, retains the velocity of the object. At initialization, v retains 

nothing. When update() is called, it retains the data of the same structure as a 

dictionary variable. The remaining implementation is simple: it just implements 

equations. 

 



For the equation 

 

the update path moves like a ball being rolled around in a bowl. You can see that "the 

degree of zigzag" is reduced compared to SGD 

the update path moves like a ball being rolled around in a bowl. You can see that "the 

degree of zigzag" is reduced compared to SGD. The force in the x-axis direction is very 

small, but the object always receives the force in the same direction and is accelerated 

constantly in the same direction. On the other hand, the force in the y-axis direction is 

large, but the object receives the forces in the positive and negative directions 

alternately. They cancel each other out, so the velocity in the y-axis direction is unstable. 

This can accelerate the motion in the x-axis direction and reduce the zigzag motion 

compared to SGD 

2.4.3 AdaGrad 

In neural network training, the value of the learning rate--η in the equation-- is 

important. If it is too small, training takes too long. If it is too large, divergence occurs, 

and correct training cannot be achieved.  

There is an effective technique for the learning rate called learning rate decay. It uses a 

lower learning rate as training advances. This method is often used in neural network 

training. A neural network learns "much" first and learns "less" gradually.  

Reducing the learning rate gradually is the same as reducing the values of the learning 

rates for all the parameters collectively. AdaGrad is an advanced version of this method. 

AdaGrad creates a custom-made value for each parameter. 

AdaGrad adjusts the learning rate for each element of the parameter adaptively for 

training (the "Ada" in AdaGrad comes from "Adaptive"). 

 

Here, a new variable, h, appears. The h variable stores the sum of the squared gradient 

values thus far. 



When updating parameters, AdaGrad adjusts the scale of learning by multiplying  . 

For the parameter element that moved significantly (i.e., was updated heavily), the 

learning rate becomes smaller. Thus, you can attenuate the learning rate for each 

parameter element by gradually reducing the learning rate of the parameter that moved 

significantly. 

 

 

Note that a small value of 1e-7 was added in the last line. This prevents division by 0 

when self.h[key] contains 0. In many deep learning frameworks, you can configure this 

small value as a parameter, but here, a fixed value, 1e-7, is used. 



 

Update path for optimization by AdaGrad 

image shows that the parameters are moving efficiently to the minimum value. The 

parameters move a lot at first because the gradient in the y-axis direction is large. 

Adjustment is conducted in proportion to the large motion so that the update step 

becomes small. Thus, the degree of update in the y-axis direction is weakened, reducing 

the zigzag motion. 

 

2.4.4 Adam 

In Momentum, the parameters move based on physical law, such as a ball rolled in a 

bowl. AdaGrad adjusts the update step adaptively for each parameter element. So, what 

happens when the two techniques, Momentum and AdaGrad, are combined? This is the 

basic idea of the technique called Adam 

it is like a combination of Momentum and AdaGrad. By combining the advantages of 

these two techniques, we can expect to search the parameter space efficiently. The "bias 

correction" of hyperparameters is also a characteristic of Adam. 

class Adam: 

 

    """Adam)""" 



 

    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999): 

        self.lr = lr 

        self.beta1 = beta1 

        self.beta2 = beta2 

        self.iter = 0 

        self.m = None 

        self.v = None 

         

    def update(self, params, grads): 

        if self.m is None: 

            self.m, self.v = {}, {} 

            for key, val in params.items(): 

                self.m[key] = np.zeros_like(val) 

                self.v[key] = np.zeros_like(val) 

         

        self.iter += 1 

        lr_t  = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 - self.beta1**self.iter)          

         

        for key in params.keys(): 

            #self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key] 

            #self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2) 

            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key]) 

            self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key]) 

             

            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7) 

             

            #unbias_m += (1 - self.beta1) * (grads[key] - self.m[key]) # correct bias 

            #unbisa_b += (1 - self.beta2) * (grads[key]*grads[key] - self.v[key]) # correct bias 

            #params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7) 



 

Update path for optimization by Adam 

the update path by Adam moves as if a ball has been rolled in a bowl. The motion is 

similar to that in Momentum, but the left and right motions of the ball are smaller. This 

advantage is caused by the adaptive adjustment of the learning rate. 

Adam has three hyperparameters. The first is the learning rate (appearing as α in the 

paper). The others are the coefficient for the primary moment, β1, and the coefficient for 

the secondary moment, β2. The article states that the standard values are 0.9 for β1 and 

0.999 for β2, which are effective in many cases. 

 

 

Which Update Technique Should We Use? 

 



 

there is no one technique currently known that is good at solving all problems. Each has 

its own distinct characteristics and advantages, which make it better suited to certain 

problems over others. Therefore, it's important to know which technique works best 

given a specific set of circumstances. 

 

 

 

 

 

 

 

 

 

Using the MNIST dataset to compare the four update techniques – the horizontal 

axis indicates the iterations of learning, while the vertical axis indicates the 

values of the loss function 



 

 

2.5 Initial Weight Values 

What values are set as the initial weight values often determines the success or failure of 

neural network training. 

 

How About Setting the Initial Weight Values to 0? 

weight decay is a technique that reduces the values of the weight parameters to prevent 

overfitting. 

If we want the weights to be small, starting with the smallest possible initial values is 

probably a good approach. Here, we use an initial weight value such as 0.01 * 

np.random.randn(10, 100). This small value is the value generated from the Gaussian 

distribution multiplied by 0.01—a Gaussian distribution with a standard deviation of 

0.01. 

If we want the weight values to be small, how about setting all the initial weight values 

to 0? This is a bad idea as it prevents us from training correctly. 

Why should the initial weight values not be 0? Or in other words, why should the 

weights not be uniform values? Well, because all weight values are updated uniformly 



(in the same way) in backpropagation. So, say that layers 1 and 2 have 0 as their weights 

in a two-layer neural network. Then, in forward propagation, the same value is 

propagated to all the neurons in layer 2 because the weight of the input layer is 0. When 

the same values are entered for all the neurons in layer 2, all the weights in layer 2 are 

updated similarly in backward propagation (please remember "backward propagation 

in a multiplication node"). Therefore, the weights are updated with the same value and 

become symmetrical values (duplicate values). Due to this, there is no meaning in 

having many weights. To prevent the weights from being uniform or breaking their 

symmetrical structure, random initial values are required. 

Distribution of Activations in the Hidden Layers 

 

Here, there are five layers and that each layer has 100 neurons. As input data, 1,000 

pieces of data are generated at random with Gaussian distribution and are provided to 

the five-layer neural network. A sigmoid function is used as the activation function, and 

the activation results of each layer are stored in the activations variable. Please note the 

weight scale. Here, a Gaussian distribution with a standard deviation of 1 is being used. 

The purpose of this experiment is to observe how the distribution of activations 

changes by changing this scale (standard deviation). Now, let's show the data of each 

layer that is stored in activations in a histogram: 



 

 

Distribution of the activations of each layer when a Gaussian distribution with a 

standard deviation of 1 is used for the initial weight values 

This image shows that the activations of each layer are mainly 0 and 1. The sigmoid 

function that's being used here is an S-curve function. As the output of the sigmoid 

function approaches 0 (or 1), the value of the differential approaches 0. Therefore, when 

the data is mainly 0s and 1s, the values of the gradients in backward propagation get 

smaller until they vanish. This is a problem called gradient vanishing. In deep learning, 

where there's a large number of layers, gradient vanishing can be a more serious 

problem. 

let's conduct the same experiment, but this time with the standard deviation of the 

weights as 0.01. To set the initial weight values, you will need to modify the previous 

code, as follows: 

 

 



Distribution of the activations of each layer when a Gaussian distribution with a 

standard deviation of 0.01 is used for the initial weight values 

Now, the activations concentrate around 0.5. Unlike the previous example, they are not 

biased toward 0 and 1. The problem of gradient vanishing does not occur. However, 

when activations are biased, it causes a large problem in terms of its representation. If 

multiple neurons output almost the same values, there is no meaning in the existence of 

multiple neurons. For example, when 100 neurons output almost the same values, one 

neuron can represent almost the same thing. Therefore, the biased activations cause a 

problem because representation is limited. 

Note  

The distribution of the activations in each layer needs to be spread properly. This is 

because, when moderately diverse data flows in each layer, a neural network learns 

efficiently. On the other hand, when biased data flows, training may not go well because 

of the gradient vanishing and "limited representation." 

 

Next, we will use the initial weight values that were recommended in a paper by Xavier 

Glorot et al. 

This is called "Xavier initialization." Currently, the Xavier initializer is usually used in 

ordinary deep learning frameworks. For example, in the Caffe framework, you can 

specify the xavier argument for the initial weight setting to use the Xavier initializer. 

Xavier's paper obtained the appropriate scale of weights so that the activation of each 

layer was spread similarly. It concluded that distribution with a standard deviation of 

should be used when the number of nodes in the previous layer is n 



 

Xavier initializer – when n nodes in the previous layer are connected, a 

distribution with the standard deviation of  is used for initial values 

When the Xavier initializer is used, since the number of nodes in the previous layer is 

larger, the weight scale that is set for the initial values for the target nodes is smaller. 

 

 

Distribution of the activations of each layer when the Xavier initializer is used as 

the initial weight value 

It shows that distributions are spread more widely, although a higher layer has a more 

distorted shape. We can expect that training is conducted efficiently because the data 

that flows in each layer is spread properly, and the representation of the sigmoid 

function is not limited. 



 

Initial Weight Values for ReLU 
The Xavier initializer is based on the assumption that the activation function is linear. 
The Xavier initializer is suitable because the sigmoid and tanh functions are 
symmetrical and can be regarded as linear functions around their centers. Meanwhile, 
for ReLU, using the initial value is recommended. This is known as the He initializer and 
was recommended by Kaiming He and et. Al 
 

The He initializer uses a Gaussian distribution with a standard deviation of when the 
number of nodes in the previous layer is n. When we consider that the Xavier initializer 

is  , we can assume (intuitively) that the coefficient must be doubled to provide more 
spread because a negative area is 0 for ReLU. 
 
Let's look at the distribution of activations when ReLU is used as the activation function. 
We will consider the results of three experiments after using a Gaussian distribution 
with a standard deviation of 0.01 (that is, std=0.01), the Xavier initializer, and the He 
initializer, which is specifically used for ReLU 



 

Change of activation distribution by weight initializers when ReLU is used as the 
activation function 
Activations of each layer are very small (the averages of the distributions are as follows: 
layer 1: 0.0396, layer 2: 0.00290, layer 3: 0.000197, layer 4: 1.32e-5, and layer 5: 
9.46e-7) for std=0.01. 
When small data flows through a neural network, the gradients of the weights in 
backward propagation are also small. This is a serious problem as training will barely 
advance. 
 
The results from using the Xavier initializer. This shows that the bias becomes larger 
little by little as the layers become deeper—as do the activations. Gradient vanishing 
will be a problem when it comes to training. On the other hand, for the He initializer, the 
spread of Gaussian distribution in each layer is similar. The spread of data is similar 
even when the layers are deeper. So, we can expect that appropriate values also flow for 
backward propagation. 



Summary, when you use relu as the activation function, use the He initializer, and for 
S-curve functions such as sigmoid and tanh, use the Xavier initializer. As of the time of 
writing, this is the best practice. 
 
Using the MNIST Dataset to Compare the Weight Initializers 

 

Using the MNIST dataset to compare the weight initializers – the horizontal axis 

indicates the iterations of training, while the vertical axis indicates the values of 

the loss function 

the initial weight values are very important in neural network training. They often 

determine their success or failure. Although the importance of the initial weight values 

is sometimes overlooked, the starting (initial) value is important for everything. 

 

Batch Normalization 

How about adjusting the distribution of activations "forcefully" so that there's a proper 
spread in each layer? This technique is based on the idea of batch normalization 
Batch normalization algorithm 
Batch norm attracts a lot of attention due to the following advantages:  

• it can accelerate learning (it can increase the learning rate).  
• it is not as dependent on the initial weight values (you do not need to be cautious 

about the initial values).  
• it reduces overfitting (it reduces the necessity of dropout). 



The first advantage is particularly attractive because deep learning takes a lot of time. 
With batch norm there's no need to be anxious about the initial weight values, and due 
to it reducing overfitting, it removes this cause of anxiety from deep learning. 
The purpose of batch norm is to adjust the distribution of the activations in each layer 
so that it has a proper spread. To do that, the layer that normalizes data distribution is 
inserted into a neural network as the batch normalization layer 

 

Neural network example that uses batch normalization (the batch norm layers are 
shown in gray) 
As its name indicates, batch norm normalizes each mini-batch that is used for training. 
Specifically, it normalizes data so that the average is 0 and the variance is 1. The 
following equation shows this: 

 

Here, a set of m input data, b , is treated as a mini-batch and its 

average,  , and variance,  , are calculated. The input data is normalized so that its 

average is 0 and its variance is 1 for the appropriate distribution. ε is a small value (such 

as 10e-7). This prevents division by 0. 

Equation 6.7 simply converts the input data for a mini-batch, , into data 

with an average of 0 and a variance of 1,  . By inserting this process before 

(or after) the activation function 

 



In addition, the batch norm layer converts the normalized data with a peculiar scale and 

shift. The following equation shows this conversion: 

 

Here, γ and β are parameters. They start with γ = 1 and β = 0 and will be adjusted to the 

appropriate values through training. 

Evaluating Batch Normalization 

MNIST dataset to see how the progress of learning changes with and without the batch 

norm layer 

 

Effect of batch norm – batch norm accelerates learning 

2.6 Regularization 
Overfitting often creates difficulties in machine learning problems. In overfitting, the 
model fits the training data too well and cannot properly handle other data that is not 
contained in the training data. 
Overfitting  
The main two causes of overfitting are as follows:  

• The model has many parameters and is representative.  
• The training data is insufficient. 
Here, we will generate overfitting by providing these two causes. Out of 60,000 pieces of 
training data in the MNIST dataset, only 300 are provided, and a seven-layer network is 



used to increase the network's complexity. It has 100 neurons in each layer. ReLU is used 
as the activation function: 

 

The solid lines show the results of using batch norm, while the dotted lines show 

the results without it – the title of each graph indicates the standard deviation of 

the initial weight values 

ch06/overfit_ weight_decay.py 



 

Transition of recognition accuracies for the training data (train) and test data 

(test) 

The recognition accuracies that were measured using the training data reached almost 

100% after 100 epochs, but the recognition accuracies on the test data are far below 

100%. These large differences are caused by overfitting the training data. This graph 

shows that the model cannot handle general data (test data) that was not used in 

training properly. 

 

Weight Decay 
The weight decay technique has often been used to reduce overfitting. It avoids 
overfitting by imposing a penalty on large weights during training. Overfitting often 
occurs when a weight parameter takes a large value. 

Weight decay adds to the loss function for all weights. Therefore, the differential 
of the regularization term, λW, is added to the result of backpropagation when 
calculating the gradient of a weight. λ is the hyperparameter that controls the strength 
of regularization. 
Dropout 
It adds the L2 norm of the weights to the loss function to reduce overfitting. Weight 
decay is easy to implement and can reduce overfitting to some extent. However, as a 



neural network model becomes more complicated, weight decay is often insufficient. 
This is when the dropout technique is often used 
Dropout erases neurons at random during training. During training, it selects neurons in 
a hidden layer at random to erase them. As shown in the following image, the erased 
neurons do not transmit signals. During training, the neurons to be erased are selected 
at random each time data flows. During testing, the signals of all the neurons are 
propagated. The output of each neuron is multiplied by the rate of the erased neurons 
during training: 

 

                                                               

using dropout reduces the difference between the recognition accuracies of training 
data and test data. It also indicates that the recognition accuracy of the training data has 
not reached 100%. Due to this, you can use dropout to reduce overfitting, even in a 
representative network: 

 

The left-hand image shows the experiment without dropout, while the right-hand 

image shows the experiment with dropout (dropout_rate=0.15) 

 

 

2.7 Validating Hyper parameters 

A neural network uses many hyper parameters, as well as parameters such as weights 

and biases. The hyper parameters here include the number of neurons in each layer, 



batch size, the learning rate for updating parameters, and weight decay. Setting the 

Hyper parameters to inappropriate values deteriorates the performance of the model. 

The values of these Hyper parameters are very important, but determining them usually 

requires a lot of trial and error. 

Validation Data 

The training data is used to train a network, while the test data is used to evaluate 

generalization performance. Thus, you can determine whether or not the network 

conforms too well only to the training data (that is, whether overfitting occurs) and how 

large the generalization performance is. 

You must not use test data to evaluate the performance of hyper parameters. 

Why can't we use test data to evaluate the performance of hyper parameters? Well, if we 

use test data to adjust hyper parameters, the hyper parameter values will overfit the test 

data. In other words, it uses test data to check that the hyper parameter values are 

"good," so the hyper parameter values are adjusted so that they only fit the test data. 

Here, the model may provide low generalization performance and cannot fit other data. 

Therefore, we need to use verification data (called validation data) to adjust them. This 

validation data is used to evaluate the quality of our hyper parameters. 

Training data is used for learning parameters (weights and biases). Validation data is 

used to evaluate the performance of hyper parameters. Test data is used (once, ideally) 

at the end of training to check generalization performance. 

Some datasets provide training data, validation data, and test data separately. Some 

provide only training data and test data, while some provide only one type of data. In 

that case, you must separate the data manually. 

Optimizing Hyperparameters 

What is important when optimizing hyperparameters is to gradually narrow down the 

range where "good" hyperparameters values exist. To do this, we will set a broad range 

initially, select hyperparameters at random from the range (sampling), and use the 

sampled values to evaluate the recognition accuracy. Next, we will repeat these steps 

several times and observe the result of the recognition accuracy. Based on the result, we 

will narrow down the range of "good" hyperparameters values. By repeating this 

procedure, we can gradually limit the range of appropriate hyperparameters. 

when optimizing hyperparameters, deep learning takes a lot of time (even a few days or 

weeks). Therefore, any hyperparameters that seem inappropriate must be abandoned 



while searching for them. When optimizing hyperparameters, it is effective to reduce the 

size of epoch for training to shorten the time that one evaluation takes. 

Step 0  

Specify the range of the hyperparameters.  

Step 1  

Sample the hyperparameters from the range at random.  

Step 2  

Use the hyperparameter values sampled in Step 1 for training and use the validation 

data to evaluate the recognition accuracy (set small epochs).  

Step 3  

Repeat steps 1 and 2 a certain number of times (such as 100 times) and narrow down 

the range of hyperparameters based on the result of the recognition accuracy. When the 

range is narrowed down to some extent, select one hyperparameter value from it. This is 

one practical approach to optimizing hyperparameters. 

 

 

The solid lines show the recognition accuracies of the validation data, while the 

dotted lines show the recognition accuracies of the training data 


