Beam's Implementation of Mimblewimble:
A Technical Rebuttal to Misinformation

Authors: The Beam Community
Date: August 31, 2025

A recent Substack article titled "Mimblewimble: A Critical Comparison of Privacy
Approaches” presents numerous claims about Beam's implementation of Mimblewimble
that contain significant technical inaccuracies and misleading characterizations.

As members of the Beam community with access to direct input from Beam developers
(including Beam's protocol lead developer), we are sharing this detailed technical rebuttal to
correct the record.

Fundamental Misunderstanding of Mimblewimble’s Core
Challenge

The above article opens with: "True privacy doesn't arise from hiding data, but from its
systematic destruction. What was never stored can never be compromised”. This statement,
built upon specific characteristics of the Mimblewimble protocol, fundamentally
misrepresents the most important privacy challenge in cryptocurrencies based on it.

Indeed, the author seems to lack the basic understanding of Mimblewimble’s main
shortcoming: insufficient transaction graph obfuscation. The most critical issue isn't
what data gets stored long-term, but rather that transaction connections become visible to


https://tb358de.substack.com/p/mimblewimble-a-critical-comparison

the whole network the moment the transactions are broadcasted. Indeed, the protocol's
ability to prune spent UTXOs provides no privacy benefits against an attacker actively
listening to the network, because the transaction links were already revealed during the
initial broadcast. This vulnerability becomes particularly acute during periods of low network
saturation, when few transactions per block render Mimblewimble's built-in CoinJoin
functionality less effective at obscuring transaction trails.

Beam developers invested significant effort to precisely address this core weakness of
Mimblewimble. That's why some key architectural enhancements were developed to directly
target this root vulnerability: first through the strategic deployment of decoy outputs
(zero-value UTXOs) during Dandelion++'s stem phase, in order to complicate transaction
graph analysis. And then, more fundamentally, through periodic Lelantus shielded
transactions that completely sever linkability between inputs and outputs. These
innovations address what truly matters -the prevention of transaction graph reconstruction-
rather than only focusing on the protocol's long-term data retention characteristics, which
-although interesting- are mistakenly elevated by the original article as the primary privacy
concern.

References:

e Dummy UTXOs:
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-b
eam-9125bc2ee863
Paper: https://github.com/BeamMW/beam/wiki/Transaction-graph-obfuscation
Lelantus:
https://beamprivacy.substack.com/p/fb6ed6cf-45a7-45¢c2-bc1c-fad9059017bd
Paper: https://docs.beam.mw/L elantus-MW.pdf
About active attacks and transaction graph:
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-b
eam-9125bc2ee863

The Secure Bulletin Board System (SBBS): Clarifying the
Record

The article claims: "Every node in the Beam network stores a complete copy of this bulletin
board. Thousands of nodes hold identical encrypted messages"”.

This is misleading. While technically correct that all nodes store and relay all SBBS
messages (that’'s precisely the decentralization and censorship-resistant strength of this
messaging system), the article fails to mention the critical detail that each message is only
stored for 12 hours, to prevent node and network bloat.

Beam's lead developer reminded us that this aspect was actually analyzed in detail when
developing the SBBS feature. Indeed, despite the fact that all messages are encrypted and
look like uniform random numbers, an attacker surveilling the whole network could indeed
collect some metadata by time-matching the messages and the transactions. But the
technical conclusions of the analysis of this kind of attack were that it is in fact a very minor
risk. Indeed, the fact that a transaction is negotiated before it's sent is... obvious. The main


https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://github.com/BeamMW/beam/wiki/Transaction-graph-obfuscation
https://beamprivacy.substack.com/p/fb6ed6cf-45a7-45c2-bc1c-fad9059017bd
https://beamprivacy.substack.com/p/fb6ed6cf-45a7-45c2-bc1c-fad9059017bd
https://docs.beam.mw/Lelantus-MW.pdf
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863

metadata leak could come from the attacker's ability to find the source of the SBBS message
(the IP address of its sender). Yet, the same consideration exists in the transaction
broadcast. And that’'s precisely why Beam uses a modified Dandelion++ to broadcast
transactions.

All in all, the article creates inflated concern about metadata analysis, but fails to
acknowledge that Beam actually implemented robust countermeasures to Mimblewimble’s
real main weakness.

UTXO Metadata: A Non-Issue Based on False Premises

The article claims Beam "breaks [Mimblewimble's] principle by providing outputs with
encrypted additional information" and suggests that "structurally, it's no longer the same" and
creates "potential vulnerability.".

This argument is fundamentally flawed. Beam’s lead developer explains: “Each UTXO looks
like a uniform random number for the outside world. It can only be recognized and
reverse-engineered by its creator. This principle holds for Beam, Grin and most other
Mimblewimble cryptocurrencies. The only difference is that we at Beam managed to use
additional 64 bytes of information, where the owner can store whatever it wants, without
reducing the uniform random aspect of the UTXO."

The article's concern about metadata creating future vulnerabilities is speculative at best. It
acknowledges that “the UTXO appears unchanged from the outside”, but then goes on
saying that there could exist some (vague and ill-defined) scenario where those particular 64
bytes of information could be identified and used as a unique UTXO identifier. Truth is that if
somehow that were to be the case, then the whole UTXO could be reverse-engineered. And
that would impact not only all Mimblewimble cryptocurrencies, but probably most of all
cryptocurrencies!

Furthermore, the author ignores Beam's implementation of the different enhancements (such
as the Lelantus transactions and the decoy outputs mentioned above) which actually
significantly strengthen privacy protections beyond basic Mimblewimble.

Compliance Features: Mostly Theoretical and
Misunderstood

The article devotes significant attention to Beam's "compliance features", claiming they
"relativize the principle of absolute privacy" and that "transparency becomes an imposed
state”.

This section is particularly misleading because those “compliance features” (in particular a
feature allowing a read-only view of the wallet's balance and of its in/out-coming
transactions) were actually... never developed! They exist solely as a theoretical option
which was discussed at the beginning of the project.

Moreover the author's claim that "anyone who activates auditability doesn't just expose their
own side of a transaction, but automatically also that of the counterparty” is incorrect in



practice. Indeed, if a user is obliged to report its transaction to the government (tax
authorities, justice, etc.), they can do so by simply demonstrating their transaction history in
the wallet, without the knowledge or consent of other involved users. And that is true for any
cryptocurrency, as it has nothing to do with the existence or not of specific digital auditability
features!

What actually exists today in Beam is an “owner key” which allows (among other things) a
read-only view of a wallet’'s balance (but not its transactions!). Such a viewkey on a wallet’s
balance is useful for public wallets, donation funds, proof of reserves, etc. In addition, Beam
also provides individual “payment proofs”, which show and prove the content of one given
transaction, and which can be shared one by one, transaction per transaction.

So the article's alarm about “compliance features” is largely based on a theoretical
functionality that simply does not exist in the current implementation!

C++ Implementation: Security Expertise Over Language
Hype

The article then claims C++ is "notorious for buffer overflows, use-after-free bugs, and
memory leaks" and suggests Rust "has become the de facto standard for security-critical
blockchain projects”. This reflects a superficial understanding of cryptographic engineering
and security. Because security in privacy-focused systems isn’t determined by language
popularity, but by the precision with which developers can control low-level execution.

Beam’s architecture and execution demands absolute control over memory access
patterns and timing side channels, which are requirements critical both for maximum
performance of complex cryptographic operations and for limiting risks such as timing
attacks or cache-timing leaks. And these necessities perfectly align with C++’s granular
hardware control.

This isn’t an ideological preference but an empirical necessity. And the article dismissing
C++ for very general reasons seems to forget that all security-critical systems -from
OpenSSL to most cryptographic libraries- prioritize precise hardware control over
syntactic safety. As an example, that's the reason why many projects (and even other
Mimblewimble projects the article praises) rely on the 'secp256k1' cryptographic library
-which is written in C- for their core elliptic curve operations. If low-level control were truly
"unpredictable," these industry-standard libraries wouldn’t exist.

Rust’s safety guarantees, while valuable for certain applications, also introduce architectural
constraints that can conflict with cryptographic imperatives. By instance, its ownership model
-designed to prevent memory errors- can force redundant data cloning or obscure low-level
optimizations, directly undermining the constant-time execution and constant-memory
access Beam requires. In fact, the problems Rust protects against are not sufficient for the
code to be secure. There's no silver bullet! Even with all the "safety" features a language
can provide, it is still possible to make mistakes. And in some situations, due to Rust’s
higher-level nature, it can make it even harder -even for a skilled developer- to write a
secure code.



At the end of the day, when implementing cutting-edge privacy cryptography, where a single
timing leak can destroy privacy, the developer's expertise and protocol-specific control
outweigh language trends and popularity. And Beam’s experienced developers, with
decades of work with multiple languages (including C++, Rust or Go), chose C++ with care
and for good reasons.

Geopolitical Considerations: A Red Herring

The article's suggestion that Beam's Israeli origins raise concerns because Israel is "a global
center for surveillance technology” is baseless speculation. A developer's nationality does
not determine their political allegiance. Russian developers aren't Kremlin puppets by
default, nor are American developers NSA agents!

In fact, the argument could even go the other way around: Regions with pervasive digital
surveillance often cultivate the most passionate and technically proficient privacy
advocates, as those who experience surveillance firsthand possess the strongest motivation
to develop robust censorship-resistant technologies.

This line of argument has no technical merit and appears designed solely to create
unfounded suspicion.

Ecosystem Fragmentation: A False Narrative

The assertion that Beam “fragments the Mimblewimble community and thus weakens the
entire ecosystem” is nonsensical. True fragmentation occurs when projects duplicate
identical functionality, not when distinct implementations address complementary use cases.
Beam's architectural divergence from Grin and EPIC Cash doesn't fracture the ecosystem; it
expands its utility frontier!

Consider Ethereum: Had we condemned its “fragmentation” of Bitcoin's ecosystem, we'd
have stifled smart contracts, DeFi, and the entire Web3 revolution. Diversity of
implementation -where each project solves specific privacy challenges- is the engine
of progress, not a weakness.

Conclusion: Different Approaches, Same Goal

The original article presents Beam's design choices as compromises on privacy, forcing a
certain narrative into its analysis and distorting or misrepresenting certain aspects to make
Beam look bad or suspicious. And this is particularly striking when in reality those specific
design choices represent thoughtful enhancements which precisely address the main
Mimblewimble weaknesses.

Beam's approach isn't about "compromising" privacy principles but rather about
strengthening them in practical implementations. The project has made deliberate choices to
address real-world privacy challenges that the other minimalist implementations leave
unaddressed.



The article's criticism largely stems from misunderstandings (or voluntary
misrepresentation?) of Beam's actual implementation, confusion between theoretical and
released features, and an overly rigid interpretation of what constitutes "true" Mimblewimble.

For those genuinely interested in privacy technology, it's worth recognizing that different
projects address different aspects of the privacy challenge. Beam's contributions to
transaction graph obfuscation and practical privacy for real-world applications
represent unique and valuable advancements in the field - advancements that this
article fails to acknowledge while propagating numerous technical inaccuracies.

Rather than viewing these different approaches as competing philosophies, the privacy
community would benefit from recognizing them as complementary efforts toward the shared
goal of creating genuinely private digital transactions.

To learn more about Beam, visit beam.mw

Download the Desktop Wallet from beam.mw/downloads

See the source code on github.com/BeamMW

Or join the community on socials: X, Telegram, Discord, etc.



https://www.beam.mw
https://www.beam.mw/downloads
https://github.com/BeamMW
https://x.com/beamprivacy
https://t.me/BeamPrivacy
https://discord.gg/BHZvAhg

	Beam's Implementation of Mimblewimble:​A Technical Rebuttal to Misinformation 
	Fundamental Misunderstanding of Mimblewimble’s Core Challenge 
	The Secure Bulletin Board System (SBBS): Clarifying the Record 
	UTXO Metadata: A Non-Issue Based on False Premises 
	Compliance Features: Mostly Theoretical and Misunderstood 
	C++ Implementation: Security Expertise Over Language Hype 
	Geopolitical Considerations: A Red Herring 
	Ecosystem Fragmentation: A False Narrative 
	Conclusion: Different Approaches, Same Goal 


