
Beam's Implementation of Mimblewimble:​
A Technical Rebuttal to Misinformation 

  

Authors: The Beam Community​
Date: August 31, 2025 

A recent Substack article titled "Mimblewimble: A Critical Comparison of Privacy 
Approaches" presents numerous claims about Beam's implementation of Mimblewimble 
that contain significant technical inaccuracies and misleading characterizations. 

As members of the Beam community with access to direct input from Beam developers 
(including Beam's protocol lead developer), we are sharing this detailed technical rebuttal to 
correct the record. 

 

Fundamental Misunderstanding of Mimblewimble’s Core 
Challenge 

The above article opens with: "True privacy doesn't arise from hiding data, but from its 
systematic destruction. What was never stored can never be compromised". This statement, 
built upon specific characteristics of the Mimblewimble protocol, fundamentally 
misrepresents the most important privacy challenge in cryptocurrencies based on it. 

Indeed, the author seems to lack the basic understanding of Mimblewimble’s main 
shortcoming: insufficient transaction graph obfuscation. The most critical issue isn't 
what data gets stored long-term, but rather that transaction connections become visible to 

https://tb358de.substack.com/p/mimblewimble-a-critical-comparison


the whole network the moment the transactions are broadcasted. Indeed, the protocol's 
ability to prune spent UTXOs provides no privacy benefits against an attacker actively 
listening to the network, because the transaction links were already revealed during the 
initial broadcast. This vulnerability becomes particularly acute during periods of low network 
saturation, when few transactions per block render Mimblewimble's built-in CoinJoin 
functionality less effective at obscuring transaction trails. 

Beam developers invested significant effort to precisely address this core weakness of 
Mimblewimble. That's why some key architectural enhancements were developed to directly 
target this root vulnerability: first through the strategic deployment of decoy outputs 
(zero-value UTXOs) during Dandelion++'s stem phase, in order to complicate transaction 
graph analysis. And then, more fundamentally, through periodic Lelantus shielded 
transactions that completely sever linkability between inputs and outputs. These 
innovations address what truly matters -the prevention of transaction graph reconstruction- 
rather than only focusing on the protocol's long-term data retention characteristics, which 
-although interesting- are mistakenly elevated by the original article as the primary privacy 
concern. 

References: 
●​ Dummy UTXOs: 

https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-b
eam-9125bc2ee863 

●​ Paper: https://github.com/BeamMW/beam/wiki/Transaction-graph-obfuscation 
●​ Lelantus: 

https://beamprivacy.substack.com/p/fb6ed6cf-45a7-45c2-bc1c-fad9059017bd 
●​ Paper: https://docs.beam.mw/Lelantus-MW.pdf 
●​ About active attacks and transaction graph: 

https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-b
eam-9125bc2ee863  

 

The Secure Bulletin Board System (SBBS): Clarifying the 
Record 

The article claims: "Every node in the Beam network stores a complete copy of this bulletin 
board. Thousands of nodes hold identical encrypted messages". 

This is misleading. While technically correct that all nodes store and relay all SBBS 
messages (that’s precisely the decentralization and censorship-resistant strength of this 
messaging system), the article fails to mention the critical detail that each message is only 
stored for 12 hours, to prevent node and network bloat. 

Beam's lead developer reminded us that this aspect was actually analyzed in detail when 
developing the SBBS feature. Indeed, despite the fact that all messages are encrypted and 
look like uniform random numbers, an attacker surveilling the whole network could indeed 
collect some metadata by time-matching the messages and the transactions. But the 
technical conclusions of the analysis of this kind of attack were that it is in fact a very minor 
risk. Indeed, the fact that a transaction is negotiated before it's sent is… obvious. The main 

https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://github.com/BeamMW/beam/wiki/Transaction-graph-obfuscation
https://beamprivacy.substack.com/p/fb6ed6cf-45a7-45c2-bc1c-fad9059017bd
https://beamprivacy.substack.com/p/fb6ed6cf-45a7-45c2-bc1c-fad9059017bd
https://docs.beam.mw/Lelantus-MW.pdf
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863
https://medium.com/beam-mw/will-breaking-mimblewimbles-privacy-model-work-on-beam-9125bc2ee863


metadata leak could come from the attacker's ability to find the source of the SBBS message 
(the IP address of its sender). Yet, the same consideration exists in the transaction 
broadcast. And that’s precisely why Beam uses a modified Dandelion++ to broadcast 
transactions. 

All in all, the article creates inflated concern about metadata analysis, but fails to 
acknowledge that Beam actually implemented robust countermeasures to Mimblewimble’s 
real main weakness. 

UTXO Metadata: A Non-Issue Based on False Premises 

The article claims Beam "breaks [Mimblewimble's] principle by providing outputs with 
encrypted additional information" and suggests that "structurally, it's no longer the same" and 
creates "potential vulnerability.". 

This argument is fundamentally flawed. Beam’s lead developer explains: “Each UTXO looks 
like a uniform random number for the outside world. It can only be recognized and 
reverse-engineered by its creator. This principle holds for Beam, Grin and most other 
Mimblewimble cryptocurrencies. The only difference is that we at Beam managed to use 
additional 64 bytes of information, where the owner can store whatever it wants, without 
reducing the uniform random aspect of the UTXO." 

The article's concern about metadata creating future vulnerabilities is speculative at best. It 
acknowledges that “the UTXO appears unchanged from the outside”, but then goes on 
saying that there could exist some (vague and ill-defined) scenario where those particular 64 
bytes of information could be identified and used as a unique UTXO identifier. Truth is that if 
somehow that were to be the case, then the whole UTXO could be reverse-engineered. And 
that would impact not only all Mimblewimble cryptocurrencies, but probably most of all 
cryptocurrencies! 

Furthermore, the author ignores Beam's implementation of the different enhancements (such 
as the Lelantus transactions and the decoy outputs mentioned above) which actually 
significantly strengthen privacy protections beyond basic Mimblewimble. 

Compliance Features: Mostly Theoretical and 
Misunderstood 

The article devotes significant attention to Beam's "compliance features", claiming they 
"relativize the principle of absolute privacy" and that "transparency becomes an imposed 
state". 

This section is particularly misleading because those “compliance features” (in particular a 
feature allowing a read-only view of the wallet’s balance and of its in/out-coming 
transactions) were actually… never developed! They exist solely as a theoretical option 
which was discussed at the beginning of the project. 

Moreover the author's claim that "anyone who activates auditability doesn't just expose their 
own side of a transaction, but automatically also that of the counterparty" is incorrect in 



practice. Indeed, if a user is obliged to report its transaction to the government (tax 
authorities, justice, etc.), they can do so by simply demonstrating their transaction history in 
the wallet, without the knowledge or consent of other involved users. And that is true for any 
cryptocurrency, as it has nothing to do with the existence or not of specific digital auditability 
features! 

What actually exists today in Beam is an “owner key” which allows (among other things) a 
read-only view of a wallet’s balance (but not its transactions!). Such a viewkey on a wallet’s 
balance is useful for public wallets, donation funds, proof of reserves, etc. In addition, Beam 
also provides individual “payment proofs”, which show and prove the content of one given 
transaction, and which can be shared one by one, transaction per transaction. 

So the article's alarm about “compliance features” is largely based on a theoretical 
functionality that simply does not exist in the current implementation! 

C++ Implementation: Security Expertise Over Language 
Hype 

The article then claims C++ is "notorious for buffer overflows, use-after-free bugs, and 
memory leaks" and suggests Rust "has become the de facto standard for security-critical 
blockchain projects". This reflects a superficial understanding of cryptographic engineering 
and security. Because security in privacy-focused systems isn’t determined by language 
popularity, but by the precision with which developers can control low-level execution. 

Beam’s architecture and execution demands absolute control over memory access 
patterns and timing side channels, which are requirements critical both for maximum 
performance of complex cryptographic operations and for limiting risks such as timing 
attacks or cache-timing leaks. And these necessities perfectly align with C++’s granular 
hardware control. 

This isn’t an ideological preference but an empirical necessity. And the article dismissing 
C++ for very general reasons seems to forget that all security-critical systems -from 
OpenSSL to most cryptographic libraries- prioritize precise hardware control over 
syntactic safety. As an example, that's the reason why many projects (and even other 
Mimblewimble projects the article praises) rely on the 'secp256k1' cryptographic library 
-which is written in C- for their core elliptic curve operations. If low-level control were truly 
"unpredictable," these industry-standard libraries wouldn’t exist. 

Rust’s safety guarantees, while valuable for certain applications, also introduce architectural 
constraints that can conflict with cryptographic imperatives. By instance, its ownership model 
-designed to prevent memory errors- can force redundant data cloning or obscure low-level 
optimizations, directly undermining the constant-time execution and constant-memory 
access Beam requires. In fact, the problems Rust protects against are not sufficient for the 
code to be secure. There's no silver bullet! Even with all the "safety" features a language 
can provide, it is still possible to make mistakes. And in some situations, due to Rust’s 
higher-level nature, it can make it even harder -even for a skilled developer- to write a 
secure code. 



At the end of the day, when implementing cutting-edge privacy cryptography, where a single 
timing leak can destroy privacy, the developer's expertise and protocol-specific control 
outweigh language trends and popularity. And Beam’s experienced developers, with 
decades of work with multiple languages (including C++, Rust or Go), chose C++ with care 
and for good reasons. 

Geopolitical Considerations: A Red Herring 

The article's suggestion that Beam's Israeli origins raise concerns because Israel is "a global 
center for surveillance technology" is baseless speculation. A developer's nationality does 
not determine their political allegiance. Russian developers aren't Kremlin puppets by 
default, nor are American developers NSA agents! 

In fact, the argument could even go the other way around: Regions with pervasive digital 
surveillance often cultivate the most passionate and technically proficient privacy 
advocates, as those who experience surveillance firsthand possess the strongest motivation 
to develop robust censorship-resistant technologies. 

This line of argument has no technical merit and appears designed solely to create 
unfounded suspicion. 

Ecosystem Fragmentation: A False Narrative 

The assertion that Beam “fragments the Mimblewimble community and thus weakens the 
entire ecosystem" is nonsensical. True fragmentation occurs when projects duplicate 
identical functionality, not when distinct implementations address complementary use cases. 
Beam's architectural divergence from Grin and EPIC Cash doesn't fracture the ecosystem; it 
expands its utility frontier! 

Consider Ethereum: Had we condemned its “fragmentation” of Bitcoin's ecosystem, we'd 
have stifled smart contracts, DeFi, and the entire Web3 revolution. Diversity of 
implementation -where each project solves specific privacy challenges- is the engine 
of progress, not a weakness. 

Conclusion: Different Approaches, Same Goal 

The original article presents Beam's design choices as compromises on privacy, forcing a 
certain narrative into its analysis and distorting or misrepresenting certain aspects to make 
Beam look bad or suspicious. And this is particularly striking when in reality those specific 
design choices represent thoughtful enhancements which precisely address the main 
Mimblewimble weaknesses. 

Beam's approach isn't about "compromising" privacy principles but rather about 
strengthening them in practical implementations. The project has made deliberate choices to 
address real-world privacy challenges that the other minimalist implementations leave 
unaddressed. 



The article's criticism largely stems from misunderstandings (or voluntary 
misrepresentation?) of Beam's actual implementation, confusion between theoretical and 
released features, and an overly rigid interpretation of what constitutes "true" Mimblewimble. 

For those genuinely interested in privacy technology, it's worth recognizing that different 
projects address different aspects of the privacy challenge. Beam's contributions to 
transaction graph obfuscation and practical privacy for real-world applications 
represent unique and valuable advancements in the field - advancements that this 
article fails to acknowledge while propagating numerous technical inaccuracies. 

Rather than viewing these different approaches as competing philosophies, the privacy 
community would benefit from recognizing them as complementary efforts toward the shared 
goal of creating genuinely private digital transactions. 

 

To learn more about Beam, visit beam.mw  

Download the Desktop Wallet from beam.mw/downloads  

See the source code on github.com/BeamMW 

Or join the community on socials: X, Telegram, Discord, etc. 
 

https://www.beam.mw
https://www.beam.mw/downloads
https://github.com/BeamMW
https://x.com/beamprivacy
https://t.me/BeamPrivacy
https://discord.gg/BHZvAhg

	Beam's Implementation of Mimblewimble:​A Technical Rebuttal to Misinformation 
	Fundamental Misunderstanding of Mimblewimble’s Core Challenge 
	The Secure Bulletin Board System (SBBS): Clarifying the Record 
	UTXO Metadata: A Non-Issue Based on False Premises 
	Compliance Features: Mostly Theoretical and Misunderstood 
	C++ Implementation: Security Expertise Over Language Hype 
	Geopolitical Considerations: A Red Herring 
	Ecosystem Fragmentation: A False Narrative 
	Conclusion: Different Approaches, Same Goal 


