國立高師大附中108學年第二學期高二數學第一次段考(自然組)

注意: 請將答案作答於另張(答案卷)中

- 一、多選題(每題全對得6分,只錯一選項得4分,錯兩選項得2分,不作答與其他不給分)
- 1. 給定向量 u = (2, -2, 1) ,則下列何者正確? (1) (A)找不到向量 v 使得 $u \cdot v = -3\sqrt{2}$
 - (B)可找到向量 v 使得 $u \times v = (1,0,-4)$ (C)若非零向量 v 滿足 $\left| u \cdot v \right| = 3 \left| v \right|$,則

$$u \times v = 0$$
 (D)若非零向量 v 滿足 $\left| u \times v \right| = 2 \left| v \right|$, 則 $u \cdot v = 0$

- (E)若 $v \neq 0$,則 $u \cdot v \neq 0$ 或 $u \times v \neq 0$
- 2. 考慮向量 u = (a,b,0) , $v = (c,d,\sqrt{2})$, 其中 $a^2 + b^2 = c^2 + d^2 = 2$,下列何者正確? (2)
 - (A)向量 v 與 z 軸正向的夾角恆為定值(與 c , d 之值無關) (B) $^{u\cdot v}$ 的最大值為 $^{\sqrt{2}}$
 - (C) u 與 v 夾角的最大值為 120° (D) ad-bc 的值可能為 $\frac{5}{4}$ (E) $u \times v$ 的最大值為 $\sqrt{2}$
- 3. 坐標空間中, 有 a 、 b 、 c 、 d 四個向量, 滿足外積 $a \times b = c$, $a \times c = d$,
- 且 a 、 b 、 c 的向量長度均為 b . 設向量 a 與 b 的夾角為 b ,則下列何者正確? (3)

$$\cos\theta = \frac{\pm\sqrt{35}}{6}$$

- (B) a 、 c 、 d 兩兩互相垂直 (C) c 與 (a-b) 不垂直
- (D) d 的長度等於 16 (E) a 、 b 、 c 所張出的平行六面體的體積為 64

二、填充顯

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
得分	8	16	2 4	32	40	46	52	58	62	66	70	74	76	78	80	82

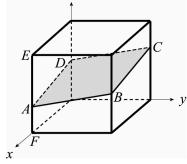
1. 設三實數x, y, z滿足 $(x+2)^2 + (y-1)^2 + z^2 = 49$,

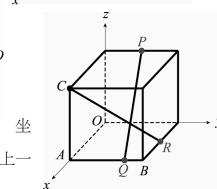
求
$$2x-3y+6z$$
 的最大值為 (1)

2. 右圖是坐標空間中一個邊長為6的正立方體, 其三個邊 分別落在坐標軸上.現一平面將正立方體截出一個四邊形 ABCD, 其中B, D分別為邊的中點, 且

$$\overline{EA}$$
: \overline{AF} = 2:1, 求 $\cos(\angle DAB)$ 的值為_(2)

- 3. 右圖是一個四面體, AO 與平面 OBC 垂直, $_{\exists} \overline{AO} = \overline{BO} = \overline{CO} = \overline{BC} = 4$. 已知側面 ABC 與 底面 OBC 所夾的二面角為 θ , 求 $\cos\theta$ 的值為
- 4. 右圖是空間坐標中的一個正立方體 . 已知點 C 的 標為(4,0,4), P, R分別為正立方體邊上的中點,





點,且 \overline{CR} 與 \overline{PQ} 相交於一點,則Q點坐標為(4)

5. 已知平面E通過點 $^{(5,1,-1)}$ 且與二平面

$$E_1: 2x + y - z = 3$$
 , $E_2: x + 2y + z = 0$ 均垂直,求E的方程式為_(5) --P1--

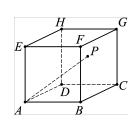
國立高師大附中108學年第二學期高二數學第一次段考(自然組)

- 6. a = (0,1,-3) , b = (1,0,2) , v = a + k b , v 平分 a , b 之夾角,試求 k 值為 <u>(6)</u>
- 8. 坐標空間中,O為原點,向量 Υ = $(1,\sqrt{2},1)$, Υ 是長度為2的向量,且與 Υ 之夾角為 60° ,已 知滿足此條件的所有點P均落在一平面E上,試求E的方程式為_(8)
- 9. 四面體 OABC 中, $\triangle OAB$ 和 $\triangle OAC$ 均為正三角形, $\triangle BOC = 30^{\circ}$ 。 平面 OAB 和 平面 OAC 的來角(以銳角計)為 θ ,求 $\cos\theta$ 的值為(9)
- 10.在空間中,一個斜面的「坡度」定義為斜面與水平面夾角 θ 的正切值 $\tan\theta$. 若一金字塔 $\frac{3}{5}$ (底部為一正方形,四個斜面為等腰三角形)的每一個斜面的坡度皆為 $\frac{5}{5}$,則相鄰斜面的 夾角的餘弦值為 (10) .
- 11.空間中,以 \overline{AB} 為共同邊的正方形 ABCD 、ABEF ,其邊長皆為 6 .已知內積

$$AD \cdot AF = 11$$
, $AC \cdot AE =$ (11)

12.如圖所示,ABCD-EFGH 為邊長等於 2 之正立方體.若 P 點在立方

體之內部且滿足
$$AP = \frac{3}{4}AB + \frac{1}{2}AD + \frac{2}{3}AE$$
 ,則 P 點至直線 AB 之距離 為 (12)



- 13.坐標空間中,設 P 、 Q 為平面 3x-2y-2z=1 上兩點且滿足 $\overline{PQ}=7$. 另取空間中兩點 P' 、 Q' 滿足向量 PP'=QQ'=(-3,4,6) . 當向量 $PQ=_{(13)}$ 時,會使得平行四邊形 PQQ'P' 而積最大 .
- 14. 坐標空間中,若平面 E: ax + by + cz = 1 滿足(1)平面 E 與平面 F: x + y + z = 1 有一夾角為 30° ,, (2)點 A(1,1,1) 到平面 E 的距離等於 6 ,(3) a + b + c > 0 ,則 a + b + c 的值為 (14)

15.已知三向量 a=(1,2,2) , b=(2,1,k) , c=(r,s,t) 張出一個體積為27的長方體,且 t>0 ,求向量 $c=\underline{(15)}$

$$\begin{vmatrix} 1 & 2 & 2 \\ a & b & c \\ x & y & z \end{vmatrix}$$
 的最大值為 (16)

--P2--

(答案卷)國立高師大附108學年第二學期高二數學第一次段考(自然組)

考試時間: 80分鐘 班級: 座號: 姓名:

一、多選題(每題全對得6分,只錯一選項得4分,錯兩選項得2分,不作答與其他不給分)

(1)	(2)	(3)
(CE)	(AD)	(AB)

二、填充題

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
得分	8	16	2	32	40	46	52	58	62	66	70	74	76	78	80	82
			4													

(1)	(2)	(3)	(4)
42	$\frac{1}{37}$	$\frac{\sqrt{21}}{7}$	(4,3,0)
(5)	(6)	(7)	(8)
x - y + z = 3	$\sqrt{2}$	6	$x + \sqrt{2}y + z = 2$
(9)	(10)	(11)	(12)
		47	

$\frac{2\sqrt{3}-1}{3}$	$\frac{-25}{34}$		5/3	
(13)	(14)	(15)	(16)	
±(2,6,-3)	$\frac{1}{5}$	(2,-2,1)	24	