
Department of Electrical and Computer Engineering

The University of Texas at Austin
EE 460N, Fall 2022
Lab Assignment 1
Due: Sunday, Jan. 22th, 2023, 11:59 pm

Introduction
The purpose of this lab is to reinforce the concepts of assembly language and assemblers. In
this lab assignment, you will write an LC-3b Assembler, whose job will be to translate assembly
language source code into the machine language (ISA) of the LC-3b. You will also write a
program to solve a problem in the LC-3b Assembly Language.

In Lab Assignments 2 and 3, you will close the loop by completing the design of two types of
simulators for the LC-3b, and test your assembler by having the simulators execute the program
you wrote and assembled in this lab.

Some useful code can be found HERE.

Part I: Write an assembler for the LC-3b Assembly
Language
The general format of a line of assembly code, which will be the input to your assembler, is as
follows:

​ label opcode operands ; comments

The leftmost field on a line will be the label field. Valid labels consist of one to twenty
alphanumeric characters (i.e., a letter of the alphabet, or a decimal digit), starting with a letter of
the alphabet. A valid label cannot be the same as an opcode or a pseudo-op. A valid label must
start with a letter other than ‘x’ and consist solely of alphanumeric characters – a to z, 0 to 9.
The label is optional, i.e., an assembly language instruction can leave out the label. A valid
label cannot be IN, OUT, GETC, or PUTS. The entire assembly process, including labels,
is case-insensitive. A label is necessary if the program is to branch to that instruction or if the
location contains data that is to be addressed explicitly.
The opcode field can be any one of the following instructions:

​ ADD, AND, BR(all 8 variations), HALT, JMP, JSR, JSRR, LDB, LDW,

LEA, NOP, NOT, RET, LSHF, RSHFL, RSHFA, RTI, STB, STW, TRAP,
XOR

The number of operands depends on the operation being performed. It can consist of register
names, labels, or constants (immediates). If a hexadecimal constant is used, it must be prefixed
with the ‘x’ character. Similarly, decimal constants must be prefixed with a ‘#’ character.

http://users.ece.utexas.edu/~patt/22f.460n/labs/lab1/Lab1Functions.html

Optionally, an instruction can be commented, which is good style if the comment contains
meaningful information. Comments follow the semicolon and are not interpreted by the
Assembler. Note that the semicolon prefaces the comment, and a newline ends the comment.
Other delimiters are not allowed.

In this lab assignment, the NOP instruction translates into the machine language instruction
0x0000.

Note that you should also implement the HALT instruction as TRAP x25. Other TRAP
commands (GETC, IN, OUT, PUTS) need not be recognized by your assembler for this
assignment.

In addition to LC-3b instructions, an assembly language also contains pseudo-ops, sometimes
called macro directives. These are messages from the programmer to the assembler that assist
the assembler in performing the translation process. In the case of our LC-3b Assembly
Language, we will only require three pseudo-ops to make our lives easier: .ORIG, .END,
and .FILL.

An assembly language program will consist of some number of assembly language instructions,
delimited by .ORIG and .END. The pseudo-op .END is a message to the assembler
designating the end of the assembly language source program. The .ORIG pseudo-op
provides two functions: it designates the start of the source program, and it specifies the
location of the first instruction in the object module to be produced. For example, .ORIG N
means “the next instruction will be assigned to location N.” The pseudo-op .FILL W assigns
the value W to the corresponding location in the object module. W is regarded as a word (16-bit
value) by the .FILL pseudo-op.

The task of the assembler is that of line-by-line translation. The input is an assembly language
file, and the output is an object (ISA) file (consisting of hexadecimal digits). To make it a little
more concrete, here is a sample assembly language program:

;This program counts from 10 to 0
​ .ORIG x3000 ​
​ LEA R0, TEN​ ​ ;This instruction will be loaded into memory location x3000
​ LDW R1, R0, #0
START​ ADD R1, R1, #-1
​ BRZ DONE
​ BR START
​ ​ ​ ​ ;blank line
DONE​ TRAP x25​ ​ ;The last executable instruction
TEN​ .FILL x000A​ ​ ;This is 10 in 2's comp, hexadecimal
​ .END​ ​ ​ ;The pseudo-op, delimiting the source program

And its corresponding ISA program:

​ 0x3000
​ 0xE005
​ 0x6200
​ 0x127F

​ 0x0401
​ 0x0FFD
​ 0xF025
​ 0x000A

Note that each line of the output is a four digit hex number, prefixed with “0x”, representing the
16-bit machine instruction. The reason that your output should be prefixed with “0x” is because
the simulator for Lab Assignment 2 that you will write in C expects the input data to be
expressed in hex, and C syntax requires hex data to start with "0x". Also note that BR
instruction is assembled as the unconditional branch, BRnzp.

When this program is loaded into the simulator, the instruction 0xE005 will be loaded into the
memory location specified by the first line of the program, which is x3000. As instructions
consist of two bytes, the second instruction,0x6200, will be loaded into memory location
x3002. Thus, memory locations x3000 to x300C will contain the program.

We have included below another example of an assembly language program, and the result of
the assembly process. In this case, the .ORIG pseudo-op tells the assembler to place the
program at memory address #4096.

​ .ORIG #4096
A​ LEA R1, Y
​ LDW R1, R1, #0
​ LDW R1, R1, #0
​ ADD R1, R1, R1
​ ADD R1, R1, x-10​ ;x-10 is the negative of x10
​ BRN A
​ HALT
Y​ .FILL #263
​ .FILL #13
​ .FILL #6
​ .END

would be assembled into the following:

​ 0x1000
​ 0xE206
​ 0x6240
​ 0x6240
​ 0x1241
​ 0x1270
​ 0x09FA
​ 0xF025
​ 0x0107
​ 0x000D
​ 0x0006

Important note: even though this program will assemble correctly, it may not do anything useful.

The Assembly Process
Your assembler should make two passes of the input file. In the first pass, all the labels should
be bound to specific memory addresses. You create a symbol table to contain those bindings.

Whenever a new instruction label is encountered in the input file, it is assigned to the current
memory address.

The second pass performs the translation from assembly language to machine language, one
line at a time. It is during this pass that the output file should be generated.

You should write your program to take two command-line arguments. The first argument is the
name of a file that contains a program written in LC-3b assembly language, which will be the
input to your program. The second argument is the name of the file to which your program will
write its output. In other words, this is the name of the file which will contain the LC-3b machine
code corresponding to the input assembly language file. For example, we should be able to run
your assembler with the following command-line input:

​ assemble <source.asm> <output.obj>

where assemble is the name of the executable file corresponding to your compiled and
linked program; source.asm is the input assembly language file, and output.obj;
is the output file that will contain the assembled code. You can assume the input
assembly is correct.

Your assembler should accept an “empty” program, i.e. one with just a valid .ORIG and a
.END. E.g. the following assembly program would be assembled to only one line containing
the starting address (0x3000).

​ .ORIG x3000
​ .END

Part II: Write a program to solve the following problem

Write a program in LC-3b assembly language that does the following: Memory location 0x3100
and 0x3101 contain two 8-bit 2’s complement integers. Write a program that sums the two bytes
and stores the result in memory location 0x3102. Additionally, if the add results in an overflow of
the byte store a 1 in memory location 0x3103, otherwise store a 0 in memory location 0x3103.​
​
That is:
Mem[0x3102] = Mem[0x3100] + Mem[0x3101]
Mem[0x3103] = did_overflow_byte(Mem[0x3100] + Mem[0x3101])

Your program should start at location x3000 and be contained in a file called add_bytes.asm.
​
You will have no way to determine if your assembly language code works (yet!), but you can use
it to determine if your assembler works. Despite this, we will grade this program for
correctness.

Requirements
Important note: because we will be evaluating your code in Unix, please be sure your
code compiles using gcc with the -std=c99 flag. This means that you need to write
your code in C such that it conforms to the C99 standard.

You can use the following command to compile your code:

gcc -std=c99 -o assemble assembler.c

You should also make sure that your code runs correctly on one of the ECE linux machines.

To complete Lab Assignment 1, you will need to turn in the following:

1. A C file called "assembler.c" containing an adequately documented listing of your LC-3b
Assembler.

2. A source listing (LC-3b Assembly Language) of the program described above called

" add_bytes.asm ".

Submission instructions are posted here.

Things to watch for:
Be sure that your assembler can handle comments on any line, including lines that contain
pseudo-ops and lines that contain only comments. Be careful with comments that follow a
HALT, NOP or RET instructions – these instructions take no operand.

Your assembler should allow hexadecimal and decimal constants after both ISA instructions,
like ADD, and pseudo-ops, like .FILL.

The whole assembly process is case insensitive. That is, the labels, opcodes, operands, and
pseudo-ops can be in upper case, lower case, or both, and are still interpreted the same. The
parser function given in the useful code page converts every line into lower case before parsing
it.

You can assume that there will be at most 255 labels in an assembly program. You can also
assume that the number of characters on a line will not exceed 255.

Your assembler needs to support all 8 variations of BR:
​ BRn LABEL​ ​ ​ BRz LABEL
​ BRp LABEL​ ​ ​ BRnz LABEL
​ BRnp LABEL​​ ​ BRzp LABEL
​ BR LABEL​ ​ ​ BRnzp LABEL

https://docs.google.com/document/d/15imjKuFr83bjMLEUyDsLzL0QRtRgJpAy/edit?usp=sharing&ouid=116881357762252578692&rtpof=true&sd=true

Lab Assignment 1 Clarifications
NOTE: FAQ’s for this semester will be posted here. Please check back regularly.

1.​ Constants can be expressed in hex or in decimal. Hex constants consist of an ‘x’ or ‘X’
followed by one or more hex digits. Decimal constants consist of a ‘#’ followed by one or
more decimal digits. Negative constants are identified by a minus sign immediately after
the ‘x’ or ‘#’. For example, #-10 is the negative of decimal 10 (i.e., -10), and x-10 is
the negative of x10 (i.e. -16).

2.​ You can assume your simulator will not be tested on instructions 1010, 1011, and
1000(RTI). Opcode 1000 will be implemented in lab 4.

3.​ Since the sign is explicitly specified, the rest of the constant is treated as an unsigned
number. For example, x-FF is equivalent to -255. The ‘x’ tells us the number is in hex,
the ‘-’ tells us it is a negative number, and “FF” is treated as an unsigned hex number
(i.e., 255). Putting it all together gives us -255.

4.​ Your assembler does not have to check for multiple .ORIG pseudo-ops.

5.​ Since the .END pseudo-op is used to designate the end of the assembly language file,
your assembler does not need to process anything that comes after the .END.

6.​ The standard C function isalnum() can be used to check if a character is
alphanumeric.

7.​ After you have gone through the input file for pass 1 of the assembler and your file
pointer is at the end of the file, there are two ways you can get the file pointer back to the
beginning. You can either close and reopen the file or you can use the standard C I/O
function rewind().

8.​ The following definitions can be used to create your symbol table:​
​
#define MAX_LABEL_LEN 20​
#define MAX_SYMBOLS 255​
typedef struct {​
​ int address;​
​ char label[MAX_LABEL_LEN + 1];​ /* Question for the reader: Why do we
need to add 1? */​
} TableEntry;​
TableEntry symbolTable[MAX_SYMBOLS];​
​

9.​ To check if two strings are the same, you can use the standard C string function
strcmp(). To copy one string to another, you can use the standard C string function
strcpy().

http://www.cppreference.com/stdstring/isalnum.html
http://www.cppreference.com/stdio/rewind.html
http://www.cppreference.com/stdstring/strcmp.html
http://www.cppreference.com/stdstring/strcmp.html
http://www.cppreference.com/stdstring/strcpy.html
http://www.cppreference.com/stdstring/strcpy.html

10.​If you decide to use any of the math functions in math.h, you also have to link the math
library by using the command:​
​
gcc -lm -std=c99 -o assemble assembler.c​
​

11.​An assembly program which starts with comments before .ORIG is valid and your
assembler should ignore them. You can assume that there will be no label in front of
.ORIG and .END in the same line.

12.​Your assembler needs to be able to assemble programs which begin at any point in the
LC-3b's 16-bit address space. While user programs start from x3000 and continue until
xFDFF, the assembler could be used to assemble system code as well. The assembler
doesn't have enough information when it is assembling the program to determine how
the program will be used. In future labs, we will develop what happens if a user tries to
access a protected region of memory.

13.​.FILL can take an address, signed number, or unsigned number.

14.​The trap vector for a TRAP instruction should be a hex number.

15.​You can assume all locations will fit within the 16-bit address space of LC3-b, i.e., you do
not have to check if instruction addresses go beyond xFFFE.

Lab Assignment 1 Submission Instructions
You must use the following naming convention for the files in Lab 1.

●​ add_bytes.asm – The LC-3b assembly language program you wrote.

●​ assembler.c – The C source code for your assembler.

You may not submit more than two files for Lab 1.

Notes
●​ If you worked on the assignment with a partner, only one of you needs to submit the files

and only one of you may test the lab.

●​ Please confirm that your file compiles by running gcc -std=c99
assembler.c on any ECE LRC linux machine before submitting your

program. You should also test your program on an ECE LRC linux machine.

●​ In order to help us assign you the grades, please make sure that you put your names and

UTEIDs on the top of the assembler.c file in the EXACT following format, as a C

comment:

/*​
​ Name 1: Fullname of the first partner ​

​ Name 2: Fullname of the second partner ​
​ UTEID 1: UTEID of the first partner​
​ UTEID 2: UTEID of the second partner ​
*/

●​ Example:

/*​
​ Name 1: John Smith​
​ Name 2: Jane Doe​
​ UTEID 1: js1234​
​ UTEID 2: jd1234​
*/

●​ If you worked alone:

/*​
​ Name 1: Jane Doe​
​ UTEID 1: jd1234​
*/

Before the deadline, you may resubmit any of the files without penalty. Every time you resubmit

a file, the original file is overwritten.

Instructions for submission
Turn in the following files:

add_bytes.asm​
assembler.c

by following these instructions.

https://docs.google.com/document/d/15imjKuFr83bjMLEUyDsLzL0QRtRgJpAy/edit?usp=sharing&ouid=116881357762252578692&rtpof=true&sd=true

