21th October 2020 - Meeting Summary

e We have 2 key Cls:

o

o

The openshift upstream CI which also includes the CRI-O part (no Jenkins, a

different system)
The kata upstream CI Jenkins job

e For the openshift Cl Wainer already got the kata onboarded

o

o

O

o O O

O

This Cl runs daily and later on we want a PR to trigger this job as well
It uses the latest kata from the master branch (not 2.0)
It runs a simple smoke test on openshift 4.5

m Install kata

m  Run afew tests

m Uninstall kata

m Note that a new cluster is provisioned every time (nested)
Wainer is working to run the openshift E2E conformance test on it
Wainer already created a list of improvements for this work
Critical point here is the E2E test - MVP
Snir is doing something similar for 2.0 (manually)

e Wainer sent the requirements for the kata Jenkins CI

©)
O

There are many areas that would benefit from some improvements
Main tasks that need to be done:

EPIC: # R1. Close the gaps in kata upstream#

There are some configurations which Red Hat cares about not being tested.

From the business point of view strictly this is high priority among the other requirements listed
here. However contributing changes to the Cl is currently very difficult, so | think the items R2

and R3 below should be considered equally important.

EPIC: # R2. Ease the management of jobs #

Just a list of the problems that quickly came up to my mind:

- If I want to change a job because |, for example, need to export a new variable in the build
script then | need to change the job XML found in [2]. Those XMLs aren't meant for humans to
edit, they are just Jenkins internal representation of jobs. Once | changed the XML (actually
several xmls, one per job), | opened a PR to [2]. Once merged, someone needs to manually
update the job in the Jenkins instance. I've not idea who is going to do it. This is completely

inefficient and error prone.



- Now suppose | want to create a *new* job then | need to somehow write several XMLs. | can
copy-and-edit from existing XMLs. And | won't waste time explaining how insane it is.

- Because this manual handling of the jobs, what is running in the instance may not be exactly
the code found in the repo [2].

- It has a complex combination of tests vs configuration vs OSes being mapped to a lot of jobs,
and this is all managed manually (and editing the XMLs!). Again completely error prone and
inefficient.

Currently there are tools to solve those problems. Days ago | proposed to the community a

solution and showed a PoC, see the issue #343 below.

Issues: https://qithub.com/kata-containers/ci/issues/343

EPIC: # R3. Test environment should be reproducible locally #

We can look at this from the Cl and developer angles. There are various scenarios, let me
illustrate just a few:

- 1, as a developer working on my Fedora 32 laptop, who opened a PR that eventually broke ClI
on Ubuntu, want to have it created the same Ubuntu VM environment which is used on Cl so
that | can locally reproduce/debug/fix the issue

- |, as a developer, need to test a change won't break it on k8s so | want to have a VM for the
various OSses with k8s installed (same way as in Cl)

- 1, as a Cl admin, want to test a change won't break the jobs on CentOS 8 before | open the
pull request.

Because Kata is supported on many OSes the Cl admin should be able to test new/changed
jobs on all those OSes. Also the developer should be able to easily reproduce the Cl locally.

This is related to R2.

Issues: https://github.com/kata-containers/documentation/issues/744

EPIC: # R4. Easily spot the problem with a job #

- |, as a developer, who opened a PR that eventually broke Cl on Ubuntu, want to know what
was wrong so that | can fix the issue.


https://github.com/kata-containers/ci/issues/343
https://github.com/kata-containers/documentation/issues/744

This is not very easy because the artifacts are just a bunch of logs.

By the rule the jobs don't export the test results in Jenkins Ul. So if you want to know what is
wrong, you need to inspect the console log (single and long txt file where all the test suites
append their results). Know what is wrong for a single job is hard, sum to this the fact that many
jobs will be executed (and some likely to fail) when you open a PR.

Action items for the next meeting:

People o review the document from Cameron
Cameron/Wainer to try and identify a simple smoke test job we can still push to the
upstream kata (hello world)

e Ariel to set another meeting

Cl pipeline

Ci_entry_point.sh

- Settests_repo (kata-containers/tests)

- Setrepo_to_test (repo that triggered the job)

- PRrrelated variables from GHPRB plugin

- Checks out tests repo

- Checks out origin/${ghprbTargetBranch} (which has to be wrong)
- Call jenkins_job_build.sh with repo_to_test

Jenkins_job build.sh

- Set Cl=true if KATA_DEV_MODE not set
- Set ci dir for exception of kata-containers repo (ci rather than .ci)
- Setup jenkins workspace
- Special setup for baremetal
- Install go with install_go.sh -p -f
- Resolve-kata-dependencies.sh
- Static analysis if not metrics run on arches that travis doesn’t support
- Fast fail after static analysis if possible (ci-fast-return.sh)
- Setup variables for kata env
- Run setup.sh (in trigger repo which in turn calls setup.sh in tests)
- Log kata-runtime env
- Metrics stuff for metrics run (METRICS_CI): run_metrics_PR_ci.sh
- VFIO_Cl=yes
- Install initrd (TEST_INITRD=yes): install_kata_image.sh



- Install_gemu_experimental.sh

- Install_kata_kernel.sh

- Install_cloud_hypervisor.sh

- Run.sh (in trigger repo then in run.sh in tests)
- Else do default

- Run unit tests for everything but tests repo

- Exception for rhel for runtime repo: skip

- run.sh

- Report code coverage

Install_go.sh

- Use versions file
- Force
- Install specific version of go into /usr/local/go

Resolve-kata-dependencies.sh

- Clone all the kata-containers repos using go get
- Checkout branches for dependent repos

Setup.sh

setup_type=minimum for travis
Default for everything else
Distro env (setup_env_$distro.sh)
- Install dependent packages
Install Docker
- No docker for cgroups v2
- cmd/container-manager/manage_ctr_mgr.sh" docker install
- If not the version in versions.yaml then same command with “-f
Enable nested virt
- Only for x86_64 and s390x
- Modprobe option
Install kata: install_kata.sh
Install extra tools:
- Install CNI plugins: install_cni_plugins.sh
- Load arch-specific lib file: ${arch}/lib_setup_${arch}.sh
- Install CRI
- For fedora: KUBERNETES=no
- CRIO: install_crio.sh, configure_crio_for_kata.sh
- CRI_CONTAINERD: install_cri_containerd.sh, configure_containerd_for kata.sh



- KUBERNETES: install_kubernetes.sh
- OPENSHIFT: install_openshift.sh
Disable systemd-journald rate limit
- RateLimitinterval Os
- RateLimitBurst 0
Drop caches
- echo 3 > /proc/sys/vm/drop_caches

If rhel 7
- echo 1 > /proc/sys/fs/imay_detach_mounts

Install_kata.sh

Install kata image
- rust agent image install_kata_image_rust.sh
- or non-rust agent image install_kata_image.sh
Install kata kernel
- instal_kata_kernel.sh
Install shim
- install_shim.sh
Install runtime
- install_runtime.sh
Install gemu
- For cloud-hypervisor: install_cloud_hypervisor and install_gemu with
experimental_gemu=true
- For firecracker: install_firecracker.sh
- For gemu: install_gemu.sh
Configure podman if cgroupsv2 is being used
- configure_podman_for_kata.sh
Check kata: kata-runtime kata-check

Run.sh

RUNTIME="kata-runtime”
Scenarios with case statement using CI_JOB

Cl_JOB env and tests

Defaults in setup
CRIO="${CRIO:-yes}"



CRI_CONTAINERD="${CRI_CONTAINERD:-no}"
KUBERNETES="${KUBERNETES:-yes}"
OPENSHIFT="${OPENSHIFT:-yes}"
TEST_CGROUPSV2="${TEST_CGROUPSV2:-false}"

Defaults in jenkins_job_build

Invoked with init_ci_flags
Cl="true"
KATA_DEV_MODE="false”
CRIO="no"
CRI_CONTAINERD="no"
CRI_RUNTIME=""
DEFSANDBOXCGROUPONLY="false"
KATA_HYPERVISOR=""
KUBERNETES="no"
MINIMAL_K8S_E2E="false"
TEST_CGROUPSV2="false"
TEST_CRIO="false"
TEST_DOCKER="no"
experimental_kernel="false"
RUN_KATA_CHECK="true"
METRICS_CI=""
METRICS_CI_PROFILE=""
METRICS_CI_CLOUD=""
METRICS_JOB_BASELINE=""

CRI_CONAINTERD_K8S

# This job only tests containerd + k8s

Environment

CRI_CONTAINERD="yes"
KUBERNETES="yes"
CRIO="no"
OPENSHIFT="no"

Tests

Containerd checks
- make cri-containerd
Running kubernetes testswith containerd as CRI
- CRI_RUNTIME=containerd make kubernetes
[configure for sandbox cgroup only]
Run test for cri-containerd with Runtime.SandboxCgroupOnly as True



- make cri-containerd

Run tests for kubernetes with containerd as CRI with Runtime.SandboxCgroupOnly as True
- CRI_RUNTIME=containerd make kubernetes

[remove configuration for sandbox cgroups only]

Running docker integration tests with sandbox cgroup enabled
- make sandbox-cgroup

FIRECRACKER
Environment

Tests

Running docker integration tests
- make docker
Running soak test
- make docker-stability
Running oci call test
- make oci
Running networking tests
- make network
Running crio tests
- make crio

CLOUD-HYPERVISOR

Environment

CRIO="no"

CRI_CONTAINERD="yes"
CRI_RUNTIME="containerd"
KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="yes"

OPENSHIFT="no"

TEST_CRIO="false"
TEST_DOCKER="true"
experimental_kernel="true"

Tests

Running soak test

- make docker-stability
Running oci call test

- make oci
Running networking tests



- make network
Running filesystem tests
- make conformance

CLOUD-HYPERVISOR-DOCKER

Environment

CRIO="no"

CRI_CONTAINERD="no"
KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="no"

OPENSHIFT="no"

TEST_CRIO="false"
TEST_DOCKER="true"
experimental_kernel="true"

Tests

Running docker integration tests
- make docker

CLOUD-HYPERVISOR-PODMAN

Environment

KATA_HYPERVISOR="cloud-hypervisor"
TEST_CGROUPSV2="true"
experimental_kernel="true"

Tests

[create trusted group]
Running podman integration tests
- make podman

CLOUD-HYPERVISOR-K8S-CONTAINERD

Environment

Init_ci_flags

CRI_CONTAINERD="yes"
CRI_RUNTIME="containerd"
KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="yes"
experimental_kernel="true"



Tests

Containerd checks

- make cri-containerd
Running kubernetes tests

- make kubernetes

CLOUD-HYPERVISOR-K8S-E2E-CRIO-MINIMAL

Environment

init_ci_flags

CRIO="yes"

CRI_RUNTIME="cri0"
KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="yes"
MINIMAL_K8S_E2E="true"
experimental_kernel="true"

Tests

Run kubernetes e2e tests
- make kubernetes-e2e

CLOUD-HYPERVISOR-K8S-E2E-CONTAINERD-MINIMAL

Environment

init_ci_flags

CRI_CONTAINERD="yes"
CRI_RUNTIME="containerd"
KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="yes"
MINIMAL_K8S_E2E="true"
experimental_kernel="true"

Tests

Run kubernetes e2e tests
- make kubernetes-e2e

CLOUD-HYPERVISOR-K8S-E2E-CRIO-FULL

Environment

init_ci_flags
CRIO="yes"
CRI_RUNTIME="crio"



KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="yes"
MINIMAL_K8S_E2E="false"
experimental_kernel="true"

Tests

Run kubernetes e2e tests
- make kubernetes-e2e

CLOUD-HYPERVISOR-K8S-E2E-CONTAINERD-FULL

Environment

init_ci_flags

CRI_CONTAINERD="yes"
CRI_RUNTIME="containerd"
KATA_HYPERVISOR="cloud-hypervisor"
KUBERNETES="yes"
MINIMAL_K8S_E2E="false"
experimental_kernel="true"

Tests

Run kubernetes e2e tests
- make kubernetes-e2e

PODMAN

Environment
TEST_CGROUPSV2="true"

Tests

[create trusted group]
Running podman integration tests
- make podman

RUST_AGENT
Environment

Tests

Running docker integration tests
- make docker
Running soak test



- make docker-stability
Running kubernetes tests
- make kubernetes

VFIO
Environment

Tests

Running VFIO functional tests
- make vfio

SNAP
Environment

Tests

Running docker tests ($PWD)
- make docker
Running crio tests ($PWD)
- make crio
Running kubernetes tests ($PWD)
- make kubernetes
Running shimv2 tests ($PWD)
- make shimv2

VIRTIOFS-METRICS-BAREMETAL

Environment

experimental_gemu="true"
experimental_kernel="true"
METRICS_CI="true"
METRICS_CI_PROFILE="virtiofs-baremetal"

Tests

Running checks
- make check

Running functional and integration tests ($PWD)
- make test



SANDBOX_CGROUP_ONLY

Used by runtime makefile to enable option on install

Environment
DEFSANDBOXCGROUPONLY=true

Tests

Running checks
- make check

Running functional and integration tests ($PWD)
- make test

CLOUD-HYPERVISOR-METRICS-BAREMETAL

Environment

init_ci_flags
KATA_HYPERVISOR="cloud-hypervisor"
METRICS_CI="true"

experimental_kernel="true"
METRICS_CI_PROFILE="clh-baremetal"
METRICS_JOB_BASELINE="metrics/job/clh-master"

Tests

Running checks
- make check

Running functional and integration tests ($PWD)
- make test

Make Targets

check

checkcommits: make -C cmd/checkcommits
gotest.
go install -Idflags "-X main.appCommit=${COMMIT} -X main.appVersion=${VERSION}" .

Log-parser: make -C cmd/log-parser
install -d $(shell dirname $(DESTTARGET))



install $(TARGET) $(DESTTARGET)

go build -0 "$(TARGET)" -Idflags "-X main.name=${TARGET} -X main.commit=${COMMIT} -X
main.version=${VERSION}" .

go test.

test

crio

compatibility

configuration

conformance ( if Cl and TEST_CONFORMANCE are true)
debug-console

docker (if Cl and TEST_DOCKER are true)
docker-compose

docker-stability

entropy

functional

kubernetes

netmon

network

oci

openshift

pmem

podman (if Cl and TEST_CGROUPSV2 are true)
ramdisk

shimv2

swarm

time-drift

tracing

vcpus

vm-factory

cri-containerd

bash integration/containerd/cri/integration-tests.sh

kubernetes

bash -f .ci/install_bats.sh
bash -f integration/kubernetes/run_kubernetes_tests.sh



sandbox-cgroup

bash -f integration/sandbox_cgroup/sandbox_cgroup_test.sh
bash -f integration/sandbox_cgroup/check _cgroups_sandbox.sh

docker

ginkgo
bash sanity/check_sanity.sh

docker-stability

systemctl is-active --quiet docker || sudo systemctl start docker

cd integration/stability &&\

export ITERATIONS=2 && export MAX_CONTAINERS=20 && ./soak_parallel_rm.sh
cd integration/stability && ./bind_mount_linux.sh

cd integration/stability && ./hypervisor_stability_kill_test.sh

OCi

systemctl is-active --quiet docker || sudo systemctl start docker
cd integration/oci_calls && \
bash -f oci_call_test.sh

network

systemctl is-active --quiet docker || sudo systemctl start docker
bash -f .ci/install_bats.sh

bats integration/network/macvlan/macvlan_driver.bats

bats integration/network/ipvlan/ipvlan_driver.bats

bats integration/network/disable_net/net_none.bats

crio

bash .ci/install_bats.sh
RUNTIME=${RUNTIME} ./integration/cri-o/cri-o0.sh

conformance

bash -f conformance/posixfs/fstests.sh

podman

bash -f integration/podman/run_podman_tests.sh



kubernetes-e2e

cd "integration/kubernetes/e2e_conformance" &&\
cat skipped_tests e2e.yaml &&\

bash ./setup.sh &&\

bash ./run.sh

vfio

bash -f functional/vfio/run.sh -s false -p clh -i image

bash -f functional/vfio/run.sh -s true -p clh -i image

# bash -f functional/vfio/run.sh -s false -p clh -i initrd

# bash -f functional/vfio/run.sh -s true -p clh -i initrd

bash -f functional/vfio/run.sh -s false -p gemu -m pc -i image
bash -f functional/vfio/run.sh -s true -p gemu -m pc -i image
bash -f functional/vfio/run.sh -s false -p gemu -m q35 -i image
bash -f functional/vfio/run.sh -s true -p gemu -m g35 -i image
bash -f functional/vfio/run.sh -s false -p gemu -m pc -i initrd
bash -f functional/vfio/run.sh -s true -p gemu -m pc -i initrd
bash -f functional/vfio/run.sh -s false -p gemu -m q35 -i initrd
bash -f functional/vfio/run.sh -s true -p gemu -m g35 -i initrd

shimv2

bash integration/containerd/shimv2/shimv2-tests.sh
bash integration/containerd/shimv2/shimv2-factory-tests.sh



	CI pipeline 
	Ci_entry_point.sh 
	Jenkins_job_build.sh 
	Install_go.sh 
	Resolve-kata-dependencies.sh 

	Setup.sh 
	Install_kata.sh 

	Run.sh 

	CI_JOB env and tests 
	Defaults in setup 
	Defaults in jenkins_job_build 
	CRI_CONAINTERD_K8S 
	Environment 
	Tests 

	FIRECRACKER 
	Environment 
	Tests 

	CLOUD-HYPERVISOR 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-DOCKER 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-PODMAN 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-K8S-CONTAINERD 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-K8S-E2E-CRIO-MINIMAL 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-K8S-E2E-CONTAINERD-MINIMAL 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-K8S-E2E-CRIO-FULL 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-K8S-E2E-CONTAINERD-FULL 
	Environment 
	Tests 

	PODMAN 
	Environment 
	Tests 

	RUST_AGENT 
	Environment 
	Tests 

	VFIO 
	Environment 
	Tests 

	SNAP 
	Environment 
	Tests 

	VIRTIOFS-METRICS-BAREMETAL 
	Environment 
	Tests 

	SANDBOX_CGROUP_ONLY 
	Environment 
	Tests 

	CLOUD-HYPERVISOR-METRICS-BAREMETAL 
	Environment 
	Tests 


	Make Targets 
	check 
	test 
	cri-containerd 
	kubernetes 
	sandbox-cgroup 
	docker 
	docker-stability 
	oci 
	network 
	crio 
	conformance 
	podman 
	kubernetes-e2e 
	vfio 
	shimv2 


