

Haiku WordProcessor

A collection of ideas

1

Table of contents

Table of contents
Introduction

Background
Design Goals

Architecture
Introduction
Data

Introduction
Schema
File and Data Formats

Communication
Code

Introduction
Modules

Module A
Internal Functions

Module B
Internal Functions

…
Interfaces

Operation
User types
Scenarios
Installation
Licensing
Upgrades
Uninstall

Development
Miscellanea / Appendices

Idea & Diagrams
Conformance with standards
Interoperability with other systems
Expandability
Debugging
Security
Open Issues
Glossary
Bibliography

Ideas
PoetryOffice Alpha Release Goals

PoetryOffice R1A1 Goals
PoetryOffice R1A2 Goals
PoetryOffice R1A3 Goals

GUI
Panels
Menu
ToolBar
ToolsView
MainView

2

Statusbar (Bottom)
FileType
Features
Implementation

Overview
Layout
Spellcheck
Grammar
StylisticAnalysis
Autocomplete

Available Libs
Layout
Grammar
Spellcheck
Search
StylisticAnalysis
Glossary/index
Summarization
Sentiment Analysis
Autocomplete
Collaboration Tools
Import / Export Portable Document Format (.pdf)
Import / Export Microsoft openxml documents (.docx)
Import / Export Open Document Format (.odt)
Import / Export Electronic Publication (.epub)
Import /Export Microsoft Word Binary & Compound Documents (.doc, .cdf)
Import Apple iWork Document (.pages)
Import OpenOffice / StarOffice Documents (.sdw, .sxw)

Libs wich need to be implemented
UML - IDEAS

Possible Names :)
Poetry Office ideas

3

1​

2​ Introduction

2.1​ Collection of Ideas

http://urnenfeld.blogspot.com/search/label/OOffice

https://discuss.haiku-os.org/t/word-processor-for-haiku/4116/89
https://discuss.haiku-os.org/t/word-processors-for-haiku/1751/52
https://discuss.haiku-os.org/t/haiku-needs-application-similar-to-ms-office-application/3155
https://discuss.haiku-os.org/t/an-idea-for-a-word-processor/1876/6
https://discuss.haiku-os.org/t/word-processor-on-haiku/2681/1
https://discuss.haiku-os.org/t/little-and-incomplete-word-processor-with-odt-support/3985/15

All Modules as “Replicants”?

●​ TextEditor Replicant
●​ Spreadsheet Repilcant
●​ Image Replicant
●​ …

A “protokoll” need to develop to ashure that elements can work together
will printing work? Need to be implemented in the replicants

Own Haiku Docs Format!?

Because of interaction we need a haiku docs format also to support translating from and into and have a
standarzied way of storing or exchanging data

2.2​ Background
A well-written background should not cover more than a single page. As it is the opening section of your design
document, the background must refer to the following questions:
1.​ What the new system is
2.​ The social and technological environment in which the system will function
3.​ Its advantages over older systems
4.​ Who the potential users are, and how they will benefit from it

Although some of these points were probably discussed at length elsewhere, their brief mention in the background is
invaluable to the clarity and effectiveness of your document.

4

http://urnenfeld.blogspot.com/search/label/OOffice
https://discuss.haiku-os.org/t/word-processor-for-haiku/4116/89
https://discuss.haiku-os.org/t/word-processors-for-haiku/1751/52
https://discuss.haiku-os.org/t/haiku-needs-application-similar-to-ms-office-application/3155
https://discuss.haiku-os.org/t/an-idea-for-a-word-processor/1876/6
https://discuss.haiku-os.org/t/word-processor-on-haiku/2681/1
https://discuss.haiku-os.org/t/little-and-incomplete-word-processor-with-odt-support/3985/15

2.3​ Design Goals
This section should outline the technical manifestation of the system requirements, and list the goals your design is

intended to achieve.

5

3​ Architecture

3.1​ Introduction
Should contain details such as:

1.​ The type of the system (distributed, client-server, etc.)
2.​ What platform(s) the system will run on.
3.​ The major inputs and outputs.
4.​ What user interfaces the system will have and in what form (web, Windows GUI, etc.)
5.​ The distances between components - on different PCs, on a LAN, on the web.
6.​ A rough estimate of the number of instances of each part (modules, threads, processes, clients, etc.)

A block diagram of the modules and the relationships between them can be very useful here. Try to point out the
dynamic aspects even though this view is mostly static: include arrows to indicate flow of data and/or control,
multiple boxes to indicate multiple instances of a thread or a module, etc.

3.2​ Data
This section describes the persistent data, and/or any other data important enough to justify a separate section. Such

a section will not be needed when there isn't a central database, or any other bulk of permanent storage.

3.2.1​ Introduction
Should explain the need for a database, the considerations which led to the choice of a particular type of database;

should contain a short description of the data stored in there, an estimate of the size and frequency of updates,
some special considerations like security requirements, recovery, interfacing with external systems, report
generation, etc.

3.2.2​ Schema
Should give a list of tables and columns in each table, a description of each of the following - data type, size, number

of records, what data it keeps, which parts of the software read it and why, which of the software write it and
when, an estimate of the update frequency.

Data Type Size Number
of records

Meta Data
(- on server)
(+ on end device)
(* on both)

Read by Written by Update frequency

Settings

3.2.3​ File and Data Formats
Most systems deal with external data stored in files, the majority of these notably configuration files and imported or

exported data files. The files should be listed, as well as which module reads/writes them, at what instances and
for what purpose. This section should give the name, or a detailed description, of the file formats.

6

3.3​ Communication
Whenever modules communicate, be it using TCP/IP or some other protocol, this section should indicate the

following:
●​ Which modules do so, at what instances and for what purpose.
●​ Who listens and who connects.
●​ Which protocol is used for communication. If relevant, give a detailed description of both the protocol and the

format of the exchanged data. Furthermore, explain how the protocol may accommodate future changes.

3.4​ Code

3.4.1​ Introduction
Should mention any special considerations that led to this specific design, or that should be kept in mind while

implementing it. It has to include general comments about the code in addition to notes that do not fit in any
specific sub-section.

3.4.2​ Modules

3.4.2.1​Module A
Here should appear a general description of the module and where it fits in the global picture. There should be a

description of what this module is responsible for, what inputs it takes, where it takes these from, what format
they are in, and what method it uses to take these inputs (TCP, read from a file, a pipe, direct function call…)
The same description should appear for outputs: what outputs each module produces, where these outputs go,
in what format, using what method.

This section should also specify the following: what other modules each module uses and for what purpose; what
non-trivial algorithm the module uses; what non-trivial data structures it uses and for what purpose.

3.4.2.1.1​ Internal Functions
This section should contain a comprehensive listing of the module non-trivial internal functions (functions that are

not part of any interface). Be sure to refer to each item mentioned below:
●​ General description of the function and what it is used for.
●​ The name of the function.
●​ The return type.
●​ Ranges of return values and their meanings.
●​ Parameter names, types, whether the parameter is input, output or both and under what circumstances it is

read or written.
●​ Assumptions on the parameter values.
●​ Assumptions on other conditions, such as global data or system state.
●​ Input validations that the function performs.
●​ Side effects of the function.
●​ Exceptions the function might throw and under what conditions.
●​ Non-trivial algorithms used.
●​ Non-trivial data structures used and for what purpose.
●​ Other non-trivial functions that the function calls.
●​ If the software has a layer structure, or some other inner partitioning, then to which part or layer this

function belongs (this information should be evident from the naming convention).

7

3.4.2.2​Module B

3.4.2.2.1​ Internal Functions

3.4.2.3​…

3.4.3​ Interfaces
Every module must expose one or more interfaces. If these interfaces are not trivial and clear from the module

descriptions, they should be listed and described in an orderly fashion at this point. This description should
detail the purpose of each interface and in what context it can be used. It should also mention what kind of
modules or objects expose it and which ones will be using it. If using the interface requires obtaining a
reference to it, there should be an explanation of how such a reference is to be obtained and what information
will be needed in order to do so. Following the description of the interface, there should come a list of the
interface functions, referring to the very same items mentioned above (see section 2.4.1.n Internal Functions).

It is advisable to add here a description of the scheme that will determine how the interfaces will evolve in future
versions of the system in order to answer new requirements and modifications. If backward and forward
compatibility is one of the requirements, explain how this scheme supports it.

8

4​ Operation
This section should describe issues related to how the system is supposed to operate once it has been implemented.

4.1​ User types
Should list the various types of users that will use the system (e.g., administrators, operators, managers, employees,

customers...) Should also describe the user interface each user type would need to employ, and what prior
knowledge and experience each type would require. Furthermore, this section should specify for each
authenticated type/user which operations they may be allowed to perform, and which parts of the system, or
data, would remain closed to them. Another important clarification should be the number of users the system
may support and how many of them would be able to work concurrently.

4.2​ Scenarios
Should describe a few typical scenarios of how the system works. For example, what happens in the system while a

user logs in, gives a short sequence of typical commands and logs out - what data flows from which module to
where, what triggers which actions, etc. If the system is not very simple, this description can make the
difference between utterly confused and fully comprehending readers.

4.3​ Installation
This is yet another section that most designs ignore. It should explain how the system is installed, who can perform

the installation (i.e., does it require some special skills, or can it be done by anyone?), what resources are
needed for a successful installation, what medium would be used for the installation (e.g., a CD, download
modules over the Internet, etc.), what user interface would be used during the installation (e.g., a Unix shell
scrip, a Windows-like install UI, etc.), whether or not the installation would require a serial number. An
important detail to include here is whether or not you allow several installations to co-exist on the same
machine or LAN.

4.4​ Licensing
Most commercial software is protected by a licensing scheme. If this is the case with your system, you should

describe the scheme you are going to use, particularly the way a license will be validated (by some internal
consistency check, or by an online query to a central server), at what times (during installation, at program
start up, at regular intervals) and what should happen when validation fails.

4.5​ Upgrades
This section should describe the way the system would be upgraded to newer versions. It should also relate to the

following questions:
●​ How will these upgrades be distributed (Internet, CD)?
●​ How (if at all) will an appropriate license be distributed and verified?
●​ Who will be authorized to install the upgraded version (i.e., which of the system's user types mentioned in

section 3.1)?
●​ How complicated will it be to reinstall the previous version in case an upgrade causes problems?
●​ How can a partial upgrade be installed? (e.g., in the case of a distributed system where it is unreasonable to

expect the server and all the clients to be upgraded at the same time)
●​ How will the design handle version conflicts (between a server and a client, between two modules, between

stored data and a module or between imported data and a module)?
●​ How will the design ensure that the users do not experience data loss or downtime during an upgrade?

9

If time-limited ("try before you buy") or demo versions are planned, they require special attention. You must consider
all possible scenarios, such as upgrading from a demo to a full version, attempting to install a demo over a full
version, the coexistence of a demo and a full version on the same machine, etc.

4.6​ Uninstall
This section should describe the way the uninstall would be done, who would be authorized to perform it, what

resources would be needed, what data would be left behind, and what would happen to that data when
re-installing on a computer after an uninstall. Don't forget to consider the implications of your licensing
scheme.

10

5​ Development
[Some companies require that this chapter be included in the design; others expect this information to appear in a

separate document.]
This section lays out a plan for the development process. It can be quite complex if the project has modules that

cannot be developed or tested before others are completed, or if it depends on the availability of external
resources like developers, machines, access to special services or real-world objects, etc.

For example, you may choose to start by developing a mock-up version of some module, in order to allow the
development and testing of another. Once this is done, you can develop the two modules in parallel using two
independent teams. Another common technique is to manually prepare a data file that will be used as the input
to some module until the UI is mature enough to supply real data.

The design should describe the necessary resources - number of developers, their required skills, the hardware,
environment and development tools required for the development process. It should also say when and for how
long each resource would be needed. This is the place to include development time estimates.

11

6​ Miscellanea / Appendices

6.1​ Idea & Diagrams
6.1.1​ Implementation
From my point phonegap is the framework we should use.. it enables easy development with html5 and is portalbe to
all phone oses :)
The other think .. i would set up a github repository.. but i am not shure when we want to make it closed source if its..
possible with the free account …

6.1.2​ UML
6.1.3​ UI Sketches
6.1.4​ Datatransfer
6.1.5​ Security ideas

6.2​ Conformance with standards
Must contain the lists of both the standards the system should conform to and the references as to where these

standards may be obtained.

6.3​ Interoperability with other systems
Must contain the list of the external systems that the new system should interact with in addition to a description of

the way in which it should do so.

6.4​ Expandability
If applicable, this section should explain how a third party would be able to extend the system. This may be done by

writing plug-ins or scripts, or by writing some instructions in a configuration file.

6.5​ Debugging
Most of the development time will no doubt be spent on debugging. The larger the system, the more essential it

becomes to have some built-in mechanism to help debug the complete system. It can be a mechanism of log
files, or special functions in each interface, or a special mode in the UI. This section should describe your
choice of mechanisms, the ways in which they would be used, and what the programmers should do in order to
make their module part of the game.

6.6​ Security
Most software systems today face one or more security threats: spoofing, identity theft, password stealing,

eavesdropping, sniffing, spamming, data theft, web site defacing, denial of service attacks, password breaking,
fraud, forgery, hacking, viruses, worms, trojans - just to name a few.

This section should describe the security threats you foresee and intend to deal with. It should specify your
assumptions regarding the environment (whether the computer is behind a firewall, who has physical access to
it, etc.) and the means you plan to employ in order to protect the system (authentication, data encryption, input
validation, internal sanity checks), etc.

6.7​ Open Issues
There are always some issues left open. Sometimes information needed for making certain design decisions is not

available in time or even at all. Sometimes decisions are delayed for a more convenient time. This section
should list all the open issues in the design, and, if possible, point out what is required in order to resolve each
one.

12

6.8​ Glossary
List all the technical terms, concepts and acronyms that appear in the document or that are relevant to it, for the sake

of the uninformed reader. The explanation of each term/concept/acronym should not exceed 4 lines. People will
thank you for not having to spend hours on looking up unfamiliar terminology.

6.9​ Bibliography
If applicable, list documents, publications, books and other information sources that your readers may find useful

when trying to understand the full implications of your design.
https://www.daniweb.com/programming/computer-science/threads/437337/word-processor-design-principles
http://www.emeraldinsight.com/doi/pdfplus/10.1108/eb044605
http://codereview.stackexchange.com/questions/42651/making-a-word-processor
https://courses.cs.washington.edu/courses/cse403/11sp/lectures/lecture14-design-patterns-2.pdf
http://programmers.stackexchange.com/questions/180749/what-data-structure-could-a-word-processor-use-to-map-t

he-users-caret-position
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
http://projects.csail.mit.edu/soylent/
https://github.com/martincohen/Hale

13

https://www.daniweb.com/programming/computer-science/threads/437337/word-processor-design-principles
http://www.emeraldinsight.com/doi/pdfplus/10.1108/eb044605
http://codereview.stackexchange.com/questions/42651/making-a-word-processor
https://courses.cs.washington.edu/courses/cse403/11sp/lectures/lecture14-design-patterns-2.pdf
http://programmers.stackexchange.com/questions/180749/what-data-structure-could-a-word-processor-use-to-map-the-users-caret-position
http://programmers.stackexchange.com/questions/180749/what-data-structure-could-a-word-processor-use-to-map-the-users-caret-position
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
http://projects.csail.mit.edu/soylent/

Ideas

Stippi mentioned to start small - because our team is small / non existing.
Good way to start:

●​ Implement proper Undo / Redo for StyleEdit
●​ Use StyleEdit as Base for to evolve a Wordprocessor from there on
●​ Implement Some Translators just to load the text into StyleEdit out of

○​ odt
○​ doc
○​ docx
○​ gobe?
○​ abiword?
○​ pages?
○​ ….

●​ Improove StyleEdit to allow different Paragraphs with differen Formatings
●​ Most of such Work is already done for the TextView from HaikuDepot

○​ https://github.com/haiku/haiku/tree/master/src/apps/haikudepot/textview
○​ Support for Paragraphs
○​ Bullets (hard coded)
○​ Undo (as Filter not via Commandqueue)
○​ footnotes

14

https://github.com/PoetryOffice/Write/issues/21
https://github.com/PoetryOffice/Write/issues/25
https://github.com/PoetryOffice/Write/issues/12
https://github.com/PoetryOffice/Write/issues/6
https://github.com/PoetryOffice/Write/issues/16
https://github.com/PoetryOffice/Write/issues/27
https://github.com/haiku/haiku/tree/master/src/apps/haikudepot/textview

PoetryOffice Alpha Release Goals

PoetryOffice R1A1 Goals

PoetryOffice R1A2 Goals

PoetryOffice R1A3 Goals

15

https://github.com/PoetryOffice/Write/wiki/Development-Roadmap#poetryoffice-r1a1-goals
https://github.com/PoetryOffice/Write/wiki/Development-Roadmap#poetryoffice-r1a2-goals
https://github.com/PoetryOffice/Write/wiki/Development-Roadmap#poetryoffice-r1a3-goals

GUI

Panels

●​ Open/ Save​ ​ → Haiku OS
●​ Settings​ ​ → Nativ
●​ Print​ ​ ​ → Haiku OS → later with some nativ additions
●​ Search / Replace​ → Nativ
●​ Insert

○​ Picture​​ → Open / Save Haiku (little Nativ for image filter e.g. ShowImage)
○​ Table​ ​ → Nativ (can we somehow integrate sum it??)
○​ Formula​ → Nativ
○​ Spellcheck​ → Nativ
○​ Statistik​ → Nativ

●​ Font​ ​ ​ → Nativ (extend the one from Scripture Guide or from Font Demo or FontBoy)
●​

Menu

●​ File
●​ Edit
●​ …

ToolBar

●​ Document Related → Use Zumi Icons
○​ Open
○​ Save
○​ Print
○​ ----
○​ Cut
○​ (Format “Cut”)
○​ Copy
○​ (Format “Paste”)
○​ Paste

●​ Format related → Use Zumi Icons
○​ Font
○​ FontStyle
○​ Text alignment

●​ Object properties related → Use Zumi Icons
○​ Size
○​ Rotation
○​ ...

ToolsView

●​ Document structur list​
A Outline List generated from Headlines .. to navigate through the document

●​ Document History List
●​ ReDo / UnDo History List
●​ Editior’s issues/comments

MainView

●​ Ruler
○​ Left

■​ expander
○​ Top

■​ Tabs
●​ ScrollView

16

http://zumi.xoom.it/myhaiku/btoolbar/index.html
http://zumi.xoom.it/myhaiku/btoolbar/index.html
http://zumi.xoom.it/myhaiku/btoolbar/index.html

○​ TextView
■​

○​ NotesView

Statusbar (Bottom)​→ BStatusBar + nativ

●​ Page number from PageCount (both dragn´dropable into the document?)
●​ Statistics (wordcount and so on..)
●​ Layout
●​ Zoom
●​ ...

17

https://www.haiku-os.org/legacy-docs/bebook/BStatusBar.html

FileType

What could be stored in the file and how? (do it like StyleEdit? - so that there is always the Text accesible?)
What should we store in the Attributes?

Unsorted Metadata

Title​
Description​
Subject​
Keywords​
Initial Creator​
Creator​
Printed By​
Creation Date and Time​
Modification Date and Time
Editing Duration
Word count
Paragraph count
Table count
Image count
Language
Save count

Attributes

Name Type What

POETRY:PAGES Int32 Numer of pages

POETRY:AUTHOR String The Autor of the document

18

http://schema.org/CreativeWork

Features

●​ PagedView

○​ Header
○​ Footer

●​ Flexible TextLayout (could be based on pango <http://en.wikipedia.org/wiki/Pango> ?)
○​ Paragrap
○​ Left, Center Right alignment
○​ Letter spacing
○​ Line spacing
○​ floating around objects (textframes, pictures and so on)
○​ TextLayout in objects (e.g. in textframes)
○​ Tabs
○​ reference line (manual placed and calculated)

●​ import / export Translator
○​ Doc
○​ docx (just zip + tinyxml and a lot lot of praying ;-))
○​ odt (just zip + tinyxml and here you go ;))
○​ …

●​ Predefined Styles
●​ Lists (derived from fields?)

○​ Table of contents
○​ Index table
○​ Bibliography table
○​ Document glossary

●​ Content insert
○​ Table support (Sum It?)
○​ Chart support
○​ Vector image support
○​ Raster image support
○​ Equation support

●​ spellcheck (as visitor pattern?)
○​ Language identification
○​ Truecasing (capitalisation check)
○​ Autocomplete

●​ grammarcheck (as visitor pattern?)
○​ Part-of-speech tagging
○​ Sentence breaking assistance
○​ Word sense disambiguation
○​ Wordiness Check/Text simplification

●​ stylistic analysis (as visitor pattern?)
○​ readability level (level of education needed to read text)
○​ Automatic summarization
○​ Sentiment analysis (positive or negative point of view)
○​ Grammatical Ownership / Possession analysis
○​ Named entity recognition (analysing who, what, where)

●​ Fields
○​ PageNumber
○​ Page count
○​ People
○​ Date
○​ Subject
○​ Title
○​

●​ Dokumentmanagement
○​ Stream based loading objectdesign

■​ preparedfor big files

19

http://en.wikipedia.org/wiki/Pango
https://github.com/PoetryOffice/Write/issues/25
https://github.com/PoetryOffice/Write/issues/12
https://github.com/PoetryOffice/Write/issues/21
https://github.com/PoetryOffice/Write/issues/85
https://github.com/PoetryOffice/Write/issues/65
https://github.com/PoetryOffice/Write/issues/63
https://github.com/PoetryOffice/Write/issues/84
https://github.com/PoetryOffice/Write/issues/83
https://github.com/PoetryOffice/Write/issues/57
https://github.com/PoetryOffice/Write/issues/55
https://github.com/PoetryOffice/Write/issues/74
https://github.com/PoetryOffice/Write/issues/67
https://github.com/PoetryOffice/Write/issues/74
https://github.com/PoetryOffice/Write/issues/71
https://github.com/PoetryOffice/Write/issues/70
https://github.com/PoetryOffice/Write/issues/61
https://github.com/PoetryOffice/Write/issues/58
https://github.com/PoetryOffice/Write/issues/75
https://github.com/PoetryOffice/Write/issues/72

■​ and network/ collaboration enabled later)
●​ need a good validation process for “changes” on the document

○​ Autosave / Instant Save
○​ Version Control
○​ Cross referencing
○​ Conditional text
○​ Encoding conversion

●​ Search
○​ Regex-based find & replace
○​ Full index search

●​ Document statistics
○​ characters written
○​ words written
○​ time spent editing

20

https://github.com/PoetryOffice/Write/issues/51
https://github.com/PoetryOffice/Write/issues/52
https://github.com/PoetryOffice/Write/issues/77
https://github.com/PoetryOffice/Write/issues/77

Implementation

Overview

Layout

Spellcheck

Grammar

StylisticAnalysis

Autocomplete

Available Libs

Layout

Library Language Licence URL

OpenVG https://www.khronos.org/re
gistry/vg/

Skia C++ New BSD https://skia.org

MonkVG C++ BSD https://github.com/micahp
earlman/MonkVG

HarfBuzz C++ MIT https://github.com/behdad/
harfbuzz

Graphite (SIL) C++ LGPL https://github.com/silnrsi/g
raphite

glyphy C++ MIT/ Apache https://github.com/behdad/
glyphy

hwui C++ Apache https://github.com/android/
platform_frameworks_bas
e/tree/master/libs/hwui

ICU LE HB C++ ICU https://github.com/behdad/
icu-le-hb

libraqm C MIT https://github.com/HOST-
Oman/libraqm

Python print layout Python MIT https://github.com/idmilling
ton/layout

stacker C++ (not fully platform
independent)

MIT https://github.com/scullion/
stacker

BidiRenderer C++ BSD https://github.com/salshaa
ban/BidiRenderer

21

skiaex C++ BSD https://github.com/aam/ski
aex

Grammar

Library Language Licence URL

link grammar C BSD until 12 Feb 2015,
now GPL. Need to fork.

https://github.com/openco
g/link-grammar

NatLang C++ GPL https://github.com/onlyuse
r/NatLang

Grammatica C++ MIT https://github.com/NLP/Gr
ammatica

Spellcheck

Library Language Licence URL

Hunspell C++ MPL https://github.com/hunspel
l/hunspell

Spell corrector C++ GPL https://scarvenger.files.wor
dpress.com/2007/12/spell
corrector.h

SpellC C GPL http://marcelotoledo.com/s
tuff/spell/spell.c

spell C++ MIT https://github.com/daniella
favers/spell

Mini spell-check C++ MIT https://github.com/YosefYu
dborovsky/spell-check

Dictionary C++ MIT https://github.com/ma-anju
m95/Dictionary

spell-checker C++ MIT https://github.com/DiogoD
antas/spell-checker

spellcheck C++ TBD https://github.com/pcrain/s
pellcheck

Word-Auto-Correction C MIT https://github.com/b246wa
ng/Word-Auto-Correction

Search

Library Language Licence URL

Flamingo fuzzy search C++ BSD & BSD academic http://flamingo.ics.uci.edu/i

22

ndex.html

Lemur Search C++ BSD https://sourceforge.net/pro
jects/lemur/

CLucene Search C++ Apache https://sourceforge.net/pro
jects/clucene/

Re2 C++ BSD https://github.com/google/r
e2

Indexd C++ Zlib https://github.com/palkeo/i
ndexd

StylisticAnalysis

Library Language Licence URL

named-entity-recognition C++ MIT https://github.com/xingdi-e
ric-yuan/named-entity-rec
ognition

Lapos C++ BSD https://github.com/cltk/lapo
s

Citar-CXX C++ LGPL https://github.com/danield
k/citar-cxx

uima-uimacpp C++ Apache https://github.com/apache/
uima-uimacpp

BigDataStatistics C++ Apache https://github.com/bethom
as112/BigDataStatistics

 Glossary/index

Library Language Licence URL

Word-indexer C++ MIT https://github.com/mathissi
mo/Word_Indexer_in_C_a
nd_Cpp

DocumentIndex C++ MIT https://github.com/mustafa
Alp/DocumentIndex

Termex C++ & Python MIT https://github.com/gosusn
p/termex

poe C++ MIT https://github.com/osmode
/poe

Summarization

23

Library Language Licence URL

SummaryTool C++ GPL https://github.com/prabhde
ep311/SummaryTool

sumsense C BSD https://github.com/pratiksa
ha/sumsense

Text Document
Classification

C++ MIT https://github.com/haorany
u/cs440-Text-Document-Cl
assification-NaiveBayes

Sentiment Analysis

Library Language Licence URL

ToDo: find new libraries that are C++

Autocomplete

Library Language Licence URL

PredictiveText C++ CC-zero https://github.com/vas-and
-tor/PredictiveText

PredictiveText C++ MIT https://github.com/EkonFai
n/PredictiveText

autocomplete C MIT https://github.com/reeteshr
anjan/autocomplete

Autocomplete C MIT https://github.com/Renan
Greca/Autocomplete

LibFace C++ BSD/MIT https://github.com/nilnilnil/
autocomplete

Collaboration Tools

Library Language Licence URL

google-diff-match-patch C, C++, Python Apache https://code.google.com/ar
chive/p/google-diff-match-
patch/

Import / Export Portable Document Format files (.pdf)

Library Language Licence URL

24

qpdf C++ Artistic https://github.com/qpdf/qp
df

libharu C BSD https://github.com/libharu/l
ibharu

abiword xsl-fo import C++ GPL http://svn.abisource.com/a
biword/trunk/plugins/xslfo/
xp/

podofo C++ LGPL http://podofo.sourceforge.
net

jagpdf C++ MIT https://github.com/jgresula
/jagpdf

Import / Export Microsoft openxml documents (.docx, .docm)

Library Language Licence URL

openxml abisource C++ GPL http://svn.abisource.com/a
biword/trunk/plugins/open
xml/

LibOPC C++, Python BSD https://libopc.codeplex.co
m

SPLib C++ BSD https://github.com/osakare
d/SPLib

Import / Export Open Document Format files (.odt, .fodt)

Library Language Licence URL

libodfgen export C++ MPL https://sourceforge.net/p/li
bwpd/wiki/libodfgen/

OdtToMD C++ PD https://github.com/milan11
/odttomd

odf-gen Exporter Python & C++ Boost https://github.com/pablojor
ge/odf-gen

Import / Export Electronic Publication files (.epub)

Library Language Licence URL

EBook-Tools Import C++ MIT https://sourceforge.net/pro
jects/ebook-tools/

libe-book Import C++ BSD https://sourceforge.net/pro

25

jects/libebook/

Libepubgen Export C++ MPL https://sourceforge.net/pro
jects/libepubgen/

Import /Export Microsoft Word Binary & Compound Document files (.doc, .cfb)

Library Language Licence URL

libolecf import C LGPL https://github.com/libyal/lib
olecf/

file2ole export C++ Apache https://github.com/Softcom
/file2ole

Import Apple iWork Document files (.pages)

Library Language Licence URL

iWorkFileFormat C++ MIT https://github.com/obriens
p/iWorkFileFormat

libetonyek Import C++ MPL http://dev-www.libreoffice.
org/src/libetonyek/

iWork Document
decompression

C++ BSD https://google.github.io/sn
appy/

Import OpenOffice / StarOffice files (.sdw, .sxw)

Library Language Licence URL

libstaroffice C++ MPL https://github.com/fosnola/
libstaroffice

sdw abiword C++ GPL http://svn.abisource.com/a
biword/trunk/plugins/sdw/

OpenWriter C++ GPL http://svn.abisource.com/a
biword/trunk/plugins/open
writer/

Libs wich need to be implemented

●​ PostScript (.ps) (Import/Export)
●​ FictionBook Document (.fb2) (Import)
●​ Electronic Publication (.epub2 , .epub3) (Import/Export)
●​ GoBe Productive writer Import (Export)
●​ OpenDocument Text (.odt) (Import/Export)
●​ Scribus format Import (.sla) (Import)

26

●​ Google Document (.gdoc) (Import/Export)
●​ Rich Text Format Directory (.rtfd) (Import)
●​ WordProcessingML (.xml) (Import/Export)
●​ Compound Document Format (.cdf) (import)

UML - IDEAS

27

https://drive.draw.io/#G0B7iwf1BjZXznMmFpeGtEVHh1SVU

28

Possible Names

Archive of suggested word prgiocessor names

Archive of suggested subproject names

29

https://github.com/PoetryOffice/Write/wiki/Name-Suggestions#word-processor-name-suggestions
https://github.com/PoetryOffice/Write/wiki/Name-Suggestions#poetryoffice-suite--subprojects

Poetry Office ideas

Archive of Idea One

Archive of Idea Two

30

https://github.com/PoetryOffice/Write/wiki/Initial-Ideas
https://github.com/PoetryOffice/Write/wiki/Initial-Ideas#suggestion-two

	Haiku WordProcessor
	Table of contents
	
	
	
	1​
	2​Introduction
	2.1​Collection of Ideas
	All Modules as “Replicants”?
	Own Haiku Docs Format!?
	2.2​Background
	2.3​Design Goals

	3​Architecture
	3.1​Introduction
	3.2​Data
	3.2.1​Introduction
	3.2.2​Schema
	3.2.3​File and Data Formats

	3.3​Communication
	3.4​Code
	3.4.1​Introduction
	3.4.2​Modules
	3.4.2.1​Module A
	3.4.2.1.1​Internal Functions

	3.4.2.2​Module B
	3.4.2.2.1​Internal Functions

	3.4.2.3​…

	3.4.3​Interfaces

	4​Operation
	4.1​User types
	4.2​Scenarios
	4.3​Installation
	4.4​Licensing
	4.5​Upgrades
	4.6​Uninstall

	5​Development
	6​Miscellanea / Appendices
	6.1​Idea & Diagrams
	6.2​Conformance with standards
	6.3​Interoperability with other systems
	6.4​Expandability
	6.5​Debugging
	6.6​Security
	6.7​Open Issues
	6.8​Glossary
	6.9​Bibliography

	
	Ideas
	PoetryOffice Alpha Release Goals
	PoetryOffice R1A1 Goals
	PoetryOffice R1A2 Goals
	PoetryOffice R1A3 Goals

	GUI
	Panels
	Menu
	ToolBar
	ToolsView
	MainView
	Statusbar (Bottom)​→ BStatusBar + nativ

	FileType
	Unsorted Metadata
	Attributes

	Features
	Implementation
	Overview
	Layout
	Spellcheck
	Grammar
	StylisticAnalysis
	Autocomplete

	Available Libs
	Layout
	Grammar
	Spellcheck
	Search
	StylisticAnalysis
	 Glossary/index
	Summarization
	Sentiment Analysis
	Autocomplete
	Collaboration Tools
	Import / Export Portable Document Format files (.pdf)
	
	Import / Export Microsoft openxml documents (.docx, .docm)
	Import / Export Open Document Format files (.odt, .fodt)
	Import / Export Electronic Publication files (.epub)
	Import /Export Microsoft Word Binary & Compound Document files (.doc, .cfb)
	Import Apple iWork Document files (.pages)
	Import OpenOffice / StarOffice files (.sdw, .sxw)

	Libs wich need to be implemented
	UML - IDEAS
	

	Possible Names
	Poetry Office ideas

