Xin Zhong
Log of Tensorflow

Installation

Linux is often selected as the OS for deep learning. There are various discussions on Google of
installing tensorflow(denoted as tf) on different Linux systems. It should be convenient to set up
deep learning frameworks on Linux.

Here I record the installation of tensorflow-gpu on Windows. For the reasons that although I
can run my codes on Linux in the Lab machines, I still have to test some codes on my laptop
(with / without external GPU) with a Windows 10. My laptop is for my personal comprehensive
usage and I do not want to switch the OS.

I believe setting up tensorflow on Windows would benefit a lot of us. Although most of us may
not have access to a powerful GPU, we could test a simple prototype on our desktop or laptop
with a normal GPU since CUDA supports most Nvidia Geforce GPUs. At least it is faster than
purely running on CPUs.

It can be tricky to set up tf on Windows. In a nutshell, on my Windows 10 laptop I set up Python
3.6 (Anaconda 64 bits), Visual Studio 2015 with update, CUDA 8.0 and CuDnn 6.0. My major
hint is the https://gist.github.com/mrry/ee5dbcfdd045fa48a27d56664411d41c that checks is a tf
is correctly installed on a Windows. The following steps (installing in order) should set up the

framework.

1. Python
The official tf for Windows requires 3.5 or 3.6 so far, so choose either version, I use Anaconda
https://www.anaconda.com/download/ for an easy collection of the packages.

2. Visual Studio

Up to now (Dec. 30th 2017) tf does not supports CUDA 9, hence we could only use CUDA 8.0.
for CUDA 8.0, it only supports Visual Studio up to 2015. So this is the only version we could
choose. I downloaded a community version (which is free). When installing Visual Studio 2015,
make sure to select “Programming Languages -> Visual C++”, defaultly it is not selected.

3. CUDA

https://gist.github.com/mrry/ee5dbcfdd045fa48a27d56664411d41c
https://www.anaconda.com/download/

Install CUDA AFTER Visual Studio. As mentioned, we could only use CUDA 8.0 otherwise
tensorflow produces errors. In the error message, it directs us to CUDA 9.0, that is not working!
Make sure the CUDA 1is 8.0 by downloading on CUDA developers site. We could unselect the
Driver (Display driver) installation if the driver along with CUDA 8.0 is not compatible with our
hardware to safely using CUDA 8.0. Check the installation by “nvcc -V in command prompts.

4. CuDnn

After testing, CuDnn 6.0 for CUDA 8.0 is the only version working for me. CuDNN is a CUDA
Deep Neural Network library. Copy CuDnn (when unzipped, three folders: “bin”, “include”,
“lib”) into “yourpath\NVIDIA GPU Computing Toolkit\v8.0”, by default, my path is
“C:\ProgramData\NVIDIA GPU Computing Toolkit\v8.0”.

Check the existence of “CUDA PATH” and “CUDA PATH V8 0” in the Windows
Environment Variables, also add the path of CuDnn bin folder into the user path variables (My
path by default is “C:\ProgramData\NVIDIA GPU Computing Toolkit\v8.0\bin”)

5. Install tf on Pycharm using Anaconda

I use Pycharm as my python IDE (https://www.jetbrains.com/pycharm/), so I want to use tf in
Pycharm with conda environment. Here are the steps:

At Pycharm create new conda project.

& Create Project X

Location: C:\my_software\PyCharm_Community\workspace\untitled‘

¥ Project Interpreter: New Conda environment
& New environment using Conda v
Location: C:\my_software\Anaconda3\envs\untitled
Python version: 3.6
Make available to all projects
Existing interpreter

& Python 3.6

Create

Open tools -> python console and use pip to install tensorflow-gpu

])

pip.main ([

https://www.jetbrains.com/pycharm/

Check if tensorflow-gpu is in the project interpreter (File -> settings)

=<} Settings X
Q- Project: keras_relate) Project Interpreter

- Gppealal e Project Interpreter: i@ Python 3.6 (keras_relate)
Keymap
> Editor Package Version
Plugins
P Version Control
¥V Project: keras_relate
Project Interpreter
Project Structure certifi

. q e 34
P Build, Execution, Deployment enums

h5py 7.
P Languages & Frameworks html5lib 1.0.1

» Tools numpy 1.14.0rc1
pip 9

protobuf

Cancel

tensorflow.python.client device 1lib

(device lib.list local devices{())
It should output the CPU and the GPU information.

Now we try compute the inner product using tf:
tensorflow tf
= tf.constant (|] = []
=)
= tf.constant (|] = []
=)

c = tf.matmul (a, b)

ess = tf.Session ()

(sess.run(c))

Here in the output we should see some information about your GPU, in my case Gefore 940M
“...name: GeForce 940MX major: 5 minor: 0 memoryClockRate(GHz): 1.189

pciBusID: 0000:02:00.0

totalMemory: 2.00GiB freeMemory: 1.66GiB ...”

as well as the result 2 by 2 matrix

“[[22. 28.]
[49. 64.]]

Ubuntu 16.04 log:
curl -O https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86 64.sh
sha256sum Anaconda3-5.0.1-Linux-x86_64.sh
bash Anaconda3-5.0.1-Linux-x86 64.sh
- Do you approve the license terms? [yes|no]
yes
bash
source ~/.bashrc
conda search ""python$"
conda create --name my_env python=3
source activate my_env
conda install -c anaconda tensorflow-gpu
conda install -c anaconda keras-gpu

Initialization

The core data structure in tf is a tensor. First order tensors (e.g. [1,2,3,4,5]) are vectors (similar
as arrays) and the second order tensors are matrices. (e.g. [[1,2], [3.,4], [5,6]]).

a tf.constant ()
o) tf.constant ()

et

G

Tensor("Const:0", shape=(), dtype=string)

x = tf.Variable (tf.ones ([1))
' 1))

(
y = tf.Variable(tf.zeros ([

init = tf.global variables initializer ()

Why “constant” and “Variable” with capitalized V... anyway those are the function names. tf has
the ones and zeros function as numpy and Matlab. The initialization is done by function
global variables _initializer()

name: "init"\nop: "NoOp"\ninput: "*Variable/Assic

<tf.Variable 'Variable:0' shape=(3, 3) dtype=float32_re

-

3
<tf.Variable 'Variable_1:0" shape=(3, 3) dtype=float32_

Get

Any tensor returned by Session.run or eval is a NumPy array, so we could simply run .eval() on

the transformed tensor to convert it back to numpy

x = tf.Variable (tf.ones (][1))
tf.Session () sess:

sess.run (tf.global variables initializer())

np x2 = x.eval (tf.Session())

<tensorflow.python.client.session.Session object at

<tf.Variable 'Variable:0' shape=(3, 3) dtype=float32_re

X = np.ones ([] =)

w = tf.Variable =X)

' (
tf.Session () sess

sess.run (tf.global variables initializer())

(sess.run (w))

We need to run the initializer before running variable. The execution is function sess.run(), we

can also write

sess = tf.Session ()

sess.run (tf.global variables initializer())

(sess.run (w))

However, using “with” let the system release a session automatically.

Output:

Tensor("Const:0", shape=(), dtype=string)
<tensorflow.python.client.session.Session object at

<tf.Variable 'Variable:0' shape=(3, 3) dtype=uint8_ref;

[[111]
[111]

[111]]

tf.placeholder (tf.float32

Initialize a place without giving exact values

Tensor("Placeholder:0", shape=(?, 7), dtype=float32)

When using place holders, feed actual values when executing. E.g. use feed dict function to
assign actual values to multiple variables
a = tf.placeholder (tf.intl6)
= tf.placeholder (tf.intl16)
= a + b
mul = a * Db

tf.Session () sess:

o O
Q.
Q.

Il

Q

o

[
o)
o

sess.run (add

—

sess.run (mul =

m*si
i
N
—_

Different from others, for acceleration, the operation, in this case addition, process is:

(1) Create x, y, z three tensors.

(2) Instead of a top-down process, tf put all the operations into a graph where each node is an
operation.

(3) Pass the graph to a session.

X, Y tf.Variable (6), tf.Variable (7)
tf.Session () sess:

sess.run (tf.global variables initializer())

(sess.run(z))

output

<tensorflow.python.client.session.Session object at
<tf.Variable 'Variable:0' shape=() dtype=int32_ref>

<tf.Variable 'Variable_1:0' shape=() dtype=int32_ref>

Tensor("add:0", shape=(), dtype=int32) 13

Some operations: (more on https://www.tensorflow.org/api_guides/python/math_ops)
Element-wise: tf.add, tf.subtract, tf.multiply, tf.div (python 2) / tf.truediv (python 3)

Linear Algebra: tf.matmul, tf.matrix_inverse

https://www.tensorflow.org/api_guides/python/math_ops

	Installation
	Initialization

