An Optimum Design for Controlling Hydrocarbon-Liquid-Dropout in Khor Mor Gas Processing Plant Units

Soran University (SUN)

Fenk Abdul Razzaq Sulaiman

This Master's thesis discussion is arranged by SUN's Engineering faculty, Petroleum and Mining Engineering Department (DPME)

يۆختە

گواستنه وهي شله دوتوانيت ببيته هؤي كهفكردن و كهمبوونه وي تواناي ئامير وكان له برؤسه كاني هه لمريني دواتر. له كارگهكاني پر وسيسكر دندا، ئه و دهفر انهي كه به جياكهر هوه ناسر اون، پيويستن بو لابر دني دڵويه شلهكان به شيوهيهكي كار اله دۆخى گازى. كار ايى ناتەواوى ئامێرى جياكەر ەو ە دەتوانێت ببێتە ھۆي ئەوەي شلە ھايدرۆكاربۆنبيەكان وەك شلەي گواستراو بچنه ناو تاوهرهکانی هه ممرین، ئهمهش دهبیته هوی ئهو کیشانهی که بیشتر باسکراون. هوکاره سهرهکییهکان، و هک دیزاینی نادروست، تیکچوونی بهشهکانی ناوهوهی دهفرهکه، یان ریزهی لیشاوی زیاده، دهتوانن گواستنهوهی شله بهرز بکهنهوه و کارایی ئامیری جیاکهرهوه کهم بکهنهوه. ئهم تویزینهوهیه بژاردهی ریکخستنی پهیوهندییهکانی گواستنهوهی له وهشانی ۱۱ی بەرنامەي ئەسىن ھايسىس بەكار ھێناوە. ئامانجى ئەوە بوو كەكارايى چوار جياكەر ەوەي سى دۆخى ئاسۆپى بىشكنىت، ئەوانىش ئەلفا، براقر #١، براقر #٢ و چارلى. ئەم جياكەر موانە بە شيوەيەكى ھاوتەرىب لەپيش تاوەرى شيرينكەر موەى غاز لە كارگهي پرۆسنيسكردني غازي خۆر مۆر دانراون. لنكۆلىنەوەكە بە تايبەتى لەسەر بلاوبونەوەي قەبارەي دلۆپە شلەكان لە بهر ههمی غاز و کارایی جیاکردنهوهی غاز /شله له بارودۆخی کارکردنی ئیستا و داهاتوویاندا بوو. ئەنجامەكانی هاوشیوهکردن دەريانخست كه جياكەر ەومكانى ئەلفا و براڤۆ #٢ نەيانتوانيوه ھەموو دڵۆپە شلەكان بە قەبارەي دياريكراو لاببەن و كارايى يپويست به دمستبهينن له همر دوو بارو دوخي كار كردني ئيستا و داهاتوودا. له هممان كاتدا، جياكه رهومكاني براڤو #١ و چارلي کاریگهر بوون له نه هیشتنی همموو دلّویه شلمکان به قمبارهی دیاریکراو له دوّخی غاز و به دستهیّنانی کارایی بیّویست له بارودۆخى كاركردنى داھاتوودا. دواتر، كاريگەرى چەندىن بارامێتەرێكى بێكھاتەي دەڧرەكە و كاركردن لەسەر رێژەي لنِشاوی بارستهی شلهی ههلگیراو و کارایی جیاکردنهوهی غاز/شلهی دهفرهکه دیاریکرا و شیکرایهوه. جگه لهوهش، بق کونتروّلکردنی گواستنموهی شله و دواتر بمرزکردنموهی کارایی جیاکمرهوهی ئملفا و براقو ۲۴، ئمم تویّرینموهیه ریّگایی ئارنۆلْد-ستيوارتى بەكار هينا بۆ ديزاينكردنەوەى ھەردوو دەفرە ئاماۋەپيكراوەكە. لە كۆتاييدا، ديزاينيكى نوى كە بە "جیاکهر هوهی زیرهک" ناودهبرنیت، پیشنیار کرا بو نملفا و براڤو #۲ له ژیر ههردوو بارودوّخی کارکردنی ئیستا و داهاتوودا. دیز اینه زیر هکهکه زیادبوونی بهرچاوی له کار ایی جیاکر دنهوهی غاز /شلهی جیاکهرهوهی ئهلفا نیشان دا، که له ژیر بارودو خی ئیستادا به ریزهی ۲۱٫۱۱٪ و له ژیر بارودوخی داهاتوودا به ریزهی ۲۰٫۷۰٪ باشتربوونی بهدمستهیّنا. به ههمان شیّوه له ژیر هەردوو بارودۆخى ئىستا و داھاتوودا، دىزاينى زىرەكى جياكەرەوەى براڤۆ #۲ بە رِێژەى ٢١.٣١٪ و ٢٨.٢٣٪ بەرزبوونەوەي بەدەستەپنا. ئەم ئەنجامانە ئاشكراي دەكەن كە دىزاينى زىرەك دەتوانرىت وەك دىزاينىكى گونجاو ھەژمار بکریّت که بتوانیّت کونتروّلْی گواستنهوهی شله بکات و کاراییهکهی بهرز بهیّلیّتهوه، تعنانهت ئهگهر ریّرهی لیّشاوی هاتنه ژوور هوهی دهفرهکه لهگهڵ کاتدا زیاد بکات و دواتر رێگری بکات له دیاردهکانی کهفکردن که له پرۆسهکانی دواتردا روودەدەن بەھۆي گواستنەوەي شلەكان.

المخلص

يمكن أن يتسبب ترحيل السائل في حدوث الرغوة وانخفاض سعة المعدات في عمليات الامتصاص اللاحقة. في محطات المعالجة، تعتبر الأوعية المعروفة باسم الفواصل ضرورية لإزالة القطرات السائلة بكفاءة من الطور الغازي. يمكن أن يؤدي أداء الفاصل غير الكفؤ إلى دخول السوائل الهيدروكربونية إلى أبراج الامتصاص كسوائل محمولة، مما يؤدي إلى المشكلات المذكورة أعلاه. يمكن للعوامل الرئيسية، مثل التصميم غير المناسب، أو تلف الأجزاء الداخلية للوعاء، أو معدلات التدفق المفرطة، أن تعزز ترحيل السائل وتقلل من كفاءة الفاصل. استخدمت هذه الدراسة خيار إعداد الترابطات لترحيل السوائل في برنامج أسبن هايسيس الإصدار ١١. هدفت هذه الدراسة إلى فحص أداء أربعة فواصل صناعية أفقية ثلاثية-الطور، وهي ألفا، برافو#۱، برافو#۲، و تشارلي. وتقع هذه الفواصل بالتوازي قبل برج تحلية الغاز في محطة معالجة الغاز-المتكثف في خور مور. ركز البحث بشكل خاص على توزيع حجم قطرات السائل في منتج الغاز وكفاءة فصل الغاز/السائل في ظروف التشغيل

الحالية والمستقبلية. أظهرت نتائج المحاكاة أن الفواصل ألفا و برافو#٢ لم تتمكن من إزالة جميع قطرات السائل من الطور الغازي ضمن الحجم المحدد وتحقيق الكفاءة المطلوبة في ظروف التشغيل الحالية والمستقبلية. في المقابل، كانت فواصل برافو#١ و تشارلي فعالة في إزالة جميع قطرات السائل ضمن الحجم المحدد من الطور الغازي وتحقيق الكفاءة المطلوبة في ظروف التشغيل المستقبلية. بعد ذلك، تم تحديد وتحليل تأثير العديد من المتغيرات الهيكلية للوعاء والتغيرات التشغيلية على معدل التندفق الكتلي للسوائل المحملة وكفاءة فصل الغاز/السائل للوعاء. علاوة على ذلك، التحكم السوائل المحملة ومن ثم تعزيز كفاءة الفواصل ألفا و برافو#٢، استخدم هذا البحث إجراء أرنولد ستيوارت شبه التجريبي لإعادة تصميم كلا الوعاءين المذكورين. وأخيرًا، يوصى باستخدام مفهوم تصميم جديد، يُشار إليه باسم "الفاصل الذكي"، لألفا و برافو#٢ في ظل ظروف التشغيل الحالية والمستقبلية. أظهر التصميم الذكي زيادة ملحوظة في كفاءة فصل الغاز/السائل لفاصلة ألفا، حيث حقق تحسنًا بنسبة ١٩٠١. ١٩٪ في ظل الظروف التشغيلية المستقبلية والمستقبلية أدى التصميم الذكي يمكن اعتباره التصميم الأمثل الذي يمكنه التحكم في السوائل المحملة و الحفاظ على كفاءته العالية، حتى الوزاد معدل تدفق مدخل الوعاء مع مرور الوقت وبالتالي منع ظاهرة الرغوة التي تحدث في العمليات اللاحقة بسبب السوائل المحملة.

Abstract

Liquid carry-over can cause foaming and reduced equipment capacity in downstream absorption processes. In processing plants, the vessels known as separators are essential for efficiently removing liquid droplets from the gas phase. Inadequate separator performance can lead to hydrocarbon liquids entering absorption towers as carried-over liquids, leading to the aforementioned issues. Key factors, such as improper design, damage of vessel internals, or excessive flow rates, can enhance liquid carry-over and reduce separator efficiency. This study utilized the carry-over correlations setup option in Aspen HYSYS v.11 software. It aimed to examine the performance of four industrial three-phase horizontal separators, namely Alpha, Bravo #1, Bravo #2, and Charlie. These separators are located parallelly upstream of the gas sweetening tower in the Khor Mor gas-condensate processing plant. The investigation focused specifically on the liquid droplet size distribution in the gas product and gas/liquid separation efficiency at their current and future operating conditions. The simulation results showed that Alpha and Bravo #2 separators were unable to remove all liquid droplets within the specified size and achieve the required efficiency in both current and future operating conditions, with and without the mist extractor device. In contrast, Bravo #1 and Charlie separators were effective in eliminating all the liquid droplets within the specified size from the gas phase and attaining the required efficiency in future operating conditions. Afterwards, the impact of several vessel structural and operational parameters on the carried-over liquid mass flow rate and vessel gas/liquid separation efficiency was determined and analyzed. Furthermore, to control the liquid carry-over and subsequently enhance the efficiency of the Alpha and Bravo #2 separators, this research used Arnold-Stewart semiempirical procedure to redesign both mentioned vessels. Lastly, a new design concept, referred to as the "smart separator," is recommended for Alpha and Bravo #2 under both current and future operating conditions. The smart design demonstrated a notable increase in the gas/liquid separation efficiency of the Alpha separator, achieving an improvement of 31.11% under current conditions and 77.65% under future conditions. Similarly, under both current and future conditions, the smart design of Bravo #2 separator yielded an enhancement of 21.31% and 28.23%, respectively. These results reveal that smart design could be considered as an optimum design that can control liquid carry-over and keep its efficiency high, even if the vessel inlet flow rate increases with time and subsequently prevent foaming phenomena that happen in its downstream processes due to carried-over liquids.

ئەندامانى لىژنەى تاوتىكردن

پلەي ئەندامىيەتى	زانكۆ	نازناوى زانستى	ناو
سەرۆكى لىژنە	زانكۆى سۆران	پرۆفىسۆرى يارىدەدەر	پ.ی.د. عباس خاکسارمنشاد
ئەندام	زانكۆي كەركوك	پرۆفىسۆرى يارىدەدەر	ب.ي.د. محمد جواد زين العابدين
ئەندام	ئەمرىكى-دھۆك	پرۆفىسۆرى يارىدەدەر	پ.ی.د. محمدعلی نامق
ئەندام و سەرپەرشتيارى	زانكۆى كومار	پرۆفىسۆرى يارىدەدەر	ب.ي.د. هيوا حمة امين صديق

About Soran University

Soran University (SUN) is located in the city of Soran, which is about a two-hour drive north-east of Erbil (Arbil, Hewlér), the capital of the Kurdistan Region of Iraq (KRIQ). The city is flanked by the famous Korek, Zozik, Henderén, and Biradost mountains. The medieval mountain village of Rewandiz (Rawanduz, العرفة العربة) is a stone-cast away, and the two cities share this lovely, harmonious upland. While waiting for its green, environmentally friendly building to be erected on a hilltop overlooking the cities of Soran and Rewandiz, its existing city campus has been meticulously set out to accommodate the lovely natural landscape. The new campus will be the first of its type, being walkable, balanced, powered by renewable energy, and compliant with all international environmental regulations. There are 5 Faculties in SUN; Faculty of Arts (FAAR), Faculty of Science (FSCN), Faculty of Education (FEDU), Faculty of Law, Political Science, and Management (FLAW/PSM), and Faculty of Engineering (FENG). Also, there is SUN research centre. Moreover, at SUN, there is a Language Center. SUN signed many Memoranda of Understandings (MoU) with many International Universities,

How to get here

Soran University (SUN) is located in the heart of the city of Soran. The main city campus is easily found on Google Maps for direction.