
Glossary 
Fundamental Concepts 
Prompt: A prompt is the input, typically 
in the form of a question, instruction, or 
statement, that a user provides to an AI 
model to elicit a response. The quality 
and structure of the prompt heavily 
influence the model's output, making 
prompt engineering a key skill for 
effectively using AI. 
 

1 



Context Window: The context window is 
the maximum number of tokens an AI 
model can process at once, including 
both the input and its generated output. 
This fixed size is a critical limitation, as 
information outside the window is 
ignored, while larger windows enable 
more complex conversations and 
document analysis. 
 
In-Context Learning: In-context learning 
is an AI's ability to learn a new task from 
examples provided directly in the 
prompt, without requiring any retraining. 
This powerful feature allows a single, 
general-purpose model to be adapted to 
countless specific tasks on the fly. 
 

2 



Zero-Shot, One-Shot, & Few-Shot 
Prompting: These are prompting 
techniques where a model is given zero, 
one, or a few examples of a task to 
guide its response. Providing more 
examples generally helps the model 
better understand the user's intent and 
improves its accuracy for the specific 
task. 
 
Multimodality: Multimodality is an AI's 
ability to understand and process 
information across multiple data types 
like text, images, and audio. This allows 
for more versatile and human-like 
interactions, such as describing an 
image or answering a spoken question. 
 

3 



Grounding: Grounding is the process of 
connecting a model's outputs to 
verifiable, real-world information sources 
to ensure factual accuracy and reduce 
hallucinations. This is often achieved 
with techniques like RAG to make AI 
systems more trustworthy. 
Core AI Model Architectures 
Transformers: The Transformer is the 
foundational neural network architecture 
for most modern LLMs. Its key 
innovation is the self-attention 
mechanism, which efficiently processes 
long sequences of text and captures 
complex relationships between words. 
 

4 



Recurrent Neural Network (RNN): The 
Recurrent Neural Network is a 
foundational architecture that preceded 
the Transformer. RNNs process 
information sequentially, using loops to 
maintain a "memory" of previous inputs, 
which made them suitable for tasks like 
text and speech processing. 
 
Mixture of Experts (MoE): Mixture of 
Experts is an efficient model architecture 
where a "router" network dynamically 
selects a small subset of "expert" 
networks to handle any given input. This 
allows models to have a massive 
number of parameters while keeping 
computational costs manageable. 
 

5 



Diffusion Models: Diffusion models are 
generative models that excel at creating 
high-quality images. They work by 
adding random noise to data and then 
training a model to meticulously reverse 
the process, allowing them to generate 
novel data from a random starting point. 
 
Mamba: Mamba is a recent AI 
architecture using a Selective State 
Space Model (SSM) to process 
sequences with high efficiency, 
especially for very long contexts. Its 
selective mechanism allows it to focus 
on relevant information while filtering out 
noise, making it a potential alternative to 
the Transformer. 
The LLM Development Lifecycle 

6 



The development of a powerful 
language model follows a distinct 
sequence. It begins with Pre-training, 
where a massive base model is built by 
training it on a vast dataset of general 
internet text to learn language, 
reasoning, and world knowledge. Next is 
Fine-tuning, a specialization phase 
where the general model is further 
trained on smaller, task-specific 
datasets to adapt its capabilities for a 
particular purpose. The final stage is 
Alignment, where the specialized 
model's behavior is adjusted to ensure 
its outputs are helpful, harmless, and 
aligned with human values. 
 

7 



Pre-training Techniques: Pre-training is 
the initial phase where a model learns 
general knowledge from vast amounts 
of data. The top techniques for this 
involve different objectives for the model 
to learn from. The most common is 
Causal Language Modeling (CLM), 
where the model predicts the next word 
in a sentence. Another is Masked 
Language Modeling (MLM), where the 
model fills in intentionally hidden words 
in a text. Other important methods 
include Denoising Objectives, where the 
model learns to restore a corrupted 
input to its original state, Contrastive 
Learning, where it learns to distinguish 
between similar and dissimilar pieces of 
data, and Next Sentence Prediction 

8 



(NSP), where it determines if two 
sentences logically follow each other. 
 

9 



Fine-tuning Techniques: Fine-tuning is 
the process of adapting a general 
pre-trained model to a specific task 
using a smaller, specialized dataset. 
The most common approach is 
Supervised Fine-Tuning (SFT), where 
the model is trained on labeled 
examples of correct input-output pairs. A 
popular variant is Instruction Tuning, 
which focuses on training the model to 
better follow user commands. To make 
this process more efficient, 
Parameter-Efficient Fine-Tuning (PEFT) 
methods are used, with top techniques 
including LoRA (Low-Rank Adaptation), 
which only updates a small number of 
parameters, and its memory-optimized 
version, QLoRA. Another technique, 

10 



Retrieval-Augmented Generation 
(RAG), enhances the model by 
connecting it to an external knowledge 
source during the fine-tuning or 
inference stage. 
 

11 



Alignment & Safety Techniques: 
Alignment is the process of ensuring an 
AI model's behavior aligns with human 
values and expectations, making it 
helpful and harmless. The most 
prominent technique is Reinforcement 
Learning from Human Feedback 
(RLHF), where a "reward model" trained 
on human preferences guides the AI's 
learning process, often using an 
algorithm like Proximal Policy 
Optimization (PPO) for stability. Simpler 
alternatives have emerged, such as 
Direct Preference Optimization (DPO), 
which bypasses the need for a separate 
reward model, and Kahneman-Tversky 
Optimization (KTO), which simplifies 
data collection further. To ensure safe 

12 



deployment, Guardrails are 
implemented as a final safety layer to 
filter outputs and block harmful actions 
in real-time. 
Enhancing AI Agent Capabilities 
AI agents are systems that can perceive 
their environment and take autonomous 
actions to achieve goals. Their 
effectiveness is enhanced by robust 
reasoning frameworks. 
 
Chain of Thought (CoT): This prompting 
technique encourages a model to 
explain its reasoning step-by-step 
before giving a final answer. This 
process of "thinking out loud" often 
leads to more accurate results on 
complex reasoning tasks. 

13 



 
Tree of Thoughts (ToT): Tree of 
Thoughts is an advanced reasoning 
framework where an agent explores 
multiple reasoning paths simultaneously, 
like branches on a tree. It allows the 
agent to self-evaluate different lines of 
thought and choose the most promising 
one to pursue, making it more effective 
at complex problem-solving. 
 

14 



ReAct (Reason and Act): ReAct is an 
agent framework that combines 
reasoning and acting in a loop. The 
agent first "thinks" about what to do, 
then takes an "action" using a tool, and 
uses the resulting observation to inform 
its next thought, making it highly 
effective at solving complex tasks. 
 
Planning: This is an agent's ability to 
break down a high-level goal into a 
sequence of smaller, manageable 
sub-tasks. The agent then creates a 
plan to execute these steps in order, 
allowing it to handle complex, multi-step 
assignments. 
 

15 



Deep Research: Deep research refers 
to an agent's capability to autonomously 
explore a topic in-depth by iteratively 
searching for information, synthesizing 
findings, and identifying new questions. 
This allows the agent to build a 
comprehensive understanding of a 
subject far beyond a single search 
query. 
 
Critique Model: A critique model is a 
specialized AI model trained to review, 
evaluate, and provide feedback on the 
output of another AI model. It acts as an 
automated critic, helping to identify 
errors, improve reasoning, and ensure 
the final output meets a desired quality 
standard. 

16 



Index of Terms 
 
This index of terms was generated using Gemini Pro 2.5. The prompt and reasoning steps are 
included at the end to demonstrate the time-saving benefits and for educational purposes. 

A 

●​ A/B Testing - Chapter 3: Parallelization 
●​ Action Selection - Chapter 20: Prioritization 
●​ Adaptation - Chapter 9: Learning and Adaptation 
●​ Adaptive Task Allocation - Chapter 16: Resource-Aware Optimization 
●​ Adaptive Tool Use & Selection - Chapter 16: Resource-Aware Optimization 
●​ Agent - What makes an AI system an Agent? 
●​ Agent-Computer Interfaces (ACIs) - Appendix B 
●​ Agent-Driven Economy - What makes an AI system an Agent? 
●​ Agent as a Tool - Chapter 7: Multi-Agent Collaboration 
●​ Agent Cards - Chapter 15: Inter-Agent Communication (A2A) 
●​ Agent Development Kit (ADK) - Chapter 2: Routing, Chapter 3: Parallelization, Chapter 

4: Reflection, Chapter 5: Tool Use, Chapter 7: Multi-Agent Collaboration, Chapter 8: 
Memory Management, Chapter 12: Exception Handling and Recovery, Chapter 13: 
Human-in-the-Loop, Chapter 15: Inter-Agent Communication (A2A), Chapter 16: 
Resource-Aware Optimization, Chapter 19: Evaluation and Monitoring, Appendix C 

●​ Agent Discovery - Chapter 15: Inter-Agent Communication (A2A) 
●​ Agent Trajectories - Chapter 19: Evaluation and Monitoring 
●​ Agentic Design Patterns - Introduction 
●​ Agentic RAG - Chapter 14: Knowledge Retrieval (RAG) 
●​ Agentic Systems - Introduction 
●​ AI Co-scientist - Chapter 21: Exploration and Discovery 
●​ Alignment - Glossary 
●​ AlphaEvolve - Chapter 9: Learning and Adaptation 
●​ Analogies - Appendix A 
●​ Anomaly Detection - Chapter 19: Evaluation and Monitoring 
●​ Anthropic's Claude 4 Series - Appendix B 
●​ Anthropic's Computer Use - Appendix B 
●​ API Interaction - Chapter 10: Model Context Protocol (MCP) 
●​ Artifacts - Chapter 15: Inter-Agent Communication (A2A) 
●​ Asynchronous Polling - Chapter 15: Inter-Agent Communication (A2A) 
●​ Audit Logs - Chapter 15: Inter-Agent Communication (A2A) 
●​ Automated Metrics - Chapter 19: Evaluation and Monitoring 
●​ Automatic Prompt Engineering (APE) - Appendix A 
●​ Autonomy - Introduction 
●​ A2A (Agent-to-Agent) - Chapter 15: Inter-Agent Communication (A2A) 

17 



B 

●​ Behavioral Constraints - Chapter 18: Guardrails/Safety Patterns 
●​ Browser Use - Appendix B 

C 

●​ Callbacks - Chapter 18: Guardrails/Safety Patterns 
●​ Causal Language Modeling (CLM) - Glossary 
●​ Chain of Debates (CoD) - Chapter 17: Reasoning Techniques 
●​ Chain-of-Thought (CoT) - Chapter 17: Reasoning Techniques, Appendix A 
●​ Chatbots - Chapter 8: Memory Management 
●​ ChatMessageHistory - Chapter 8: Memory Management 
●​ Checkpoint and Rollback - Chapter 18: Guardrails/Safety Patterns 
●​ Chunking - Chapter 14: Knowledge Retrieval (RAG) 
●​ Clarity and Specificity - Appendix A 
●​ Client Agent - Chapter 15: Inter-Agent Communication (A2A) 
●​ Code Generation - Chapter 1: Prompt Chaining, Chapter 4: Reflection 
●​ Code Prompting - Appendix A 
●​ CoD (Chain of Debates) - Chapter 17: Reasoning Techniques 
●​ CoT (Chain of Thought) - Chapter 17: Reasoning Techniques, Appendix A 
●​ Collaboration - Chapter 7: Multi-Agent Collaboration 
●​ Compliance - Chapter 19: Evaluation and Monitoring 
●​ Conciseness - Appendix A 
●​ Content Generation - Chapter 1: Prompt Chaining, Chapter 4: Reflection 
●​ Context Engineering - Chapter 1: Prompt Chaining 
●​ Context Window - Glossary 
●​ Contextual Pruning & Summarization - Chapter 16: Resource-Aware Optimization 
●​ Contextual Prompting - Appendix A 
●​ Contractor Model - Chapter 19: Evaluation and Monitoring 
●​ ConversationBufferMemory - Chapter 8: Memory Management 
●​ Conversational Agents - Chapter 1: Prompt Chaining, Chapter 4: Reflection 
●​ Cost-Sensitive Exploration - Chapter 16: Resource-Aware Optimization 
●​ CrewAI - Chapter 3: Parallelization, Chapter 5: Tool Use, Chapter 6: Planning, Chapter 

7: Multi-Agent Collaboration, Chapter 18: Guardrails/Safety Patterns, Appendix C 
●​ Critique Agent - Chapter 16: Resource-Aware Optimization 
●​ Critique Model - Glossary 
●​ Customer Support - Chapter 13: Human-in-the-Loop 

D 

●​ Data Extraction - Chapter 1: Prompt Chaining 
●​ Data Labeling - Chapter 13: Human-in-the-Loop 
●​ Database Integration - Chapter 10: Model Context Protocol (MCP) 
●​ DatabaseSessionService - Chapter 8: Memory Management 

18 



●​ Debate and Consensus - Chapter 7: Multi-Agent Collaboration 
●​ Decision Augmentation - Chapter 13: Human-in-the-Loop 
●​ Decomposition - Appendix A 
●​ Deep Research - Chapter 6: Planning, Chapter 17: Reasoning Techniques, Glossary 
●​ Delimiters - Appendix A 
●​ Denoising Objectives - Glossary 
●​ Dependencies - Chapter 20: Prioritization 
●​ Diffusion Models - Glossary 
●​ Direct Preference Optimization (DPO) - Chapter 9: Learning and Adaptation 
●​ Discoverability - Chapter 10: Model Context Protocol (MCP) 
●​ Drift Detection - Chapter 19: Evaluation and Monitoring 
●​ Dynamic Model Switching - Chapter 16: Resource-Aware Optimization 
●​ Dynamic Re-prioritization - Chapter 20: Prioritization 

E 

●​ Embeddings - Chapter 14: Knowledge Retrieval (RAG) 
●​ Embodiment - What makes an AI system an Agent? 
●​ Energy-Efficient Deployment - Chapter 16: Resource-Aware Optimization 
●​ Episodic Memory - Chapter 8: Memory Management 
●​ Error Detection - Chapter 12: Exception Handling and Recovery 
●​ Error Handling - Chapter 12: Exception Handling and Recovery 
●​ Escalation Policies - Chapter 13: Human-in-the-Loop 
●​ Evaluation - Chapter 19: Evaluation and Monitoring 
●​ Exception Handling - Chapter 12: Exception Handling and Recovery 
●​ Expert Teams - Chapter 7: Multi-Agent Collaboration 
●​ Exploration and Discovery - Chapter 21: Exploration and Discovery 
●​ External Moderation APIs - Chapter 18: Guardrails/Safety Patterns 

F 

●​ Factored Cognition - Appendix A 
●​ FastMCP - Chapter 10: Model Context Protocol (MCP) 
●​ Fault Tolerance - Chapter 18: Guardrails/Safety Patterns 
●​ Few-Shot Learning - Chapter 9: Learning and Adaptation 
●​ Few-Shot Prompting - Appendix A 
●​ Fine-tuning - Glossary 
●​ Formalized Contract - Chapter 19: Evaluation and Monitoring 
●​ Function Calling - Chapter 5: Tool Use, Appendix A 

G 

●​ Gemini Live - Appendix B 
●​ Gems - Appendix A 
●​ Generative Media Orchestration - Chapter 10: Model Context Protocol (MCP) 

19 



●​ Goal Setting - Chapter 11: Goal Setting and Monitoring 
●​ GoD (Graph of Debates) - Chapter 17: Reasoning Techniques 
●​ Google Agent Development Kit (ADK) - Chapter 2: Routing, Chapter 3: Parallelization, 

Chapter 4: Reflection, Chapter 5: Tool Use, Chapter 7: Multi-Agent Collaboration, 
Chapter 8: Memory Management, Chapter 12: Exception Handling and Recovery, 
Chapter 13: Human-in-the-Loop, Chapter 15: Inter-Agent Communication (A2A), Chapter 
16: Resource-Aware Optimization, Chapter 19: Evaluation and Monitoring, Appendix C 

●​ Google Co-Scientist - Chapter 21: Exploration and Discovery 
●​ Google DeepResearch - Chapter 6: Planning 
●​ Google Project Mariner - Appendix B 
●​ Graceful Degradation - Chapter 12: Exception Handling and Recovery, Chapter 16: 

Resource-Aware Optimization 
●​ Graph of Debates (GoD) - Chapter 17: Reasoning Techniques 
●​ Grounding - Glossary 
●​ Guardrails - Chapter 18: Guardrails/Safety Patterns 

H 

●​ Haystack - Appendix C 
●​ Hierarchical Decomposition - Chapter 19: Evaluation and Monitoring 
●​ Hierarchical Structures - Chapter 7: Multi-Agent Collaboration 
●​ HITL (Human-in-the-Loop) - Chapter 13: Human-in-the-Loop 
●​ Human-in-the-Loop (HITL) - Chapter 13: Human-in-the-Loop 
●​ Human-on-the-loop - Chapter 13: Human-in-the-Loop 
●​ Human Oversight - Chapter 13: Human-in-the-Loop, Chapter 18: Guardrails/Safety 

Patterns 

I 

●​ In-Context Learning - Glossary 
●​ InMemoryMemoryService - Chapter 8: Memory Management 
●​ InMemorySessionService - Chapter 8: Memory Management 
●​ Input Validation/Sanitization - Chapter 18: Guardrails/Safety Patterns 
●​ Instructions Over Constraints - Appendix A 
●​ Inter-Agent Communication (A2A) - Chapter 15: Inter-Agent Communication (A2A) 
●​ Intervention and Correction - Chapter 13: Human-in-the-Loop 
●​ IoT Device Control - Chapter 10: Model Context Protocol (MCP) 
●​ Iterative Prompting / Refinement - Appendix A 

J 

●​ Jailbreaking - Chapter 18: Guardrails/Safety Patterns 

K 

●​ Kahneman-Tversky Optimization (KTO) - Glossary 

20 



●​ Knowledge Retrieval (RAG) - Chapter 14: Knowledge Retrieval (RAG) 

L 

●​ LangChain - Chapter 1: Prompt Chaining, Chapter 2: Routing, Chapter 3: Parallelization, 
Chapter 4: Reflection, Chapter 5: Tool Use, Chapter 8: Memory Management, Chapter 
20: Prioritization, Appendix C 

●​ LangGraph - Chapter 1: Prompt Chaining, Chapter 2: Routing, Chapter 3: Parallelization, 
Chapter 4: Reflection, Chapter 5: Tool Use, Chapter 8: Memory Management, Appendix 
C 

●​ Latency Monitoring - Chapter 19: Evaluation and Monitoring 
●​ Learned Resource Allocation Policies - Chapter 16: Resource-Aware Optimization 
●​ Learning and Adaptation - Chapter 9: Learning and Adaptation 
●​ LLM-as-a-Judge - Chapter 19: Evaluation and Monitoring 
●​ LlamaIndex - Appendix C 
●​ LoRA (Low-Rank Adaptation) - Glossary 
●​ Low-Rank Adaptation (LoRA) - Glossary 

M 

●​ Mamba - Glossary 
●​ Masked Language Modeling (MLM) - Glossary 
●​ MASS (Multi-Agent System Search) - Chapter 17: Reasoning Techniques 
●​ MCP (Model Context Protocol) - Chapter 10: Model Context Protocol (MCP) 
●​ Memory Management - Chapter 8: Memory Management 
●​ Memory-Based Learning - Chapter 9: Learning and Adaptation 
●​ MetaGPT - Appendix C 
●​ Microsoft AutoGen - Appendix C 
●​ Mixture of Experts (MoE) - Glossary 
●​ Model Context Protocol (MCP) - Chapter 10: Model Context Protocol (MCP) 
●​ Modularity - Chapter 18: Guardrails/Safety Patterns 
●​ Monitoring - Chapter 11: Goal Setting and Monitoring, Chapter 19: Evaluation and 

Monitoring 
●​ Multi-Agent Collaboration - Chapter 7: Multi-Agent Collaboration 
●​ Multi-Agent System Search (MASS) - Chapter 17: Reasoning Techniques 
●​ Multimodality - Glossary 
●​ Multimodal Prompting - Appendix A 

N 

●​ Negative Examples - Appendix A 
●​ Next Sentence Prediction (NSP) - Glossary 

O 

●​ Observability - Chapter 18: Guardrails/Safety Patterns 

21 



●​ One-Shot Prompting - Appendix A 
●​ Online Learning - Chapter 9: Learning and Adaptation 
●​ OpenAI Deep Research API - Chapter 6: Planning 
●​ OpenEvolve - Chapter 9: Learning and Adaptation 
●​ OpenRouter - Chapter 16: Resource-Aware Optimization 
●​ Output Filtering/Post-processing - Chapter 18: Guardrails/Safety Patterns 

P 

●​ PAL (Program-Aided Language Models) - Chapter 17: Reasoning Techniques 
●​ Parallelization - Chapter 3: Parallelization 
●​ Parallelization & Distributed Computing Awareness - Chapter 16: Resource-Aware 

Optimization 
●​ Parameter-Efficient Fine-Tuning (PEFT) - Glossary 
●​ PEFT (Parameter-Efficient Fine-Tuning) - Glossary 
●​ Performance Tracking - Chapter 19: Evaluation and Monitoring 
●​ Persona Pattern - Appendix A 
●​ Personalization - What makes an AI system an Agent? 
●​ Planning - Chapter 6: Planning, Glossary 
●​ Prioritization - Chapter 20: Prioritization 
●​ Principle of Least Privilege - Chapter 18: Guardrails/Safety Patterns 
●​ Proactive Resource Prediction - Chapter 16: Resource-Aware Optimization 
●​ Procedural Memory - Chapter 8: Memory Management 
●​ Program-Aided Language Models (PAL) - Chapter 17: Reasoning Techniques 
●​ Project Astra - Appendix B 
●​ Prompt - Glossary 
●​ Prompt Chaining - Chapter 1: Prompt Chaining 
●​ Prompt Engineering - Appendix A 
●​ Proximal Policy Optimization (PPO) - Chapter 9: Learning and Adaptation 
●​ Push Notifications - Chapter 15: Inter-Agent Communication (A2A) 

Q 

●​ QLoRA - Glossary 
●​ Quality-Focused Iterative Execution - Chapter 19: Evaluation and Monitoring 

R 

●​ RAG (Retrieval-Augmented Generation) - Chapter 8: Memory Management, Chapter 14: 
Knowledge Retrieval (RAG), Appendix A 

●​ ReAct (Reason and Act) - Chapter 17: Reasoning Techniques, Appendix A, Glossary 
●​ Reasoning - Chapter 17: Reasoning Techniques 
●​ Reasoning-Based Information Extraction - Chapter 10: Model Context Protocol (MCP) 
●​ Recovery - Chapter 12: Exception Handling and Recovery 
●​ Recurrent Neural Network (RNN) - Glossary 

22 



●​ Reflection - Chapter 4: Reflection 
●​ Reinforcement Learning - Chapter 9: Learning and Adaptation 
●​ Reinforcement Learning from Human Feedback (RLHF) - Glossary 
●​ Reinforcement Learning with Verifiable Rewards (RLVR) - Chapter 17: Reasoning 

Techniques 
●​ Remote Agent - Chapter 15: Inter-Agent Communication (A2A) 
●​ Request/Response (Polling) - Chapter 15: Inter-Agent Communication (A2A) 
●​ Resource-Aware Optimization - Chapter 16: Resource-Aware Optimization 
●​ Retrieval-Augmented Generation (RAG) - Chapter 8: Memory Management, Chapter 14: 

Knowledge Retrieval (RAG), Appendix A 
●​ RLHF (Reinforcement Learning from Human Feedback) - Glossary 
●​ RLVR (Reinforcement Learning with Verifiable Rewards) - Chapter 17: Reasoning 

Techniques 
●​ RNN (Recurrent Neural Network) - Glossary 
●​ Role Prompting - Appendix A 
●​ Router Agent - Chapter 16: Resource-Aware Optimization 
●​ Routing - Chapter 2: Routing 

S 

●​ Safety - Chapter 18: Guardrails/Safety Patterns 
●​ Scaling Inference Law - Chapter 17: Reasoning Techniques 
●​ Scheduling - Chapter 20: Prioritization 
●​ Self-Consistency - Appendix A 
●​ Self-Correction - Chapter 4: Reflection, Chapter 17: Reasoning Techniques 
●​ Self-Improving Coding Agent (SICA) - Chapter 9: Learning and Adaptation 
●​ Self-Refinement - Chapter 17: Reasoning Techniques 
●​ Semantic Kernel - Appendix C 
●​ Semantic Memory - Chapter 8: Memory Management 
●​ Semantic Similarity - Chapter 14: Knowledge Retrieval (RAG) 
●​ Separation of Concerns - Chapter 18: Guardrails/Safety Patterns 
●​ Sequential Handoffs - Chapter 7: Multi-Agent Collaboration 
●​ Server-Sent Events (SSE) - Chapter 15: Inter-Agent Communication (A2A) 
●​ Session - Chapter 8: Memory Management 
●​ SICA (Self-Improving Coding Agent) - Chapter 9: Learning and Adaptation 
●​ SMART Goals - Chapter 11: Goal Setting and Monitoring 
●​ State - Chapter 8: Memory Management 
●​ State Rollback - Chapter 12: Exception Handling and Recovery 
●​ Step-Back Prompting - Appendix A 
●​ Streaming Updates - Chapter 15: Inter-Agent Communication (A2A) 
●​ Structured Logging - Chapter 18: Guardrails/Safety Patterns 
●​ Structured Output - Chapter 1: Prompt Chaining, Appendix A 
●​ SuperAGI - Appendix C 
●​ Supervised Fine-Tuning (SFT) - Glossary 
●​ Supervised Learning - Chapter 9: Learning and Adaptation 

23 



●​ System Prompting - Appendix A 

T 

●​ Task Evaluation - Chapter 20: Prioritization 
●​ Text Similarity - Chapter 14: Knowledge Retrieval (RAG) 
●​ Token Usage - Chapter 19: Evaluation and Monitoring 
●​ Tool Use - Chapter 5: Tool Use, Appendix A 
●​ Tool Use Restrictions - Chapter 18: Guardrails/Safety Patterns 
●​ ToT (Tree of Thoughts) - Chapter 17: Reasoning Techniques, Appendix A, Glossary 
●​ Transformers - Glossary 
●​ Tree of Thoughts (ToT) - Chapter 17: Reasoning Techniques, Appendix A, Glossary 

U 

●​ Unsupervised Learning - Chapter 9: Learning and Adaptation 
●​ User Persona - Appendix A 

V 

●​ Validation - Chapter 3: Parallelization 
●​ Vector Search - Chapter 14: Knowledge Retrieval (RAG) 
●​ VertexAiRagMemoryService - Chapter 8: Memory Management 
●​ VertexAiSessionService - Chapter 8: Memory Management 
●​ Vibe Coding - Appendix B 
●​ Visual Perception - Appendix B 

W 

●​ Webhooks - Chapter 15: Inter-Agent Communication (A2A) 

Z 

●​ Zero-Shot Learning - Chapter 9: Learning and Adaptation 
●​ Zero-Shot Prompting - Appendix A 

 

24 



Prompt 
Below is the prompt that was utilized to create this index of terms. 
 

do you read 
https://docs.google.com/document/d/1rsaK53T3Lg5KoGwvf8ukOUvbELRtH-V0LnOIFDxBryE/
edit?tab=t.0 and all the related documents in the first page 
Please extract all the titles for each chapter. and print them. 
Then process the content of all the individual chapters, and create a detailed index used for 
publishing, a list of words or phrases ('headings') and associated pointers ('locators') to where 
useful material relating to that heading can be found in a document or collection of 
documents. I don't want a sample index. I want the full index, with 100 index terms 

Gemini 2.5: Reasoning Steps 

Beginning Index Creation 

I've initiated the process by reading the Google Doc provided. Currently, I'm focusing on 
understanding the user's request: extracting chapter titles to build a detailed index. I'm 
carefully reviewing the document, looking for clear structural elements that would 
indicate chapter breaks. I'm hoping to identify consistent formatting or keywords that will 
guide the indexing process. 

Defining Index Extraction Process 

I'm now fully immersed in the task. I've broken down the user's request into actionable 
steps. My initial focus is using Workspaces to access the main Google Doc. Following 
this, I'll parse the document to locate and retrieve related documents, which will also be 
accessed using the same tool. Finally, I will extract all chapter titles from all the 
documents, and create a comprehensive index. I've planned the detailed process. 

Refining the Extraction Strategy 

The user's instructions are clear: read a Google Doc, its related documents, and build a 
detailed index of chapter titles. I've devised a multi-step plan. First, Workspaces will 
access the main Google Doc. Then, I'll parse it to find and read related documents, also 
using Workspaces. I'm now focusing on extracting titles and forming the detailed index 
with the required terms. I'm prioritizing accuracy to meet the user's specific demands for 
a comprehensive index. 

1 . Establish user intent: 

25 



I've determined the user wants a chapter title list and comprehensive index from the 
Google Doc and related documents. Now I need to figure out the most effective method 
for this extraction and indexing process. I'm exploring potential API functionalities to 
streamline this task, and will need to assess the best strategy for handling different 
document structures. 

3. Considering Tool Use 

I've extracted the chapter URLs from the main document using a regular expression. 
Now, I'm ready to utilize Workspaces to retrieve the actual content of each chapter. 
Once I have the text for each chapter, I'll proceed with indexing. 

Accessing chapter content: 

I've successfully identified the URLs for each chapter from the main document, which I 
can now use with Workspaces. My next step is to retrieve the content from these URLs, 
which will then allow me to generate the index. I'm focusing on efficiency, aiming to 
process this information quickly. 

Fetching Chapter Content 

I've successfully identified the chapter URLs from the main document and am ready to 
utilize Workspaces. My plan involves extracting these URLs, batching the calls for 
efficiency, and then processing the retrieved content to create the desired index. This 
ensures all relevant information is captured, paving the way for a comprehensive and 
accurate result. 

Initiating URL Retrieval 

I've now successfully extracted the chapter URLs from the main document. Currently, 
I'm setting up calls to the Workspaces tool, preparing to fetch the content of each 
chapter. The goal is to obtain the necessary text for indexing. This information will then 
facilitate the creation of the index with at least 100 terms as requested. 

Initiating Chapter Extraction 

I've successfully identified and extracted the chapter URLs from the main document, 
which I've included above. I am now proceeding to use Workspaces for each URL to 
obtain the chapter content. The goal is to obtain the necessary text for indexing. This 
information will then facilitate the creation of the index with at least 100 terms as 
requested. I've begun to retrieve this information. 

Orchestrating Chapter Retrieval 

26 



I've extracted the chapter URLs and initiated a call to Workspaces. I'm currently 
retrieving the content for each chapter. To ensure a smooth process, I'm batching the 
calls to prevent any rate-limiting issues. This should enable me to efficiently compile the 
text needed for the index. 

Decoding User Request 

I've determined the user's need. They require two primary deliverables: first, a 
comprehensive list of chapter titles extracted from Google Docs, and second, a detailed 
index containing a minimum of one hundred key terms. The process of extracting titles 
seems straightforward, while curating the index will involve more nuanced analysis. 

Extracting Titles and Indexing 

I've successfully identified the user's need: extracting chapter titles from the provided 
documents and compiling a comprehensive index. I've fetched the content of 31 Google 
Docs, including the main document and its chapters. I've confirmed that no additional 
tools are needed. My plan involves two steps: first, extracting chapter titles from the 
document filenames, and second, meticulously processing the text to build the index 
with key terms and chapter locators. 

Developing an Extraction Plan 

I've refined my approach to tackle the user's request. I've now formulated a precise 
plan. Firstly, I will compile the chapter titles from the filenames of the 31 fetched 
documents. Secondly, and more complexly, I will meticulously analyze the content to 
create a comprehensive, alphabetically ordered index exceeding 100 entries. I have 
finalized my extraction and indexing strategy and can now commence execution. 

Crafting the Extraction Strategy 

My approach is well-defined. I will compile chapter titles from the filenames of the 31 
fetched documents. Subsequently, I'll analyze the content meticulously to construct an 
alphabetically organized index exceeding 100 entries. I've finalized the extraction and 
indexing strategy and can now commence implementation. The user's goal of a detailed 
index, covering content from diverse chapters and appendices within the Agentic 
Design Patterns series, is now within reach. I'll focus on delivering a thorough response, 
going beyond a mere sample index. 

Defining the Approach 

I've clarified the user's need. I will extract chapter titles from the document filenames. 
Following that, I will carefully create an index exceeding 100 entries, arranging them 

27 



alphabetically and noting their chapter locations. I am prepared to begin the indexing 
and extraction process. 

 

28 


	Glossary 
	Fundamental Concepts 
	Prompt: A prompt is the input, typically in the form of a question, instruction, or statement, that a user provides to an AI model to elicit a response. The quality and structure of the prompt heavily influence the model's output, making prompt engineering a key skill for effectively using AI. 
	 
	Context Window: The context window is the maximum number of tokens an AI model can process at once, including both the input and its generated output. This fixed size is a critical limitation, as information outside the window is ignored, while larger windows enable more complex conversations and document analysis. 
	 
	In-Context Learning: In-context learning is an AI's ability to learn a new task from examples provided directly in the prompt, without requiring any retraining. This powerful feature allows a single, general-purpose model to be adapted to countless specific tasks on the fly. 
	 
	Zero-Shot, One-Shot, & Few-Shot Prompting: These are prompting techniques where a model is given zero, one, or a few examples of a task to guide its response. Providing more examples generally helps the model better understand the user's intent and improves its accuracy for the specific task. 
	 
	Multimodality: Multimodality is an AI's ability to understand and process information across multiple data types like text, images, and audio. This allows for more versatile and human-like interactions, such as describing an image or answering a spoken question. 
	 
	Grounding: Grounding is the process of connecting a model's outputs to verifiable, real-world information sources to ensure factual accuracy and reduce hallucinations. This is often achieved with techniques like RAG to make AI systems more trustworthy. 
	Core AI Model Architectures 
	Transformers: The Transformer is the foundational neural network architecture for most modern LLMs. Its key innovation is the self-attention mechanism, which efficiently processes long sequences of text and captures complex relationships between words. 
	 
	Recurrent Neural Network (RNN): The Recurrent Neural Network is a foundational architecture that preceded the Transformer. RNNs process information sequentially, using loops to maintain a "memory" of previous inputs, which made them suitable for tasks like text and speech processing. 
	 
	Mixture of Experts (MoE): Mixture of Experts is an efficient model architecture where a "router" network dynamically selects a small subset of "expert" networks to handle any given input. This allows models to have a massive number of parameters while keeping computational costs manageable. 
	 
	Diffusion Models: Diffusion models are generative models that excel at creating high-quality images. They work by adding random noise to data and then training a model to meticulously reverse the process, allowing them to generate novel data from a random starting point. 
	 
	Mamba: Mamba is a recent AI architecture using a Selective State Space Model (SSM) to process sequences with high efficiency, especially for very long contexts. Its selective mechanism allows it to focus on relevant information while filtering out noise, making it a potential alternative to the Transformer. 
	The LLM Development Lifecycle 
	The development of a powerful language model follows a distinct sequence. It begins with Pre-training, where a massive base model is built by training it on a vast dataset of general internet text to learn language, reasoning, and world knowledge. Next is Fine-tuning, a specialization phase where the general model is further trained on smaller, task-specific datasets to adapt its capabilities for a particular purpose. The final stage is Alignment, where the specialized model's behavior is adjusted to ensure its outputs are helpful, harmless, and aligned with human values. 
	 
	Pre-training Techniques: Pre-training is the initial phase where a model learns general knowledge from vast amounts of data. The top techniques for this involve different objectives for the model to learn from. The most common is Causal Language Modeling (CLM), where the model predicts the next word in a sentence. Another is Masked Language Modeling (MLM), where the model fills in intentionally hidden words in a text. Other important methods include Denoising Objectives, where the model learns to restore a corrupted input to its original state, Contrastive Learning, where it learns to distinguish between similar and dissimilar pieces of data, and Next Sentence Prediction (NSP), where it determines if two sentences logically follow each other. 
	 
	Fine-tuning Techniques: Fine-tuning is the process of adapting a general pre-trained model to a specific task using a smaller, specialized dataset. The most common approach is Supervised Fine-Tuning (SFT), where the model is trained on labeled examples of correct input-output pairs. A popular variant is Instruction Tuning, which focuses on training the model to better follow user commands. To make this process more efficient, Parameter-Efficient Fine-Tuning (PEFT) methods are used, with top techniques including LoRA (Low-Rank Adaptation), which only updates a small number of parameters, and its memory-optimized version, QLoRA. Another technique, Retrieval-Augmented Generation (RAG), enhances the model by connecting it to an external knowledge source during the fine-tuning or inference stage. 
	 
	Alignment & Safety Techniques: Alignment is the process of ensuring an AI model's behavior aligns with human values and expectations, making it helpful and harmless. The most prominent technique is Reinforcement Learning from Human Feedback (RLHF), where a "reward model" trained on human preferences guides the AI's learning process, often using an algorithm like Proximal Policy Optimization (PPO) for stability. Simpler alternatives have emerged, such as Direct Preference Optimization (DPO), which bypasses the need for a separate reward model, and Kahneman-Tversky Optimization (KTO), which simplifies data collection further. To ensure safe deployment, Guardrails are implemented as a final safety layer to filter outputs and block harmful actions in real-time. 
	Enhancing AI Agent Capabilities 
	AI agents are systems that can perceive their environment and take autonomous actions to achieve goals. Their effectiveness is enhanced by robust reasoning frameworks. 
	 
	Chain of Thought (CoT): This prompting technique encourages a model to explain its reasoning step-by-step before giving a final answer. This process of "thinking out loud" often leads to more accurate results on complex reasoning tasks. 
	 
	Tree of Thoughts (ToT): Tree of Thoughts is an advanced reasoning framework where an agent explores multiple reasoning paths simultaneously, like branches on a tree. It allows the agent to self-evaluate different lines of thought and choose the most promising one to pursue, making it more effective at complex problem-solving. 
	 
	ReAct (Reason and Act): ReAct is an agent framework that combines reasoning and acting in a loop. The agent first "thinks" about what to do, then takes an "action" using a tool, and uses the resulting observation to inform its next thought, making it highly effective at solving complex tasks. 
	 
	Planning: This is an agent's ability to break down a high-level goal into a sequence of smaller, manageable sub-tasks. The agent then creates a plan to execute these steps in order, allowing it to handle complex, multi-step assignments. 
	 
	Deep Research: Deep research refers to an agent's capability to autonomously explore a topic in-depth by iteratively searching for information, synthesizing findings, and identifying new questions. This allows the agent to build a comprehensive understanding of a subject far beyond a single search query. 
	 
	Critique Model: A critique model is a specialized AI model trained to review, evaluate, and provide feedback on the output of another AI model. It acts as an automated critic, helping to identify errors, improve reasoning, and ensure the final output meets a desired quality standard. 
	Index of Terms 
	 
	Prompt 
	Gemini 2.5: Reasoning Steps 


