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Abstract 

The exponential growth of data-intensive research in the Life Sciences and other scientific 
domains has led to an increasing demand for computational resources across Europe. While 
major EU initiatives have supported the development of large-scale infrastructures, researchers 
still face significant challenges in accessing and integrating heterogeneous computing 
environments. Fragmentation in both technical architectures and policy frameworks continues to 
hinder seamless interoperability and efficient resource sharing. 

To address these challenges, we present the European Pulsar Network (EPN), a distributed 
computing architecture built upon the Galaxy workflow management system and the Pulsar job 
execution service. The network enables transparent job offloading from Galaxy servers to 
remote computing clusters, allowing resource scaling without requiring direct user intervention 
or awareness. This architecture supports a flexible and scalable approach to workload 
distribution, ensuring improved performance and resource availability across different 
infrastructures. 

A key component of the network is the Open Infrastructure framework, which facilitates the 
streamlined deployment of both Galaxy servers and Pulsar endpoints by compute providers. 
This is achieved through automation tools such as Terraform and Ansible, eliminating the need 
for manual reconfiguration of existing systems. This approach promotes simplified integration 
and ease of adoption by new sites. 

To date, the EPN comprises six national Galaxy endpoints, other than the central European 
instance, and thirteen Pulsar endpoints distributed across Europe. This collaborative effort is 
actively enhancing the scalability, resilience, and interoperability of the Galaxy ecosystem in 
support of FAIR and reproducible data analysis. 

Graphical Abstract 
 
Introduction 

In recent years, the demand for computational resources in the Life Sciences has increased 
significantly (1, 2). This growth is primarily driven by advancements in high-throughput 
technologies such as next-generation sequencing, high-resolution imaging, and integrative 
omics analyses, which generate vast amounts of complex data requiring sophisticated 
computational processing (3). Similar computational demands are also increasingly common in 
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scientific domains beyond the Life Sciences domain, such as biodiversity and climate science, 
muon spectroscopy in materials science, and astrophysics. 

In this context, the European Galaxy server (usegalaxy.eu) plays a central role by offering a 
public, user-friendly platform for data analysis. Widely adopted across the Life Sciences 
community and beyond, it allows researchers to process complex datasets without the need to 
manage a local infrastructure. As shown in Fig. 1, both the number of users and the number of 
submitted jobs on usegalaxy.eu have steadily increased over the years, reflecting the growing 
computational needs in research and the platform’s expanding user base. 

 
Fig. 1 - Number of users, defined as users submitting at least one job, and the number of jobs over the 

time on usegalaxy.eu. 

To address these escalating computational needs, the European Union has made substantial 
investments through strategic funding initiatives, including Horizon Europe 
(https://horizoneurope.apre.it/), the European Strategy Forum on Research Infrastructures 
(https://www.esfri.eu), EuroHPC (https://www.eurohpc-ju.europa.eu), and the European Open 
Science Cloud (https://eosc.eu). These programmes have explicitly supported the development 
and deployment of large-scale computational research infrastructure, providing researchers with 
extensive computational infrastructure, fostering collaborative research, and enhancing scientific 
innovation across EU member states. 

Nevertheless, significant challenges still hinder the effective integration and interoperability of 
these diverse computing infrastructures: the heterogeneous nature of hardware configurations, 
software environments, middleware stacks, and workflow management systems across 
European research institutions complicates the seamless utilization of distributed computational 
resources by researchers (4). Additionally, fragmentation in authentication and authorization 
frameworks, driven also by heterogeneous legal and institutional policies at the national or 
regional levels, further exacerbates these interoperability issues. 

In this work, we describe the European Pulsar Network (EPN), designed to distribute 
computational analysis jobs across multiple data centers via national Galaxy (5) portals. The 
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Galaxy portals function as gateways to the computational resources of the EPN while acting as 
platforms for configuring, submitting, and managing data analysis tasks. Developed within the 
Horizon Europe EuroScienceGateway (6) project, the EPN aims to provide efficient and 
structured access to data, tools, and workflows, supported by a suitable IT infrastructure. To this 
end, we implemented a dedicated deployment and monitoring framework that ensures the 
infrastructure is scalable, easy to manage, and continuously monitored, fostering a sustainable 
and federated computing environment across Europe for research purposes. The network 
currently consists of thirteen computational endpoints supporting six National Galaxy instances 
across Europe in addition to the pre-existing European Galaxy instance. The network has been 
designed to allow for easy onboarding of new endpoints, sharing among Galaxy servers, or 
removal if no longer needed. 
 
Methods 
 
Galaxy 
Galaxy functions as the access gateway to the EPN. It is a scientific workflow management 
system designed to simplify the execution of complex data analyses for researchers across 
diverse scientific domains. It provides an intuitive web interface through which users can build, 
customize, and share multi-step computational workflows without using the command line. 
Originally developed for bioinformatics, Galaxy now supports a broader range of tools and data 
types, and can scale from a small local server to large Cloud and HPC infrastructures. 
Moreover, its transparent execution model and workflow history features foster reproducibility, 
collaboration, and accessibility in data-driven research. 

Galaxy also provides a Python-based library, BioBlend (7), that enables automated interaction 
with Galaxy servers via their REST API. It streamlines tasks such as launching workflows, 
managing datasets and histories, and tracking tool executions. Further extending its capabilities, 
Galaxy supports connectivity with a wide range of storage backends, ranging from institutional 
to public and commercial services, allowing seamless data access and management. 
Additionally, Galaxy can integrate with platforms like Zenodo to export, publish, and archive 
datasets, workflows, and histories, thus supporting the principles of FAIR (Findable, Accessible, 
Interoperable, and Reusable) science. 

To ensure responsiveness and scalability, especially in environments serving many concurrent 
users, Galaxy can be integrated with external components that optimize different layers of the 
system architecture. NGINX, a high-performance web server and reverse proxy, is used to 
efficiently handle incoming requests, serve static content, and balance traffic across multiple 
Galaxy processes. PostgreSQL is used as the primary relational database management system 
to store and manage all core metadata related to users, histories, datasets, workflows, tool 
executions, and system configurations, enabling efficient querying and indexing of large 
volumes of records generated through user activity. Finally Celery, an open-source distributed 
task queue, is used to manage background and asynchronous tasks. Celery allows Galaxy to 
offload non-blocking operations, such as processing data uploads, recalculating disk usage, 
managing metadata, purging datasets, generating workflow reports, and preparing history 
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exports, ensuring that these resource-intensive activities do not interfere with user interactions 
or tool execution. 

Pulsar 
Pulsar (8) is a remote job execution system developed within the Galaxy Project to enable 
distributed and flexible computation across heterogeneous environments. Its purpose is to 
decouple the execution of Galaxy jobs from the main server by allowing them to be offloaded to 
remote computing facilities (Fig. 2).  

 

Fig. 2 - . Workflow of remote job execution using Pulsar and Galaxy. This diagram illustrates the 
asynchronous communication between Galaxy and a remote Pulsar server using RabbitMQ as a 

message broker. Galaxy publishes job information to a dedicated message queue (1), which is monitored 
by Pulsar (2). Pulsar retrieves the job payload, downloads input data from Galaxy via curl (3), resolves 
dependencies (4), and starts the job (5) on the connected compute cluster (6,7). Upon job completion, 

Pulsar sends the status update to Galaxy via the queue (8), and uploads output data back using curl (9). 
Galaxy then finalizes the job and informs the user (10). 

 
Pulsar operates as a lightweight service receiving job execution requests from a Galaxy 
instance. It exposes a RESTful API through which Galaxy submits job descriptions, input 
metadata, and execution parameters. Alternatively, to avoid direct network exposure for 
RESTful communication, Pulsar operates using the AMQP (Advanced Message Queuing 
Protocol) message queue protocol. With this approach, Galaxy and Pulsar exchange job-related 
messages asynchronously via the RabbitMQ message broker: Galaxy serializes job information 
into messages and publishes them to a designated, authenticated, queue. Each queue is 
associated with a specific Pulsar endpoint, and only that endpoint is authorized to connect and 
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consume messages from it. Remote Pulsar endpoints, acting as consumers, subscribe to the 
queue and asynchronously retrieve the job payloads and execute them independently. Once a 
job is received, Pulsar handles input staging, either by accessing a filesystem shared between 
the submitting Galaxy server and the remote cluster or by downloading data from the submitting 
Galaxy server with curl (https://curl.se/). Then, Pulsar dispatches the job to the batch system it is 
connected to, such as HTCondor or SLURM. Tools dependencies must be available on the 
remote cluster compute nodes: as for Galaxy, Pulsar can resolve tool dependencies through 
multiple mechanisms, including Conda packages (https://anaconda.org), Docker 
(https://www.docker.com/) and Singularity (https://apptainer.org/) Containers, allowing it to adapt 
to the specific characteristics and constraints of the underlying infrastructure. Upon job 
completion, output files are collected and sent back to the Galaxy server, with curl again, where 
they are made available for further analysis or visualization in the user’s history. Execution logs, 
environment metadata, and job state information are also collected and sent back to the Galaxy 
instance, so that the provenance of each output is trackable.  

Galaxy-Pulsar integration 
From the Galaxy point of view, Pulsar is a backend runner, integrated through a job 
configuration layer that defines execution destinations. Administrators can assign specific tools 
or workflows to run through Pulsar based on criteria such as job size, tool requirements, user 
group, or current system load. This dynamic routing mechanism ensures optimal resource 
usage and facilitates fine-grained control over job distribution across multiple remote 
environments. From the end user's perspective, the interaction remains entirely transparent: job 
submission and monitoring continue through the familiar Galaxy web interface, while the 
execution may occur on a completely different physical infrastructure. Alternatively, Galaxy also 
allows users to manually select the execution endpoint for their jobs through the user 
preferences interface. 

CERN VM FileSystem 
Whether an analysis is executed on the EPN directly within Galaxy or remotely via Pulsar, data 
analysis tools can require both reference data and a reliable mechanism for resolving software 
dependencies. To prevent unnecessary duplication and ensure consistency across sites, 
container images and reference data are distributed using a CernVM File System (CVMFS) (9): 
a read-only file system designed to deliver software and data to distributed computing 
environments. The CVMFS volume is shared across all the EPN gateways and endpoints. 

HTCondor 
HTCondor (https://htcondor.org/) is a widely adopted open-source batch system designed for 
managing and executing large volumes of compute jobs across heterogeneous resources. It is 
particularly effective in shared, multi-user environments where fine-grained control over job 
prioritization, fair-share scheduling, and resource allocation is required. In the context of 
distributed infrastructures, HTCondor provides mechanisms for job queuing, dynamic resource 
discovery, and fault-tolerant execution. 

The Virtual Galaxy Cloud Nodes images 
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The Virtual Galaxy Compute Node (VGCN) (https://github.com/usegalaxy-eu/vgcn) is a Rocky 
Linux 9 (https://rockylinux.org/) pre-built image for creating Virtual Machines (VM) on 
cloud-based infrastructures, hosting essential services and tools required for Galaxy job 
execution, including container runtimes, monitoring agents, and remote job runners. VGCN 
images are intended to be cloud-init configurable, allowing site-specific customization and 
integration into a variety of deployment models, from single-node setups to distributed clusters. 
 
Infrastructure and software deployment automation 
Terraform (https://developer.hashicorp.com/terraform) enables the declarative provisioning of 
virtual IT infrastructure across Cloud platforms such as OpenStack, including commercial 
providers such as Oracle Cloud and AWS. Complementing this, Ansible automates the 
configuration and setup of software environments on the IT infrastructure, streamlining the 
deployment of complex services and enforcing uniformity across nodes. Together, they enable 
the scalable and reproducible setup of analysis platforms and associated resources.  
 
Infrastructure management 
Continuous Integration and Continuous Delivery (CI/CD) systems are used by the EPN to 
automate maintenance tasks, apply software updates, and perform routine testing across all the 
components of a deployed infrastructure. Jenkins (https://www.jenkins.io/), a CI/CD application, 
is used to orchestrate automated data analysis pipelines on the EPN to validate updates, trigger 
redeployments, and integrate modifications into live environments with minimal downtime. Since 
configuration files are stored on GitHub, any modification is enacted on the EPN by Ansible in 
response to pull requests. 
 

TESP-API: A Lightweight TES Execution Backend 

The GA4GH Task Execution Service (TES) API (10) defines a standard interface for submitting 
and managing batch computing tasks across heterogeneous execution environments. 

The TESP API (https://github.com/CESNET/tesp-api) provides a minimal implementation of the 
GA4GH TES, intended for simple deployment and integration with container-based execution 
environments. It can run either in standalone mode—with an embedded Pulsar service 
launched via docker compose --profile pulsar up— or in a mode using an external 
Pulsar instance, where docker compose up starts only the API and database components. 
This approach allows flexible setups for testing, development, or production use. 

The service receives TES tasks and converts them into local singularity exec or docker 
run commands. All data movement is handled by the worker node itself, avoiding intermediate 
transfers through the API or Pulsar layers. As a result, input and output files specified in the 
TES task are transferred directly between client-side storage and the compute node, following a 
simplified storage – worker – storage pattern. 
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In Galaxy, jobs submitted to Pulsar using PulsarTesJobRunner do not declare explicit inputs or 
outputs in the TES request. Instead, data transfer is delegated to executor components, with the 
first and last executors handling input staging and output collection. 

 
Standardized job submission and workflow portability 
WfExS-backend (Workflow Execution Services backend workflow engine orchestrator) (11), 
whose developments started within the EOSC-Life project, provides a solution for orchestrating 
scientific workflow execution integrating the GA4GH TES specs. 
 
WfExS takes advantage of the fact that many workflow engines, such as Nextflow (12) and 
CWLtool (https://www.commonwl.org), use Docker containers to encapsulate the tools executed 
at each workflow step. These engines typically rely on a predictable structure of input/output 
directories and files within the container environment. To bridge the gap between containerized 
execution and standardized APIs, WfExS introduces a command-line translation layer, called 
TESSAP, which both mimics the behavior of the Docker CLI (for the subset of commands 
typically used by workflow engines) and translates these commands into GA4GH TES API calls. 
This allows workflow engines to operate as if they were interacting with Docker directly, while 
actual task execution is redirected to a remote TES-compliant service, such as Pulsar nodes 
running TESP. 
 
Results 
 
The Pulsar Network architecture 
 
Figure 3 illustrates the EPN architecture. Each Pulsar endpoint and each Galaxy server 
communicate via a dedicated message queue brokered by RabbitMQ. Once a user submits a 
job and this is earmarked for execution in a particular Pulsar endpoint, Galaxy dispatches the 
job request to the queue dedicated to the destination endpoint, which continuously monitors it. 
Upon receiving the job, Pulsar transfers the required input data from the requesting Galaxy 
instance, executes the computational task, either locally or submits it to a connected cluster, 
uses the shared CVMFS volumes for accessing reference datasets and software dependencies, 
and finally uploads the resulting output and its associated metadata and logs back to the 
originating Galaxy server. To be noted, each single Pulsar endpoint can be configured to serve 
multiple Galaxy instances. 
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Fig. 3 - The European Pulsar Network architecture. By default, the European and national Galaxy servers 
submit jobs to local IT resources, e.g., usegalaxy.eu relies on an HTCondor-based compute cluster. The 

Pulsar endpoints of the EPN can be used as an alternative to relieve pressure from the local 
infrastructures. The Pulsar endpoints are configured to retrieve jobs metadata from a dedicated message 

queue of the RabbitMQ broker, and to dispatch them to the compute cluster they are connected to. 
Reference data and tool dependencies are provided through shared CVMFS volumes 

 
The Open Infrastructure - Pulsar Endpoints 
 
The Open Infrastructure (OI) framework provides a ready-to-use VGCN cloud image, containing 
the software components required to create a fully operational Pulsar node or Galaxy server. 

 

http://usegalaxy.eu


Fig. 4 - A Pulsar endpoint default configuration deployed with the OI and connected to UseGalaxy.eu. 
Each endpoint consists of a virtual machine running both the HTCondor Central Manager and the Pulsar 
service, a configurable number of compute nodes, and an NFS server that supplies shared storage to all 
the virtual machines within the endpoint. Finally, the CVMFS volume is connected to each compute node 

to provide reference data and software dependencies. 
 

The automated deployment (Fig. 4) consists of an HTCondor setup, including a Central 
Manager virtual machine that hosts both the HTCondor daemons and the Pulsar application, 
one or more compute nodes, and an NFS node providing shared storage across all the 
components of the endpoint. Core configuration parameters, such as the number of compute 
nodes and storage volumes, are managed via a Terraform variables file, allowing seamless 
extension of the endpoint’s computational capacity. Once the RabbitMQ queue to be monitored 
is specified, a new endpoint can be instantiated with a single command.Terraform deploys the 
necessary virtual machines and sets up the networking and the shared NFS storage across 
them, while Ansible configures HTCondor on each node and sets up the Pulsar endpoint along 
with the services required for its operation (. 
 
During the configuration process, the OI allows for one or more queues to be associated with 
the computational endpoint. Ansible configures a dedicated Pulsar daemon for each Galaxy 
instance that will be served by the endpoint, ensuring that each one listens to its assigned 
queue and submits jobs to the HTCondor cluster in the backend. The OI framework also 
includes an Ansible playbook to dynamically add or remove the Galaxy instances authorized to 
utilise the Pulsar endpoint. 
 
The entire deployment procedure has been thoroughly documented in the Pulsar Network 
documentation (https://pulsar-network.readthedocs.io).The deployment strategy and its 
implementation have been successfully tested also on the commercial platform Oracle Cloud 
(Fig. 5), and EOSC EU Nodes (https://galaxyproject.org/news/2025-01-29-esg-eosc/), 
demonstrating the generalisability of the framework and enabling administrators, in principle, to 
take advantage of available credits from commercial providers. 
 

 
Fig. 5 - Pulsar endpoint deployment on the Oracle Cloud Infrastructure (OCI). The OCI dashboard 

detailing the VMs created through Terraform (left). A Galaxy job submitted through usegalaxy.it on the 
OCI endpoint (top right). The status of the HTCondor cluster deployed using OCI resources (bottom right). 
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The European Pulsar Network and UseGalaxy.* public servers 
 
Currently, the EPN includes thirteen Pulsar endpoints across ten countries (Fig. 6) supporting 
six national UseGalaxy instances in addition to the European one. Additionally, the HCMR 
institute has deployed an additional Pulsar endpoint as part of the FairEase project 
(https://fairease.eu/), which, although independent from the EuroScienceGateway project, has 
adopted the Pulsar Network infrastructure for its distributed job execution needs. 

 
 

Fig. 6 - Map of the Pulsar endpoints from EuroScienceGateway partners. 
 
 
SABER, the EPN monitoring system 

Given the scale of the infrastructure, regular and thorough testing and monitoring are essential 
to detect any underperforming endpoint, identify issues, and promptly restore full operability. To 
this end, we developed SABER - Systematic API Benchmark for pulsar Endpoint Reliability, 
(https://github.com/usegalaxy-it/saber), a Python-based application designed to iteratively test 
all the Pulsar endpoints connected to a Galaxy server. Rather than merely checking their online 
status, SABER submits to Galaxy a small batch of actual jobs, targeting Pulsar endpoints for 
execution, allowing the components of the endpoint to be thoroughly validated. SABER can be 
configured in a fine-grained way through a YAML configuration file. It supports testing multiple 
Pulsar endpoints assigned to different Galaxy instances, also defining input data and workflows 

https://fairease.eu/
https://github.com/usegalaxy-it/saber


independently for each Galaxy server, specifying the time to wait for each job to complete, 
choosing whether to clean histories for debugging, and optionally including the local compute 
endpoint in the tests alongside the remote ones.  

A dedicated Jenkins pipeline is then used to automatically and periodically run SABER, 
achieving continuous monitoring and testing of the whole network (Fig. 7). SABER is designed 
to be instance-agnostic and can be used to test Pulsar endpoints connected to any Galaxy 
instance. A SABER job is executed daily for the EPN, and the results are made available as 
HTML reports at monitor.usegalaxy.it, with additional markdown versions also accessible on 
Github (https://github.com). Moreover, the Galaxy histories created during the test cycle can be 
easily explored for debug purposes, with jobs tagged and grouped by the Pulsar endpoint used 
for their execution. 

 

 
Fig. 7 - The SABER Dashboard displaying the results of the tests performed on the Pulsar 

endpoints (left), alongside the corresponding Galaxy job history for the tested workflows (right). 
 
The Open Infrastructure - UseGalaxy servers 

http://monitor.usegalaxy.it
https://github.com


 The Open Infrastructure framework enables the deployment, configuration and maintenance of 
new production-grade Galaxy servers, ready for submitting jobs to Pulsar endpoints 

Again, Terraform is used to provision the virtual infrastructure as described in Table 1 and Fig. 8, 
while Ansible handles the configuration of the software components through a set of playbooks. 

 

VM Description Public IP 
needed 

Provision
ed by OI 

Galaxy Hosts the Galaxy application and 
the Nginx web server, with a 
public IP address to allow user 
access via the web interface. 

yes yes 

RabbitMQ Hosts the RabbitMQ message 
broker used to connect Galaxy to 
Pulsar endpoints and to Celery. 
Exposes a public IP to allow 
access from remote services 
deployed on separate 
infrastructures. 

yes yes 

Celery Executes asynchronous 
background tasks triggered by 
Galaxy, such as job preparation, 
tool dependency resolution, and 
metadata setting. Works in 
coordination with RabbitMQ to 
handle distributed task queues 
efficiently. 

no yes 

PostgreSQL DB Acts as the primary relational 
database backend required for 
Galaxy’s operation. 

no yes 

PostgreSQL DB replica Maintains a real-time copy of the 
primary PostgreSQL database to 
ensure high availability and data 
redundancy 

 no yes 

PostgreSQL DB backup Performs periodic snapshots of 
the PostgreSQL database to 
allow recovery in case of data 
corruption or accidental deletion. 

no yes 

NFS server Provides shared file storage for 
Galaxy and associated services. 

no yes 



HTCondor CM Coordinates and manages the 
scheduling and execution of jobs 
within the HTCondor pool.  

no yes 

HTCondor compute 
nodes 

Execute the computational jobs 
scheduled by HTCondor.  

no no 

Control VM Used to deploy and manage the 
entire infrastructure by 
orchestrating Terraform and 
Ansible. 

yes no 

Table 1 - Overview of the virtual machines composing the UseGalaxy infrastructure, detailing their 
primary functions, public IP accessibility, and whether they can be deployed using the OI automation 

tools. 

 

The virtual machine hosting the Galaxy server acts as a reverse proxy and handles HTTPS 
termination. This frontend also supports the open TUS resumable upload protocol through a 
TUSD server, enabling resumable, chunked uploads to better support users with large datasets. 
As the access point for end users, this VM is assigned a public IP address. 

A separate virtual machine running PostgreSQL, handles the database used by Galaxy to store 
metadata, user information, histories, and workflow definitions. The database is configured with 
replication and backup mechanisms on separated VMs, to ensure data durability and support 
disaster recovery strategies. 

The Galaxy components and compute nodes have access to the shared volume provided by a 
storage VM  through NFS. This component stores the user-uploaded data, intermediate job 
files, and analysis results.  Compute tasks are devolved to a VM running the HTCondor Central 
Manager, which coordinates job scheduling and resource allocation across the local Condor 
pool. This manager is responsible for assigning jobs to available compute slots and monitoring 
the state of the cluster. 

The communication between Galaxy and remote Pulsar endpoints is managed via a RabbitMQ 
broker. This component handles message queues used by the Pulsar endpoints, which receive 
and execute jobs on external or federated infrastructures. The RabbitMQ server is also exposed 
through a public IP address with secure HTTPS connections and mandatory authentication for 
each message queue, to ensure that all communications are protected and authorized. 

Finally, a Celery task manager is deployed to handle Galaxy's asynchronous background tasks: 
it interacts with both the Galaxy and RabbitMQ servers to ensure responsive and scalable task 
execution. 



 
Fig. 8 - The UseGalaxy architecture based on the OI framework and deployed on cloud resources. A 

Control VM orchestrates the setup and configuration of the entire infrastructure. Initially, Terraform 
provides dedicated VMs for each of the core components: Galaxy, the database cluster, the HTCondor 

Central Manager, and the NFS server. Then, Ansible configures the software stack for each service. 
Finally, a Jenkins-based continuous integration/continuous delivery (CI/CD) system supports the 

infrastructure management tasks. The Ansible playbooks and roles used for deploying the 
virtual infrastructure are reused to automate routine operations, including software updates, tool 

installations, and configuration maintenance. 

 

Other Workflow management systems integration  
 
 
Discussion 
Typically, public Galaxy servers utilize local computational resources, leveraging either HPC or 
cloud infrastructure, depending on availability. The European Pulsar Network represents a 
scalable framework for distributed job execution that extends the computing capabilities of 
national and pan-European Galaxy instances. By decoupling job execution from the local IT 
resources available to a Galaxy instance by leveraging remote compute endpoints, the 
architecture facilitates the integration of heterogeneous infrastructures, including institutional 
HTC/ HPC systems and Cloud environments, while maintaining compatibility with Galaxy's 
execution model and user experience. 

Currently, the European Pulsar Network supports six national Galaxy instances (France, the 
Czech Republic, Belgium, Italy, Spain, and Norway) in addition to the central European Galaxy 
server. From an organizational perspective, the decision to rely on national Galaxy instances 



instead of a single centralized portal reflects several practical and strategic benefits. First, data 
governance requirements, particularly in the biomedical domain, often mandate that sensitive 
datasets remain within national boundaries to comply with GDPR and institutional policies. 
Second, proximity between data and compute infrastructure enhances performance and 
reduces network costs, especially for large-scale omics datasets. National instances also 
support autonomy in scaling, funding, and user support, enabling tailored environments aligned 
with local priorities. Yet, thanks to shared protocols and tools like Pulsar, these instances retain 
full interoperability within the federated ecosystem. 

Once deployed, the Pulsar endpoints are not limited to a single Galaxy instance: the 
architecture is designed to support shared usage across multiple Galaxy servers, promoting a 
more efficient use of resources and fostering collaboration at both national and European levels. 
Actually, this approach offers strategic advantages: it allows a single infrastructural investment 
to serve both national and European Galaxy instances, reducing unnecessary duplications and 
simplifying maintenance operations. The Pulsar Network’s distributed architecture also brings 
built‑in resilience: if a specific endpoint becomes unavailable, jobs can be rerouted to alternate 
nodes, minimizing downtime and preventing single points of failure, thus ensuring high reliability 
and availability for users. Monitoring and testing play a crucial role in maintaining operational 
integrity: SABER can be used to routinely test endpoint responsiveness and health, ensuring 
that failures are quickly identified and mitigated, making the Pulsar network dependable even as 
it grows in scale and complexity. 

The first core principle behind the design of the network has been to provide transparency for 
users and providers: researchers submit, monitor, and access the results of their analyses on 
Galaxy as they did before, without being exposed to the complexity of the underlying 
infrastructure. On the other hand, advanced users can optionally select a specific execution 
endpoint through a simple and intuitive interface if they so wish.  

On the provider side, ease of deployment and maintainability are equally critical. Indeed, on the 
infrastructure side, enabling resource providers to contribute with minimal effort was the second 
guiding principle. This led to the development of the OI framework, which standardizes and 
automatizes the resources provisioning and configuration operations. With this approach, a new 
node can be instantiated and connected to the EPN with minimal manual intervention, 
encouraging broader participation from institutional and national partners. Furthermore, the EPN 
adopts a pull-based, event-driven architecture: instead of requiring inbound connectivity, each 
Pulsar instance establishes an outbound connection to a central broker to receive job 
instructions. This architecture eliminates the need to open ports on the compute nodes, making 
the system much more compatible with closed or secured networking environments. As a result, 
Galaxy can offload tasks to infrastructures previously unreachable due to network constraints. 

Finally, the adoption of the open-source model underpins the network's sustainability and 
trustworthiness. Tools like Galaxy, Pulsar, Terraform, Ansible, and Jenkins provide transparency, 
auditability, and long-term viability. Deployment automation is fully codified and 
version-controlled, with Ansible ensuring idempotent configuration and Jenkins automating 
continuous integration and delivery. As a result, the entire system remains consistent, up to 



date, and fully manageable through version-controlled code. Moreover, routine operations, such 
as tool updates, workflow deployment, and dependency management, are reproducible and 
traceable, enabling stable evolution of the infrastructure, enforcing uniformity across nodes and 
enabling scalable and reproducible setup of analysis platforms and associated resources. 

Conclusions and outlook 

Although significant progress has been made in the development and funding of Cloud 
Computing and HPC/HTC infrastructures across Europe, effectively harnessing these resources 
remains a challenge in many research contexts. Researchers are often required to interact with 
a variety of computing environments, each with its own access methods, interfaces, and 
policies. This diversity, while reflecting the richness of the European landscape, can pose 
barriers to seamless adoption, especially for users without specific knowledge of the underlying 
infrastructures. 

The EPN addresses these issues by providing a robust, scalable, and user-friendly solution for 
distributed job execution within the Galaxy ecosystem. By enabling transparent integration of 
European computing resources through a unified and modular architecture, it strikes a balance 
between usability for end users, who interact via the familiar Galaxy interface, and flexibility for 
infrastructure providers, who can deploy new Galaxy servers or Pulsar endpoints without 
reconfiguring existing systems. This approach not only simplifies access for researchers but 
also facilitates the sharing of computational resources at the European scale using mature and 
automated deployment technologies. For example the OI framework has been successfully 
used to deploy the usegalaxy.it Galaxy instance on the Italian CINECA and ReCaS-Bari Cloud 
infrastructures (https://galaxyproject.org/news/2024-11-23-usegalaxy-it-starting/), demonstrating 
its viability and the effectiveness of this approach. 

A further refinement of the framework is Pulsar integration beyond Galaxy, enabling its use as a 
backend for other workflow management systems such as CWL-based engines or Nextflow. 
This evolution would further broaden the accessibility of the infrastructure, opening it up to new 
user communities and enhancing its relevance across a wider range of data-intensive scientific 
domains.  
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SUPPLEMENTARY MATERIAL 

As part of the EuroScienceGateway project, several European institutions have deployed 
Galaxy servers and/or Pulsar endpoints to provide accessible and scalable computing 
resources for the life sciences community. Table 2 summarizes the distribution of these services 
across participating countries, listing the public Galaxy portals (usegalaxy.*) and the associated 
Pulsar endpoints registered. 

 

Country Institution Galaxy Pulsar 

Germany 

 

usegalaxy.eu  DE01 and 
development 
endpoints 

France 

 

usegalaxy.fr  FR01 

Czech Republic 

 

usegalaxy.cz  CZ01 

Spain 

 

usegalaxy.es  ES01 

Belgium 

 

usegalaxy.be  BE01 

Italy 

 

usegalaxy.it  IT01 (ReCas-Bari), 
IT02 (CINECA), IT03 
(GARR), IT04 (UniMi) 
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EGI 

 

- EGI01 (Deployed by 
EGI on INFN Cloud 
infrastructure in Italy) 

Slovakia 

 

- SK01 

Turkey 

 

- TUBITAK01 

Poland 

 

- CFY01 

Norway 

 

usegalaxy.no  - 

Greece 

 

- HCMR01 

Table 2 - List of UseGalaxy servers and Pulsar endpoints. 
 

Some countries, such as Italy, maintain multiple Pulsar nodes to leverage different national 
infrastructures, while others contribute through either Galaxy interfaces, Pulsar nodes, or both. 
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