Scaling Scientific Workflows in Europe: Architecture and
Deployment of the Galaxy-Pulsar Computational Network

Author list with affiliation EIEEESEINDPNOURSENEANEENDOEENANUSORIENES

Target journals: NARGAB, ...

Abstract

The exponential growth of data-intensive research in the Life Sciences and other scientific
domains has led to an increasing demand for computational resources across Europe. While
major EU initiatives have supported the development of large-scale infrastructures, researchers
still face significant challenges in accessing and integrating heterogeneous computing
environments. Fragmentation in both technical architectures and policy frameworks continues to
hinder seamless interoperability and efficient resource sharing.

To address these challenges, we present the European Pulsar Network (EPN), a distributed
computing architecture built upon the Galaxy workflow management system and the Pulsar job
execution service. The network enables transparent job offloading from Galaxy servers to
remote computing clusters, allowing resource scaling without requiring direct user intervention
or awareness. This architecture supports a flexible and scalable approach to workload
distribution, ensuring improved performance and resource availability across different
infrastructures.

A key component of the network is the Open Infrastructure framework, which facilitates the
streamlined deployment of both Galaxy servers and Pulsar endpoints by compute providers.
This is achieved through automation tools such as Terraform and Ansible, eliminating the need
for manual reconfiguration of existing systems. This approach promotes simplified integration
and ease of adoption by new sites.

To date, the EPN comprises six national Galaxy endpoints, other than the central European

instance, and thirteen Pulsar endpoints distributed across Europe. This collaborative effort is
actively enhancing the scalability, resilience, and interoperability of the Galaxy ecosystem in
support of FAIR and reproducible data analysis.

Graphical Abstract

Introduction

In recent years, the demand for computational resources in the Life Sciences has increased
significantly (1, 2). This growth is primarily driven by advancements in high-throughput
technologies such as next-generation sequencing, high-resolution imaging, and integrative
omics analyses, which generate vast amounts of complex data requiring sophisticated
computational processing (3). Similar computational demands are also increasingly common in


https://www.zotero.org/google-docs/?OnyYlc
https://www.zotero.org/google-docs/?F4XGiv

scientific domains beyond the Life Sciences domain, such as biodiversity and climate science,
muon spectroscopy in materials science, and astrophysics.

In this context, the European Galaxy server (usegalaxy.eu) plays a central role by offering a
public, user-friendly platform for data analysis. Widely adopted across the Life Sciences
community and beyond, it allows researchers to process complex datasets without the need to
manage a local infrastructure. As shown in Fig. 1, both the number of users and the number of
submitted jobs on usegalaxy.eu have steadily increased over the years, reflecting the growing
computational needs in research and the platform’s expanding user base.

4000000 8000
3500000 ) | 7000
3000000 \ 6000
2500000 R RV 5000

2 N\ [

£ 2000000 ) \ 4000 §

S | V =]
1500000 ! 3000
1000000 ~ 2000

y
500000 ~ A/ | ‘ ‘ ‘ | ‘ ‘ ‘ 1000
N
P bl |.|I|II.|||...n||u||||||| | | | .
~ow
53¢

Soo0oO00000009999S
NNNNNNNNNNNANNNNQ

mNumber of jobs Number of active users
Fig. 1 - Number of users, defined as users submitting at least one job, and the number of jobs over the
time on usegalaxy.eu.

To address these escalating computational needs, the European Union has made substantial
investments through strategic funding initiatives, including Horizon Europe
(https://horizoneurope.apre.it/), the European Strategy Forum on Research Infrastructures
(https://www.esfri.eu), EuroHPC (https://www.eurohpc-ju.europa.eu), and the European Open
Science Cloud (https://eosc.eu). These programmes have explicitly supported the development
and deployment of large-scale computational research infrastructure, providing researchers with
extensive computational infrastructure, fostering collaborative research, and enhancing scientific
innovation across EU member states.

Nevertheless, significant challenges still hinder the effective integration and interoperability of
these diverse computing infrastructures: the heterogeneous nature of hardware configurations,
software environments, middleware stacks, and workflow management systems across
European research institutions complicates the seamless utilization of distributed computational
resources by researchers (4). Additionally, fragmentation in authentication and authorization
frameworks, driven also by heterogeneous legal and institutional policies at the national or
regional levels, further exacerbates these interoperability issues.

In this work, we describe the European Pulsar Network (EPN), designed to distribute
computational analysis jobs across multiple data centers via national Galaxy (5) portals. The


https://usegalaxy.eu
http://usegalaxy.eu
https://horizoneurope.apre.it/
https://www.esfri.eu/
https://www.eurohpc-ju.europa.eu
https://eosc.eu/
https://www.zotero.org/google-docs/?ExD0E1
https://www.zotero.org/google-docs/?XOrQm9

Galaxy portals function as gateways to the computational resources of the EPN while acting as
platforms for configuring, submitting, and managing data analysis tasks. Developed within the
Horizon Europe EuroScienceGateway (6) project, the EPN aims to provide efficient and
structured access to data, tools, and workflows, supported by a suitable IT infrastructure. To this
end, we implemented a dedicated deployment and monitoring framework that ensures the
infrastructure is scalable, easy to manage, and continuously monitored, fostering a sustainable
and federated computing environment across Europe for research purposes. The network
currently consists of thirteen computational endpoints supporting six National Galaxy instances
across Europe in addition to the pre-existing European Galaxy instance. The network has been
designed to allow for easy onboarding of new endpoints, sharing among Galaxy servers, or
removal if no longer needed.

Methods

Galaxy
Galaxy functions as the access gateway to the EPN. It is a scientific workflow management

system designed to simplify the execution of complex data analyses for researchers across
diverse scientific domains. It provides an intuitive web interface through which users can build,
customize, and share multi-step computational workflows without using the command line.
Originally developed for bioinformatics, Galaxy now supports a broader range of tools and data
types, and can scale from a small local server to large Cloud and HPC infrastructures.
Moreover, its transparent execution model and workflow history features foster reproducibility,
collaboration, and accessibility in data-driven research.

Galaxy also provides a Python-based library, BioBlend (7), that enables automated interaction
with Galaxy servers via their REST API. It streamlines tasks such as launching workflows,
managing datasets and histories, and tracking tool executions. Further extending its capabilities,
Galaxy supports connectivity with a wide range of storage backends, ranging from institutional
to public and commercial services, allowing seamless data access and management.
Additionally, Galaxy can integrate with platforms like Zenodo to export, publish, and archive
datasets, workflows, and histories, thus supporting the principles of FAIR (Findable, Accessible,
Interoperable, and Reusable) science.

To ensure responsiveness and scalability, especially in environments serving many concurrent
users, Galaxy can be integrated with external components that optimize different layers of the
system architecture. NGINX, a high-performance web server and reverse proxy, is used to
efficiently handle incoming requests, serve static content, and balance traffic across multiple
Galaxy processes. PostgreSQL is used as the primary relational database management system
to store and manage all core metadata related to users, histories, datasets, workflows, tool
executions, and system configurations, enabling efficient querying and indexing of large
volumes of records generated through user activity. Finally Celery, an open-source distributed
task queue, is used to manage background and asynchronous tasks. Celery allows Galaxy to
offload non-blocking operations, such as processing data uploads, recalculating disk usage,
managing metadata, purging datasets, generating workflow reports, and preparing history


https://www.zotero.org/google-docs/?QRL2bI
https://www.zotero.org/google-docs/?Z5mGDm

exports, ensuring that these resource-intensive activities do not interfere with user interactions
or tool execution.

Pulsar

Pulsar (8) is a remote job execution system developed within the Galaxy Project to enable
distributed and flexible computation across heterogeneous environments. Its purpose is to
decouple the execution of Galaxy jobs from the main server by allowing them to be offloaded to
remote computing facilities (Fig. 2).

3.Pulsar downloads
the required data
from Galaxy using
e N curl. ’

10. Galaxy finalizes h
the job and notifies

the user of its

-
] GALAXY

I I PULSAR

status. 9. Pulsar uploads
h g the output data - <
1. Galaxy publishes back to Galaxy 4. Pulsar resolves tool
a message to the using curl. dependencies (using

Pulsar queue

Conda or containers).

containing job 5. Pulsar starts the job

information. 2. Pulsar monitors execution.
the queue and - N
- N retrieves the job MPUTE 7. The job is
information. %(I’.U STER executed on the
RABBITMQ L remote system.
N J

6. Pulsar sends a
message to the
queue indicating
that the job has
started.

8. Once the job is
complete, Pulsar
notifies Galaxy by
sending a message
to the queue.

Galaxy server infrastructure Remote Compute infrastructure

Fig. 2 - . Workflow of remote job execution using Pulsar and Galaxy. This diagram illustrates the
asynchronous communication between Galaxy and a remote Pulsar server using RabbitMQ as a
message broker. Galaxy publishes job information to a dedicated message queue (1), which is monitored
by Pulsar (2). Pulsar retrieves the job payload, downloads input data from Galaxy via curl (3), resolves
dependencies (4), and starts the job (5) on the connected compute cluster (6,7). Upon job completion,
Pulsar sends the status update to Galaxy via the queue (8), and uploads output data back using curl (9).
Galaxy then finalizes the job and informs the user (10).

Pulsar operates as a lightweight service receiving job execution requests from a Galaxy
instance. It exposes a RESTful API through which Galaxy submits job descriptions, input
metadata, and execution parameters. Alternatively, to avoid direct network exposure for
RESTful communication, Pulsar operates using the AMQP (Advanced Message Queuing
Protocol) message queue protocol. With this approach, Galaxy and Pulsar exchange job-related
messages asynchronously via the RabbitMQ message broker: Galaxy serializes job information
into messages and publishes them to a designated, authenticated, queue. Each queue is
associated with a specific Pulsar endpoint, and only that endpoint is authorized to connect and


https://www.zotero.org/google-docs/?8cHjtE

consume messages from it. Remote Pulsar endpoints, acting as consumers, subscribe to the
queue and asynchronously retrieve the job payloads and execute them independently. Once a
job is received, Pulsar handles input staging, either by accessing a filesystem shared between
the submitting Galaxy server and the remote cluster or by downloading data from the submitting
Galaxy server with curl (https://curl.se/). Then, Pulsar dispatches the job to the batch system it is
connected to, such as HTCondor or SLURM. Tools dependencies must be available on the
remote cluster compute nodes: as for Galaxy, Pulsar can resolve tool dependencies through
multiple mechanisms, including Conda packages (https://anaconda.org), Docker
(https://www.docker.com/) and Singularity (https://apptainer.org/) Containers, allowing it to adapt
to the specific characteristics and constraints of the underlying infrastructure. Upon job
completion, output files are collected and sent back to the Galaxy server, with curl again, where
they are made available for further analysis or visualization in the user’s history. Execution logs,
environment metadata, and job state information are also collected and sent back to the Galaxy
instance, so that the provenance of each output is trackable.

Galaxy-Pulsar integration
From the Galaxy point of view, Pulsar is a backend runner, integrated through a job

configuration layer that defines execution destinations. Administrators can assign specific tools
or workflows to run through Pulsar based on criteria such as job size, tool requirements, user
group, or current system load. This dynamic routing mechanism ensures optimal resource
usage and facilitates fine-grained control over job distribution across multiple remote
environments. From the end user's perspective, the interaction remains entirely transparent: job
submission and monitoring continue through the familiar Galaxy web interface, while the
execution may occur on a completely different physical infrastructure. Alternatively, Galaxy also
allows users to manually select the execution endpoint for their jobs through the user
preferences interface.

CERN VM FileSystem

Whether an analysis is executed on the EPN directly within Galaxy or remotely via Pulsar, data
analysis tools can require both reference data and a reliable mechanism for resolving software
dependencies. To prevent unnecessary duplication and ensure consistency across sites,
container images and reference data are distributed using a CernVM File System (CVMFS) (9):
a read-only file system designed to deliver software and data to distributed computing
environments. The CVMFS volume is shared across all the EPN gateways and endpoints.

HTCondor

HTCondor (https://htcondor.org/) is a widely adopted open-source batch system designed for
managing and executing large volumes of compute jobs across heterogeneous resources. It is
particularly effective in shared, multi-user environments where fine-grained control over job
prioritization, fair-share scheduling, and resource allocation is required. In the context of
distributed infrastructures, HTCondor provides mechanisms for job queuing, dynamic resource
discovery, and fault-tolerant execution.

The Virtual Galaxy Cloud Nodes images


https://curl.se/
https://anaconda.org
https://www.docker.com/
https://apptainer.org/
https://www.zotero.org/google-docs/?TdaSbi
https://htcondor.org/

The Virtual Galaxy Compute Node (VGCN) (https://github.com/usegalaxy-eu/vgcn) is a Rocky
Linux 9 (https://rockylinux.org/) pre-built image for creating Virtual Machines (VM) on
cloud-based infrastructures, hosting essential services and tools required for Galaxy job
execution, including container runtimes, monitoring agents, and remote job runners. VGCN
images are intended to be cloud-init configurable, allowing site-specific customization and
integration into a variety of deployment models, from single-node setups to distributed clusters.

Infrastructure and software deployment automation
Terraform (hitps://developer.hashicorp.com/terraform) enables the declarative provisioning of

virtual IT infrastructure across Cloud platforms such as OpenStack, including commercial
providers such as Oracle Cloud and AWS. Complementing this, Ansible automates the
configuration and setup of software environments on the IT infrastructure, streamlining the
deployment of complex services and enforcing uniformity across nodes. Together, they enable
the scalable and reproducible setup of analysis platforms and associated resources.

Infrastructure management
Continuous Integration and Continuous Delivery (CI/CD) systems are used by the EPN to

automate maintenance tasks, apply software updates, and perform routine testing across all the
components of a deployed infrastructure. Jenkins (https://www.jenkins.io/), a Cl/CD application,
is used to orchestrate automated data analysis pipelines on the EPN to validate updates, trigger
redeployments, and integrate modifications into live environments with minimal downtime. Since
configuration files are stored on GitHub, any modification is enacted on the EPN by Ansible in
response to pull requests.

TESP-API: A Lightweight TES Execution Backend

The GA4GH Task Execution Service (TES) API (10) defines a standard interface for submitting
and managing batch computing tasks across heterogeneous execution environments.

The TESP API (https://github.com/CESNET/tesp-api) provides a minimal implementation of the
GA4GH TES, intended for simple deployment and integration with container-based execution
environments. It can run either in standalone mode—with an embedded Pulsar service
launched via docker compose --profile pulsar up— orin a mode using an external

Pulsar instance, where docker compose up starts only the APl and database components.
This approach allows flexible setups for testing, development, or production use.

The service receives TES tasks and converts them into local singularity exec or docker
run commands. All data movement is handled by the worker node itself, avoiding intermediate

transfers through the API or Pulsar layers. As a result, input and output files specified in the
TES task are transferred directly between client-side storage and the compute node, following a

simplified storage — worker — storage pattern.


https://github.com/usegalaxy-eu/vgcn
https://rockylinux.org/
https://developer.hashicorp.com/terraform
https://www.jenkins.io/
https://www.zotero.org/google-docs/?14ywYM
https://github.com/CESNET/tesp-api

In Galaxy, jobs submitted to Pulsar using PulsarTesJobRunner do not declare explicit inputs or
outputs in the TES request. Instead, data transfer is delegated to executor components, with the
first and last executors handling input staging and output collection.

Standardized job submission and workflow portability
WfExS-backend (Workflow Execution Services backend workflow engine orchestrator) (11),

whose developments started within the EOSC-Life project, provides a solution for orchestrating
scientific workflow execution integrating the GA4GH TES specs.

WIfEXS takes advantage of the fact that many workflow engines, such as Nextflow (12) and
CWLtool (https://www.commonwl.org), use Docker containers to encapsulate the tools executed
at each workflow step. These engines typically rely on a predictable structure of input/output
directories and files within the container environment. To bridge the gap between containerized
execution and standardized APIs, WfEXS introduces a command-line translation layer, called
TESSAP, which both mimics the behavior of the Docker CLI (for the subset of commands
typically used by workflow engines) and translates these commands into GA4GH TES API calls.
This allows workflow engines to operate as if they were interacting with Docker directly, while
actual task execution is redirected to a remote TES-compliant service, such as Pulsar nodes
running TESP.

Results
The Pulsar Network architecture

Figure 3 illustrates the EPN architecture. Each Pulsar endpoint and each Galaxy server
communicate via a dedicated message queue brokered by RabbitMQ. Once a user submits a
job and this is earmarked for execution in a particular Pulsar endpoint, Galaxy dispatches the
job request to the queue dedicated to the destination endpoint, which continuously monitors it.
Upon receiving the job, Pulsar transfers the required input data from the requesting Galaxy
instance, executes the computational task, either locally or submits it to a connected cluster,
uses the shared CVMFS volumes for accessing reference datasets and software dependencies,
and finally uploads the resulting output and its associated metadata and logs back to the
originating Galaxy server. To be noted, each single Pulsar endpoint can be configured to serve
multiple Galaxy instances.


https://www.zotero.org/google-docs/?N2ic0g
https://www.zotero.org/google-docs/?broken=ztW4SA
https://www.commonwl.org

= Galaxy

EUROPE

il PULSAR
W3 g ©
N l U g

—| 1l PULSAR
HICons ’ CVMFS
Remote Cloud infrastructure
deployed with the Open

&—(I. PULSAR
== HTConds™

European Pulsar Network

National UseGalaxy servers

From/to
From/to National servers

Fig. 3 - The European Pulsar Network architecture. By default, the European and national Galaxy servers
submit jobs to local IT resources, e.g., usegalaxy.eu relies on an HTCondor-based compute cluster. The
Pulsar endpoints of the EPN can be used as an alternative to relieve pressure from the local
infrastructures. The Pulsar endpoints are configured to retrieve jobs metadata from a dedicated message
queue of the RabbitMQ broker, and to dispatch them to the compute cluster they are connected to.
Reference data and tool dependencies are provided through shared CVMFS volumes

The Open Infrastructure - Pulsar Endpoints

The Open Infrastructure (Ol) framework provides a ready-to-use VGCN cloud image, containing
the software components required to create a fully operational Pulsar node or Galaxy server.

= Galaxy

EUROPE

| PULSAR |

=
Central manager - Compute node
HICondr HTCondst

! r
|

Shared Storage (NFS)
Cloud deployment
@ CMFS repository

Provides reference data and
tools dependencies



http://usegalaxy.eu

Fig. 4 - A Pulsar endpoint default configuration deployed with the Ol and connected to UseGalaxy.eu.
Each endpoint consists of a virtual machine running both the HTCondor Central Manager and the Pulsar
service, a configurable number of compute nodes, and an NFS server that supplies shared storage to all
the virtual machines within the endpoint. Finally, the CVMFS volume is connected to each compute node

to provide reference data and software dependencies.

The automated deployment (Fig. 4) consists of an HTCondor setup, including a Central
Manager virtual machine that hosts both the HTCondor daemons and the Pulsar application,
one or more compute nodes, and an NFS node providing shared storage across all the
components of the endpoint. Core configuration parameters, such as the number of compute
nodes and storage volumes, are managed via a Terraform variables file, allowing seamless
extension of the endpoint’s computational capacity. Once the RabbitMQ queue to be monitored
is specified, a new endpoint can be instantiated with a single command.Terraform deploys the
necessary virtual machines and sets up the networking and the shared NFS storage across
them, while Ansible configures HTCondor on each node and sets up the Pulsar endpoint along
with the services required for its operation (.

During the configuration process, the Ol allows for one or more queues to be associated with
the computational endpoint. Ansible configures a dedicated Pulsar daemon for each Galaxy
instance that will be served by the endpoint, ensuring that each one listens to its assigned
queue and submits jobs to the HTCondor cluster in the backend. The Ol framework also
includes an Ansible playbook to dynamically add or remove the Galaxy instances authorized to
utilise the Pulsar endpoint.

The entire deployment procedure has been thoroughly documented in the Pulsar Network
documentation (https://pulsar-network.readthedocs.io). The deployment strategy and its
implementation have been successfully tested also on the commercial platform Oracle Cloud
(Fig. 5), and EOSC EU Nodes (https://galaxyproject.ora/news/2025-01-29-esg-eosc/),
demonstrating the generalisability of the framework and enabling administrators, in principle, to
take advantage of available credits from commercial providers.

Fig. 5 - Pulsar endpoint deployment on the Oracle Cloud Infrastructure (OCI). The OCI dashboard
detailing the VMs created through Terraform (left). A Galaxy job submitted through usegalaxy.it on the
OCI endpoint (top right). The status of the HTCondor cluster deployed using OCI resources (bottom right).


https://pulsar-network.readthedocs.io
https://galaxyproject.org/news/2025-01-29-esg-eosc/

The European Pulsar Network and UseGalaxy.* public servers

Currently, the EPN includes thirteen Pulsar endpoints across ten countries (Fig. 6) supporting
six national UseGalaxy instances in addition to the European one. Additionally, the HCMR
institute has deployed an additional Pulsar endpoint as part of the FairEase project
(https://fairease.eu/), which, although independent from the EuroScienceGateway project, has
adopted the Pulsar Network infrastructure for its distributed job execution needs.

i

UNI
1

FREIBURG

<
E

P;‘\ Bari

— &
hcmr

. EuroScienceGateway partner

. External partner

Fig. 6 - Map of the Pulsar endpoints from EuroScienceGateway partners.

SABER. the EPN monitoring system

Given the scale of the infrastructure, regular and thorough testing and monitoring are essential
to detect any underperforming endpoint, identify issues, and promptly restore full operability. To
this end, we developed SABER - Systematic APl Benchmark for pulsar Endpoint Reliability,
(https://github.com/usegalaxy-it/saber), a Python-based application designed to iteratively test
all the Pulsar endpoints connected to a Galaxy server. Rather than merely checking their online
status, SABER submits to Galaxy a small batch of actual jobs, targeting Pulsar endpoints for
execution, allowing the components of the endpoint to be thoroughly validated. SABER can be
configured in a fine-grained way through a YAML configuration file. It supports testing multiple
Pulsar endpoints assigned to different Galaxy instances, also defining input data and workflows


https://fairease.eu/
https://github.com/usegalaxy-it/saber

independently for each Galaxy server, specifying the time to wait for each job to complete,
choosing whether to clean histories for debugging, and optionally including the local compute
endpoint in the tests alongside the remote ones.

A dedicated Jenkins pipeline is then used to automatically and periodically run SABER,
achieving continuous monitoring and testing of the whole network (Fig. 7). SABER is designed
to be instance-agnostic and can be used to test Pulsar endpoints connected to any Galaxy
instance. A SABER job is executed daily for the EPN, and the results are made available as
HTML reports at monitor.usegalaxy.it, with additional markdown versions also accessible on
Github (https://github.com). Moreover, the Galaxy histories created during the test cycle can be
easily explored for debug purposes, with jobs tagged and grouped by the Pulsar endpoint used
for their execution.

History + =
SABER Dashboard search datasets ¥

Servers and Compute IDs

x m

SABER 7/5/25 88:59 ’

Sa5 M8 a 1 g
| L
e

©Q i3:FastQCon data : RawD @ /' W
Test run: Jun 10, 2025 01:25 ata
Test are run daily

fr-pulsar | saber_queued
Pulsar Endpoint Galaxy Server Status © 12 Fastac on data : Webp © # B
age
fr-pulsar  saber_queued
1102-pulsar 11: Bowtie2 on data 2and dat @ # W
a 1: alignments.
1t93-pulsar
18: FastQC on data 1: RawDat @ # W

fr-pulsar a

it®3-pulsar

be-pulsar ‘
9: Fast@GC on data 1: Webpage @ # W
it®3-pulsar
cz-pulsar
usegalaxy_eu i 8:Bowtie2 ondata 2anddat © # §
skeouisar a 1: alignments
it®2-pulsar
q .
7:FastQC on data 1:RawData @ /' &
it92-pulsar
6: FastQC on data 1: Webpage @ # ¥
bsc-pul . 1t92-pulsar
5:Bowtie2 ondata 2 and data © /' W
plpuls: 1: alignments.

it-pulsar
tubilak-pulsar
4: FastQC on data :: RawData @ /' W

tpuisar T-pulsar.

3: FastQC on data 1: Webpage @ # i

it03-pulsar usegalaxy it
S R it-pulsar

Default 2:2_reads - |

1. 1_reads [P |
”

Fig. 7 - The SABER Dashboard displaying the results of the tests performed on the Pulsar
endpoints (left), alongside the corresponding Galaxy job history for the tested workflows (right).

The Open Infrastructure - UseGalaxy servers


http://monitor.usegalaxy.it
https://github.com

The Open Infrastructure framework enables the deployment, configuration and maintenance of
new production-grade Galaxy servers, ready for submitting jobs to Pulsar endpoints

Again, Terraform is used to provision the virtual infrastructure as described in Table 1 and Fig. 8,
while Ansible handles the configuration of the software components through a set of playbooks.

VM Description Public IP | Provision
needed ed by Ol

Galaxy Hosts the Galaxy application and | yes yes
the Nginx web server, with a
public IP address to allow user
access via the web interface.

RabbitMQ Hosts the RabbitMQ message yes yes
broker used to connect Galaxy to
Pulsar endpoints and to Celery.
Exposes a public IP to allow
access from remote services
deployed on separate
infrastructures.

Celery Executes asynchronous no yes
background tasks triggered by
Galaxy, such as job preparation,
tool dependency resolution, and
metadata setting. Works in
coordination with RabbitMQ to
handle distributed task queues
efficiently.

PostgreSQL DB Acts as the primary relational no yes
database backend required for
Galaxy’s operation.

PostgreSQL DB replica Maintains a real-time copy of the | no yes
primary PostgreSQL database to
ensure high availability and data
redundancy

PostgreSQL DB backup Performs periodic snapshots of no yes
the PostgreSQL database to
allow recovery in case of data
corruption or accidental deletion.

NFS server Provides shared file storage for no yes
Galaxy and associated services.




HTCondor CM Coordinates and manages the no yes
scheduling and execution of jobs
within the HTCondor pool.

HTCondor compute Execute the computational jobs no no
nodes scheduled by HTCondor.
Control VM Used to deploy and manage the | yes no

entire infrastructure by
orchestrating Terraform and
Ansible.

Table 1 - Overview of the virtual machines composing the UseGalaxy infrastructure, detailing their
primary functions, public IP accessibility, and whether they can be deployed using the Ol automation
tools.

The virtual machine hosting the Galaxy server acts as a reverse proxy and handles HTTPS
termination. This frontend also supports the open TUS resumable upload protocol through a
TUSD server, enabling resumable, chunked uploads to better support users with large datasets.
As the access point for end users, this VM is assigned a public IP address.

A separate virtual machine running PostgreSQL, handles the database used by Galaxy to store
metadata, user information, histories, and workflow definitions. The database is configured with
replication and backup mechanisms on separated VMs, to ensure data durability and support
disaster recovery strategies.

The Galaxy components and compute nodes have access to the shared volume provided by a
storage VM through NFS. This component stores the user-uploaded data, intermediate job
files, and analysis results. Compute tasks are devolved to a VM running the HTCondor Central
Manager, which coordinates job scheduling and resource allocation across the local Condor
pool. This manager is responsible for assigning jobs to available compute slots and monitoring
the state of the cluster.

The communication between Galaxy and remote Pulsar endpoints is managed via a RabbitMQ
broker. This component handles message queues used by the Pulsar endpoints, which receive
and execute jobs on external or federated infrastructures. The RabbitMQ server is also exposed
through a public IP address with secure HTTPS connections and mandatory authentication for
each message queue, to ensure that all communications are protected and authorized.

Finally, a Celery task manager is deployed to handle Galaxy's asynchronous background tasks:
it interacts with both the Galaxy and RabbitMQ servers to ensure responsive and scalable task
execution.



User

VM that is publicly
accessible

( \ v
RabbitM HT r !
PostgreSQL abbitma Gondor & ; VM available only on
replica I : : private network
f i
PostgreSQL Galaxy VM External VM
database ‘_L, (HTCondor access Point) ®|" """~~~ {NFS server
=S —
PostgreSQL — The connection is setup by Open
backup = Infrastructure Ansible playbooks
@cuereenenenneeneaeas °
Galaxy database The connection is setup manually at
\ cluster ) a later stage
\_ UseGalaxy infrastructure provided by Terraform Y, @ -cnncmeemanan -
T Shared file system mounted

Deploy and configure the
Control VM | infrastructure using Terraform
and Ansible

Fig. 8 - The UseGalaxy architecture based on the Ol framework and deployed on cloud resources. A
Control VM orchestrates the setup and configuration of the entire infrastructure. Initially, Terraform
provides dedicated VMs for each of the core components: Galaxy, the database cluster, the HTCondor
Central Manager, and the NFS server. Then, Ansible configures the software stack for each service.
Finally, a Jenkins-based continuous integration/continuous delivery (CI/CD) system supports the
infrastructure management tasks. The Ansible playbooks and roles used for deploying the
virtual infrastructure are reused to automate routine operations, including software updates, tool
installations, and configuration maintenance.

Discussion

Typically, public Galaxy servers utilize local computational resources, leveraging either HPC or
cloud infrastructure, depending on availability. The European Pulsar Network represents a
scalable framework for distributed job execution that extends the computing capabilities of
national and pan-European Galaxy instances. By decoupling job execution from the local IT
resources available to a Galaxy instance by leveraging remote compute endpoints, the
architecture facilitates the integration of heterogeneous infrastructures, including institutional
HTC/ HPC systems and Cloud environments, while maintaining compatibility with Galaxy's
execution model and user experience.

Currently, the European Pulsar Network supports six national Galaxy instances (France, the
Czech Republic, Belgium, Italy, Spain, and Norway) in addition to the central European Galaxy
server. From an organizational perspective, the decision to rely on national Galaxy instances



instead of a single centralized portal reflects several practical and strategic benefits. First, data
governance requirements, particularly in the biomedical domain, often mandate that sensitive
datasets remain within national boundaries to comply with GDPR and institutional policies.
Second, proximity between data and compute infrastructure enhances performance and
reduces network costs, especially for large-scale omics datasets. National instances also
support autonomy in scaling, funding, and user support, enabling tailored environments aligned
with local priorities. Yet, thanks to shared protocols and tools like Pulsar, these instances retain
full interoperability within the federated ecosystem.

Once deployed, the Pulsar endpoints are not limited to a single Galaxy instance: the
architecture is designed to support shared usage across multiple Galaxy servers, promoting a
more efficient use of resources and fostering collaboration at both national and European levels.
Actually, this approach offers strategic advantages: it allows a single infrastructural investment
to serve both national and European Galaxy instances, reducing unnecessary duplications and
simplifying maintenance operations. The Pulsar Network’s distributed architecture also brings
built-in resilience: if a specific endpoint becomes unavailable, jobs can be rerouted to alternate
nodes, minimizing downtime and preventing single points of failure, thus ensuring high reliability
and availability for users. Monitoring and testing play a crucial role in maintaining operational
integrity: SABER can be used to routinely test endpoint responsiveness and health, ensuring
that failures are quickly identified and mitigated, making the Pulsar network dependable even as
it grows in scale and complexity.

The first core principle behind the design of the network has been to provide transparency for
users and providers: researchers submit, monitor, and access the results of their analyses on
Galaxy as they did before, without being exposed to the complexity of the underlying
infrastructure. On the other hand, advanced users can optionally select a specific execution
endpoint through a simple and intuitive interface if they so wish.

On the provider side, ease of deployment and maintainability are equally critical. Indeed, on the
infrastructure side, enabling resource providers to contribute with minimal effort was the second
guiding principle. This led to the development of the Ol framework, which standardizes and
automatizes the resources provisioning and configuration operations. With this approach, a new
node can be instantiated and connected to the EPN with minimal manual intervention,
encouraging broader participation from institutional and national partners. Furthermore, the EPN
adopts a pull-based, event-driven architecture: instead of requiring inbound connectivity, each
Pulsar instance establishes an outbound connection to a central broker to receive job
instructions. This architecture eliminates the need to open ports on the compute nodes, making
the system much more compatible with closed or secured networking environments. As a result,
Galaxy can offload tasks to infrastructures previously unreachable due to network constraints.

Finally, the adoption of the open-source model underpins the network's sustainability and
trustworthiness. Tools like Galaxy, Pulsar, Terraform, Ansible, and Jenkins provide transparency,
auditability, and long-term viability. Deployment automation is fully codified and
version-controlled, with Ansible ensuring idempotent configuration and Jenkins automating
continuous integration and delivery. As a result, the entire system remains consistent, up to



date, and fully manageable through version-controlled code. Moreover, routine operations, such
as tool updates, workflow deployment, and dependency management, are reproducible and
traceable, enabling stable evolution of the infrastructure, enforcing uniformity across nodes and
enabling scalable and reproducible setup of analysis platforms and associated resources.

Conclusions and outlook

Although significant progress has been made in the development and funding of Cloud
Computing and HPC/HTC infrastructures across Europe, effectively harnessing these resources
remains a challenge in many research contexts. Researchers are often required to interact with
a variety of computing environments, each with its own access methods, interfaces, and
policies. This diversity, while reflecting the richness of the European landscape, can pose
barriers to seamless adoption, especially for users without specific knowledge of the underlying
infrastructures.

The EPN addresses these issues by providing a robust, scalable, and user-friendly solution for
distributed job execution within the Galaxy ecosystem. By enabling transparent integration of
European computing resources through a unified and modular architecture, it strikes a balance
between usability for end users, who interact via the familiar Galaxy interface, and flexibility for
infrastructure providers, who can deploy new Galaxy servers or Pulsar endpoints without
reconfiguring existing systems. This approach not only simplifies access for researchers but
also facilitates the sharing of computational resources at the European scale using mature and
automated deployment technologies. For example the Ol framework has been successfully
used to deploy the useqgalaxy.it Galaxy instance on the Italian CINECA and ReCaS-Bari Cloud
infrastructures (hitps://galaxyproject.org/news/2024-11-23- laxy-it-starting/), demonstrating
its viability and the effectiveness of this approach.

A further refinement of the framework is Pulsar integration beyond Galaxy, enabling its use as a
backend for other workflow management systems such as CWL-based engines or Nextflow.
This evolution would further broaden the accessibility of the infrastructure, opening it up to new
user communities and enhancing its relevance across a wider range of data-intensive scientific
domains.

References

1. Stephens,Z.D., Lee,S.Y., Faghri,F., Campbell,R.H., Zhai,C., Efron,M.J., lyer,R., Schatz,M.C.,
Sinha,S. and Robinson,G.E. (2015) Big Data: Astronomical or Genomical? PLOS
Biology, 13, €1002195.

2. Grossman,R.L. (2019) Data Lakes, Clouds, and Commons: A Review of Platforms for
Analyzing and Sharing Genomic Data. Trends Genet, 35, 223-234.

3. Sternberg,M.J.E. and Yosef,N. (2018) Computation Resources for Molecular Biology: Special
Issue 2018. Journal of Molecular Biology, 430, 2181-2183.


http://usegalaxy.it
https://galaxyproject.org/news/2024-11-23-usegalaxy-it-starting/
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW

4. Orazio,S.D., Eva,S.,,Jean-Karim,H., Mark,V.D.S., Wierenga,K., Paolo,M., Damian,T.,
Norberto,M.J., Alvaro,L.G., Wim,H., et al. (2023) A landscape overview of the EOSC
Interoperability Framework - Capabilities and Gaps Zenodo.

5. The Galaxy Community (2024) The Galaxy platform for accessible, reproducible, and
collaborative data analyses: 2024 update. Nucleic Acids Research, 52, \W83—-W94.

6. leveraging the European compute infrastructures for data-intensive research guided by FAIR
principles | EuroScienceGateway | Projekt | Fact Sheet | HORIZON CORDIS | European
Commission.

7. Sloggett,C., Goonasekera,N. and Afgan,E. (2013) BioBlend: automating pipeline analyses
within Galaxy and CloudMan. Bioinformatics, 29, 1685—1686.

8. Afgan,E., Baker,D., Batut,B., van den Beek,M., Bouvier,D., Cech,M., Chilton,J., Clements,D.,
Coraor,N., Grining,B.A., et al. (2018) The Galaxy platform for accessible, reproducible
and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46,
W537-W544.

9. Buncic,P., Sanchez,C.A., Blomer,J., Franco,L., Harutyunian,A., Mato,P. and Yao,Y. (2010)
CernVM - a virtual software appliance for LHC applications. J. Phys.: Conf. Ser., 219,
042003.

10. Kanitz,A., McLoughlin,M.H., Beckman,L., Malladi,V.S. and Ellrott,K. (2024) The GA4GH
Task Execution Application Programming Interface: Enabling Easy Multicloud Task
Execution. Computing in Science & Engineering, 26, 30-39.

11. Fernandez,J.M., Rodriguez-Navas,L., Mufioz-Civico,A., Iborra,P. and Lea,D. (2025)
WfExS-backend. 10.5281/zenodo.15462518.

Author List with affiliation

Example: Marco-Antonio Tangaro, Institute of Biomembranes, Bioenergetics and Molecular
Biotechnologies, National Research Council, Via Amendola 122/0O, Bari (Italy), e-mail:
marcoantonio.tangaro@cnr.it

Stefano Nicotri, INFN - Istituto Nazionale di Fisica Nucleare - Sezione di Bari, via Amendola
173, 70126, Bari, (Italy), e-mail: nicotri@infn.it

Bjorn Grlning, University of Freiburg, Friedrichstral’e 39, 79098 Freiburg, Germany, e-mail:
gruening@informatik.uni-freiburg.de orcid: 0000-0002-3079-6586



https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
https://www.zotero.org/google-docs/?dMYpNW
mailto:marcoantonio.tangaro@cnr.it
mailto:nicotri@infn.it
mailto:gruening@informatik.uni-freiburg.de

Sanjay Kumar Srikakulam, University of Freiburg, Friedrichstrale 39, 79098 Freiburg, Germany,
e-mail: srikakus@informatik.uni-freiburg.de orcid: 0000-0002-1752-5060

Armin Dadras, University of Freiburg, Friedrichstralte 39, 79098 Freiburg, Germany, e-mail:
dadras@informatik.uni-freiburg.de orcid: 0000-0001-7649-2388

Mira Kuntz, University of Freiburg, Friedrichstrae 39, 79098 Freiburg, Germany, e-mail:
kuntzm@informatik.uni-freiburg.de orcid: 0000-0003-4302-5091

Oana Kaiser, University of Freiburg, Friedrichstralle 39, 79098 Freiburg, Germany, e-mail:
marchis@informatik.uni-freiburg.de

Anthony Bretaudeau, GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France. email:
anthony.bretaudeau@inrae.fr

Paul De Geest, VIB, Data Core, Ghent, Belgium, email: paul.degeest@psb.vib-ugent.be

Sebastian Luna-Valero, EGI Foundation, Amsterdam, Netherlands email:

sebastian.luna.valero@eqi.eu

Maria Chavero-Diez, 1. Barcelona Supercomputing Center, Plaga d’Eusebi Guell, 1-3, 08034
Barcelona (Spain). 2. Biochemistry and Molecular Biomedicine Department, University of
Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain). email: maria.chavero@bsc.es orcid:
0000-0002-2298-1634

José M2 Ferndndez, Barcelona Supercomputing Center ,Plaga d’Eusebi Guell, 1-3, 08034
Barcelona, Spain, email: jose.m.fernandez@bsc.es orcid: 0000-0002-4806-5140

Salvador Capella-Gutiérrez, Barcelona Supercomputing Center ,Placa d’Eusebi Guell, 1-3,
08034 Barcelona, Spain, email: salvador.capella@bsc.es orcid: 0000-0002-0309-604X

Josep LI. Gelpi, 1. Barcelona Supercomputing Center, Placa d’Eusebi Guell, 1-3, 08034
Barcelona (Spain). 2. Biochemistry and Molecular Biomedicine Department, University of
Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain). email: gelpi@ub.edu orcid:
0000-0002-0566-7723

Jan Astalo§, Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava,
Slovakia, e-mail: jan.astalos@savba.sk orcid: 0000-0003-4502-4463

Boris Juri€, CESNET z.s.p.o, Generala Piky 430/26, 160 00 Praha 6, Czech republic, e-mail:
499542 @muni.cz

Miroslav Ruda, CESNET z.s.p.o, Generala Piky 430/26, 160 00 Praha 6, Czech republic, e-mail:
ruda@ics.muni.cz, orcid: 0000-0001-9123-0634



mailto:srikakus@informatik.uni-freiburg.de
mailto:srikakus@informatik.uni-freiburg.de
mailto:kuntzm@informatik.uni-freiburg.de
mailto:marchis@informatik.uni-freiburg.de
mailto:anthony.bretaudeau@inrae.fr
mailto:paul.degeest@psb.vib-ugent.be
mailto:sebastian.luna.valero@egi.eu
mailto:maria.chavero@bsc.es
mailto:jose.m.fernandez@bsc.es
https://orcid.org/0000-0002-4806-5140
mailto:salvador.capella@bsc.es
mailto:gelpi@ub.edu
mailto:jan.astalos@savba.sk
mailto:499542@muni.cz
mailto:ruda@ics.muni.cz

tukasz Opiota, Academic Computer Centre CYFRONET of the AGH University of Krakow, Nawojki
11 st., 30-950 Krakow, P.O. Box 6, Poland . email: lopiola@agh.edu.pl, orcid:
0000-0003-1997-932X

Silvia Gioiosa, HPC High Performance Computing Department, CINECA, Casalecchio di Reno,
Italy. email: s.gioiosa@cineca.it

SUPPLEMENTARY MATERIAL

As part of the EuroScienceGateway project, several European institutions have deployed
Galaxy servers and/or Pulsar endpoints to provide accessible and scalable computing
resources for the life sciences community. Table 2 summarizes the distribution of these services
across participating countries, listing the public Galaxy portals (usegalaxy.*) and the associated
Pulsar endpoints registered.

Country Institution Galaxy Pulsar
Germany iy usegalaxy.eu DEO1 and
§ development
e endpoints
=
France useqalaxy.fr FRO1
Czech Republic usegalaxy.cz Cz01

gegnet

Spain usegalaxy.es ESO1
Belgium usegalaxy.be BEO1

science meets life

Italy usegalaxy.it ITO1 (ReCas-Bari),
ITO2 (CINECA), ITO3

r (GARR), IT04 (UniMi)



mailto:lopiola@agh.edu.pl
mailto:s.gioiosa@cineca.it
https://usegalaxy.eu
https://usegalaxy.fr
https://usegalaxy.cz
https://usegalaxy.es
https://usegalaxy.be
https://usegalaxy.it

EGI 0322 - EGIO1 (Deployed by
AKX XIS AN EGI on INFN Cloud
ESI infrastructure in Italy)
Slovakia . - SKO01
Turkey @ - TUBITAKO1
ULAKBIM
Poland m - CFYO1
AGH
Norway usegalaxy.no -
Uio
Greece ! - HCMRO1
L@\\\t—}
hcamr
EANKE®OE

Table 2 - List of UseGalaxy servers and Pulsar endpoints.

Some countries, such as Italy, maintain multiple Pulsar nodes to leverage different national
infrastructures, while others contribute through either Galaxy interfaces, Pulsar nodes, or both.


https://usegalaxy.no

