
Here are a list of the Functions and Macros included within the Fuzzy Logic Function Library 
(Basic Edition): 

Functions: 
1.       Fuzzy Random Fuzzy Value (Produces a Random Fuzzy Logic value. An integer between 0 and 9.) 
2.   ​ Fuzzy Logic Inverter (Takes a Fuzzy Logic Value as input and inverts the value so True becomes False and 

False becomes True.) 
3.   ​ Fuzzy Logic Add (Takes two Fuzzy Logic Values as input and adds them, clamping the output between 0 and 

9.) 
4.   ​ Fuzzy Logic Add3 (Takes three Fuzzy Logic Values as input and adds them, clamping the output between 0 and 

9.) 
5.   ​ Fuzzy Logic Add4 (Takes four Fuzzy Logic Values as input and adds them, clamping the output between 0 and 

9.) 
6.   ​ Fuzzy Logic Average (Takes two Fuzzy Logic Values as input and outputs the average of the two values.) 
7.   ​ Fuzzy Logic Average3 (Takes three Fuzzy Logic Values as input and outputs the average of the three values.) 
8.   ​ Fuzzy Logic Average4 (Takes four Fuzzy Logic Values as input and outputs the average of the four values.) 
9.   ​ Fuzzy Logic Average5 (Takes five Fuzzy Logic Values as input and outputs the average of the five values.) 
10.​ Fuzzy Logic Average6 (Takes six Fuzzy Logic Values as input and outputs the average of the six values.) 
11.​ Fuzzy Logic Average7 (Takes seven Fuzzy Logic Values as input and outputs the average of the seven values.) 
12.​ Fuzzy Logic Average8 (Takes eight Fuzzy Logic Values as input and outputs the average of the eight values.) 
13.​ Fuzzy Logic Average9 (Takes nine Fuzzy Logic Values as input and outputs the average of the nine values.) 
14.    Fuzzy Logic Average Array (Takes an array of Fuzzy Logic Values as input and outputs the average of the 

values within the array.) 
15.    Fuzzy Logic Subtract (Takes a Fuzzy Logic Value and subtracts it from another, clamping the output between 0 

and 9.) 
16.    Fuzzy Logic Subtract2 (Takes two Fuzzy Logic Values and subtracts them from another Fuzzy Logic Value, 

clamping the output between 0 and 9.) 
17.​ Fuzzy Logic Subtract3 (Takes three Fuzzy Logic Values and subtracts them from another Fuzzy Logic Value, 

clamping the output between 0 and 9.) 
18.​ Fuzzy Logic MaximumOf2 (Selects the Maximum of two Fuzzy Logic Values.) 
19.​ Fuzzy Logic MaximumOf3 (Selects the Maximum of three Fuzzy Logic Values.) 
20.​ Fuzzy Logic MaximumOf4 (Selects the Maximum of four Fuzzy Logic Values.) 
21.​ Fuzzy Logic MaximumOf5 (Selects the Maximum of five Fuzzy Logic Values.) 
22.​ Fuzzy Logic MaximumOf6 (Selects the Maximum of six Fuzzy Logic Values.) 
23.​ Fuzzy Logic MaximumOf7 (Selects the Maximum of seven Fuzzy Logic Values.) 
24.​ Fuzzy Logic MaximumOf8 (Selects the Maximum of eight Fuzzy Logic Values.) 
25.​ Fuzzy Logic MaximumOf9 (Selects the Maximum of nine Fuzzy Logic Values.) 
26.​ Fuzzy Logic MaximumOfArray (Selects the Maximum of an array of Fuzzy Logic Values.) 
27.​ Fuzzy Logic MinimumOf2 (Selects the Minimum of two Fuzzy Logic Values.) 
28.​ Fuzzy Logic MinimumOf3 (Selects the Minimum of three Fuzzy Logic Values.) 
29.​ Fuzzy Logic MinimumOf4 (Selects the Minimum of four Fuzzy Logic Values.) 
30.​ Fuzzy Logic MinimumOf5 (Selects the Minimum of five Fuzzy Logic Values.) 
31.​ Fuzzy Logic MinimumOf6 (Selects the Minimum of six Fuzzy Logic Values.) 
32.​ Fuzzy Logic MinimumOf7 (Selects the Minimum of seven Fuzzy Logic Values.) 
33.​ Fuzzy Logic MinimumOf8 (Selects the Minimum of eight Fuzzy Logic Values.) 
34.​ Fuzzy Logic MinimumOf9 (Selects the Minimum of nine Fuzzy Logic Values.) 
35.    Fuzzy Logic MinimumOfArray (Selects the Minimum of an array of Fuzzy Logic Values.) 
36.​ Fuzzy Logic Multiplier (Multiplies a Fuzzy Logic Value by a float multiplier, and outputs the result.) 
37.​ Fuzzy Logic Weighted Add (Takes two Fuzzy Logic Values as input and adds them, using a float value as a 

multiplier for the Fuzzy Logic Inputs, clamping the overall output between 0 and 9.) 
38.​ Fuzzy Logic Weighted Add3 (Takes three Fuzzy Logic Values as input and adds them, using a float value as a 

multiplier for the Fuzzy Logic Inputs, clamping the overall output between 0 and 9.) 



39.​ Fuzzy Logic Weighted Add4 (Takes four Fuzzy Logic Values as input and adds them, using a float value as a 
multiplier for the Fuzzy Logic Inputs, clamping the overall output between 0 and 9.) 

40.​ Fuzzy Logic Weighted Add5 (Takes five Fuzzy Logic Values as input and adds them, using a float value as a 
multiplier for the Fuzzy Logic Inputs, clamping the overall output between 0 and 9.) 

41.​ Fuzzy Logic Weighted Add6 (Takes six Fuzzy Logic Values as input and adds them, using a float value as a 
multiplier for the Fuzzy Logic Inputs, clamping the overall output between 0 and 9.) 

42.​ Fuzzy Logic Weighted Average (Takes two Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the two values.) 

43.​ Fuzzy Logic Weighted Average3 (Takes three Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the three values.) 

44.​ Fuzzy Logic Weighted Average4 (Takes four Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the four values.) 

45.​ Fuzzy Logic Weighted Average5 (Takes five Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the five values.) 

46.​ Fuzzy Logic Weighted Average6 (Takes six Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the six values.) 

47.​ Fuzzy Logic Weighted Average7 (Takes seven Fuzzy Logic Values as input then uses a multiplier to adjust 
their values, finally outputting the average of the seven values.) 

48.​ Fuzzy Logic Weighted Average8 (Takes eight Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the eight values.) 

49.​ Fuzzy Logic Weighted Average9 (Takes nine Fuzzy Logic Values as input then uses a multiplier to adjust their 
values, finally outputting the average of the nine values.) 

50.​ Fuzzy Logic Weighted Subtract (Takes a Fuzzy Logic Value and uses a float multiplier to adjust its value, then 
subtracts it from another Fuzzy Logic Value, clamping the output between 0 and 9.) 

51.​ Fuzzy Logic Weighted Subtract2 (Takes two Fuzzy Logic Values and uses a float multiplier to adjust their 
values, then subtracts them from another Fuzzy Logic Value, clamping the output between 0 and 9.) 

52.​ Fuzzy Logic Weighted Subtract3 (Takes three Fuzzy Logic Values and uses a float multiplier to adjust their 
values, then subtracts them from another Fuzzy Logic Value, clamping the output between 0 and 9.) 

53.​ Fuzzy Logic Boolean Value Mapping (Maps a Boolean value to a Fuzzy Logic Value between 0 and 9, 
outputting a 0 for False and a 9 for True.) 

54.​ Fuzzy Logic Multi Boolean Value Mapping (Maps an array of Boolean values to a Fuzzy Logic Value. Works 
with a minimum of 1 Boolean values in an Array. Maps an array of Boolean values to a Fuzzy Logic Value 
between 0 and 9 with a value closer to 0 being more false and a value closer to 9 being more true.) 

55.    Fuzzy Logic Fuzzy To Boolean Mapping (Takes a Fuzzy Logic Value as input and maps the value to either    
…    True or False. If “Must be Mostly True” is selected, then there will be a higher burden to get a truth value.) 
56.​ Fuzzy Logic Float Value Range Mapping (Takes an input float and a minimum and maximum value and maps 

it to a Fuzzy Logic Value.) 
57.​ Fuzzy Logic Int Value Range Mapping (Takes an input Integer and a minimum and maximum value and maps 

it to a Fuzzy Logic Value.) 
58.    Mixed Logic Average Boolean and Fuzzy Logic Value (Takes an input Fuzzy Logic Value and an input 

Boolean and averages them, outputting the Fuzzy Logic Value product of the average.) 

  

  

  

  

  

  

  



Macros: 
1.       Fuzzy Branch (Branches the code execution based on a Fuzzy Logic Value input, routing the flow along one of 

10 paths.) 
2.   ​ Fuzzy Inverted Branch (Branches the code execution based on a Fuzzy Logic Value input but inverted, routing 

the flow along one of 10 paths.) 
3.   ​ Fuzzy Boolean Branch (Branches the code execution based on a Fuzzy Logic Value input, routing the flow 

along a true or false path.) 
4.   ​ Fuzzy Ternary Branch (Branches the code execution based on a Fuzzy Logic Value input, routing the flow along 

a true, mixed or false path.) 
5.   ​ Fuzzy Quaternary Branch (Branches the code execution based on a Fuzzy Logic Value input, routing the flow 

along a true, mostly true, mostly false or false path.) 
6.   ​ Fuzzy Quinternary Branch (Branches the code execution based on a Fuzzy Logic Value input, routing the flow 

along a true, mostly true, mixed, mostly false or false path.) 
7.   ​ Fuzzy Inverted Boolean Branch (Branches the code execution based on a Fuzzy Logic Value input, but 

inverted, routing the flow along a true or false path.) 
8.   ​ Fuzzy Inverted Ternary Branch (Branches the code execution based on a Fuzzy Logic Value input, but 

inverted, routing the flow along a true, mixed or false path.) 
9.   ​ Fuzzy Inverted Quaternary Branch (Branches the code execution based on a Fuzzy Logic Value input, but 

inverted, routing the flow along a true, mostly true, mostly false or false path.) 
10.​ Fuzzy Inverted Quinternary Branch (Branches the code execution based on a Fuzzy Logic Value input, but 

inverted, routing the flow along a true, mostly true, mixed, mostly false or false path.) 
11.​ Fuzzy Boolean to Ternary Branch (Takes two input Booleans and routes the execution chain along a true, 

mixed or false path.) 
12.​ Fuzzy Boolean to Quaternary Branch (Takes three input Booleans and routes the execution chain along a true, 

mostly true, mostly false or false path.) 
13.​ Fuzzy Boolean to Quinternary Branch (Takes four input Booleans and routes the execution chain along a true, 

mostly true, mixed, mostly false or false path.) 
14.​ 2 Bit Branch (Takes two input Booleans and routes the execution chain along one of four paths.) 
15.​ 3 Bit Branch (Takes three input Booleans and routes the execution chain along one of eight paths.) 
16.    NOT Branch (An inverted Branch node where a true value outputs False and a false value outputs True.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fuzzy Branch Node 
 
At the heart of traditional Boolean Logic is the 
Branch Node. It uses a condition, either true or 
false, to route the flow of the code accordingly. 
Fuzzy Logic takes the concepts of Branching 
Logic and evolves them beyond binary. 
A Fuzzy Input is a Fuzzy Logic Value, or an 
integer clamped between 0 and 9. 
From a value within this range, we are able to 
route the flow along many more possible 
directions, each representing a degree of truth 
with values closer to 0 being more false and 
closer to 9 being more true. 
 
The standard Fuzzy Branch node will route the 
channel along the corresponding value. The 
Fuzzy Inverted Branch does the same, but the 
inverted value. Equivalent to using a Fuzzy 
Inverter Function on the input pin of a regular 
Fuzzy Branch node. 
 
Like Boolean Logic, Fuzzy Logic can also be 
used to branch code along two pathways, either 
True or False.  
How this differs from a standard branch node 
however, is its ability to factor degrees of truth 
within its input variable before making a final true or false choice. 
That means the code setting the Fuzzy Input can involve nuanced decision making or a more complex set of 
conditional checks before the final decision is made. 
For example, the Fuzzy Input could take the average of an array of Boolean values using (INSERT LATER), and then 
use that output and a different Fuzzy Logic Variable to select the maximum of the two, which is then set as the Fuzzy 
Input. The Fuzzy Input value from 0 to 9 is then compressed into a True or False execution channel for code. 
This node’s inverted counterpart simply performs True when the value is False and False when the value is True. It’s 
equivalent to using a “Fuzzy Logic Inverter” as the Fuzzy Input pin. 
 
Ternary is a type of computing dealing with three values instead of two like in Binary computing. It’s a different base 
number system (Base 3). A Fuzzy Logic Input Value is used to select from one of three code execution channels. 
Three states is the lowest possible resolution for having Degrees of Truth represented by a spectrum. 
This kind of decision making is very close to binary, also including “True” and “False”, but with the additional “Mixed” 
output state. 
This node’s inverted counterpart simply performs True when the value is False and False when the value is True. 
Mixed stays the same. It’s equivalent to using a “Fuzzy Logic Inverter” as the Fuzzy Input pin. 
 
Quaternary (Base 4) allows you to have slightly higher resolution branching behavior represented by 4 states, “True”, 
“Mostly True”, “Mostly False” and “False”. A Fuzzy Logic Input Value is used to select from one of these four code 
execution channels. 
At this level of resolution, the “Mixed” option from the Ternary branch is split into two possible states each favoring 
either True or False. The perfect middle state is absent from this base number system because it has an even 
number of execution channels. 
This node’s inverted counterpart is equivalent to using a “Fuzzy Logic Inverter” as the Fuzzy Input pin. 
 
Quinternary (Base 5) allows you to have slightly higher resolution branching behavior represented by 5 states, “True”, 
“Mostly True”, “Mixed”, “Mostly False” and “False”. A Fuzzy Logic Input Value is used to select from one of these five 
code execution channels. 
At this level of resolution, the “Mixed” option from the Ternary branch returns, while the “Mostly True” and “Mostly 
False” options remain as well. The perfect middle state is present from this base number system because it has an 
odd number of execution channels. 
This node’s inverted counterpart is equivalent to using a “Fuzzy Logic Inverter” as the Fuzzy Input pin. 
 



Advanced Branch Node 
 
The advanced Branch Nodes are a series of 
Boolean Branch nodes that enhance the 
functionality of Boolean Branching Logic. 
The NOT branch is equivalent to using a NOT as 
an input condition for a standard Branch Node. 
The 2Bit Branch takes two input conditions and 
produces branching behavior based on two sets of 
Boolean values, routing to one of four code 
execution channels. 
The 3 Bit Branch does something similar but with 
three input Booleans being routed to one of eight 
code execution channels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
There are also Branch nodes in this toolkit that takes 
multiple Boolean Inputs and map them to fuzzy logic output 
channels. These Macros include: 
Fuzzy Boolean to Ternary Branch, which takes two input 
Booleans and maps them to either True, Mixed or False 
output channels. 
Fuzzy Boolean to Quaternary Branch, which takes three 
input Booleans and maps them to either True, Mostly True, 
Mostly False or False. 
Fuzzy Boolean to Quinternary Branch, which takes four 
input Booleans and maps them to either True, Mostly True, 
Mixed, Mostly False or False. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
So there’s a few things going on in this graph. The first I’ll go over is the “Simple Repeater”. 
This isn’t really to do with fuzzy logic but it’s a trick I found that can produce a repeating flow execution 
periodically. This is mainly for testing purposes to demonstrate the color changing spheres in the example 
project, but feel free to replicate and use within your own projects should you ever desire an endless 
repeating loop not linked to Tick Events. Similar to using a timer. 
The Fuzzy Branch Macro itself takes an input value from 0 to 9 and routes the flow along one of 10 paths. 
This particular Macro is designed to give you a high resolution spectrum of Truth with 9 True and 0 being 
False. Every value in-between represents a degree of Truth or Falsehood. 
To produce the Fuzzy Logic value in this example Blueprint, we use a Get Distance To node to compare 
the distances between the character and the Sphere. We then use a Fuzzy Logic Float Value Range 
Mapping function to map the distance float to a Fuzzy Logic Value. To do this, we give a minimum and 
maximum value for the range the distance float occupies and then this data is used to map the 
information onto a Fuzzy Logic Spectrum. In this example blueprint, we set the Invert Boolean to true so 
that when the player is closer to the sphere, that will produce a more true value as opposed to a more 
false value. 
There are instances when using fuzzy logic when you may need to invert the spectrums because two 
values you want to adjust could represent logically inverse concepts. For example, if you had “Player 
Karma is High” represented with a spectrum of degrees of truth, but also had “Player Luck is Low” 
represented with a spectrum of degrees of truth, you might encounter a scenario where you want to take 
both of these values into the decision making process. By applying an inverter to either value, you can 
make it easier to produce emergent Fuzzy Logic Values that are driven by more fundamental Fuzzy Logic 
Values. 
 



 
In this graph here, we can see that an array of 9 boolean values is being mapped to a Fuzzy 
Logic Value (An integer between 0 and 9) by a ‘Fuzzy Logic Multi Boolean Value Mapping’ 
Function. The resulting variable is then used to decide from one of three execution paths for the 
code using a Fuzzy Ternary Branch. This is a good example of how Fuzzy Logic can harmonize 
with Boolean logic, enhancing the capabilities of both logic types. 
 



 
 
In this example, a Boolean value is averaged with a Fuzzy Logic value to collectively decide 
which code execution path should be taken using a “Fuzzy Branch” Macro. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
In this example, we are getting the maximum of four input Fuzzy Logic values and then using 
the highest of these values to decide the execution path for the code using a “Fuzzy Branch” 
Macro. 
Functions like the maximum and minimum can be used if your game’s require logic where any 
of several conditions being particularly high or low is important for decision making. For 
example: You could have several stats like Health, Hunger, Thirst and Sanity, and if you want 
logic where the player is forced to maintain high stats, you could take the minimum of these four 
stats and inflict a penalty based on Fuzzy Branching nodes based on how low the minimum 
value is. 
 
 
 
 
 
 
 
 
 
 



 
Here’s a real use case example from the game I’m developing called The Backrooms: Mass 
Extinction. 
Here, you can see five stats (Hunger, Thirst, Health, Sanity and Air) are being mapped to a 
Fuzzy Logic value by the node “Fuzzy Logic Float Value Range Mapping”, which is taking the 
float values for these stats and their minimum and maximum values, and they are projecting the 
stat onto a Fuzzy Logic Value. 
This can be a useful way to convert variables into Fuzzy Logic Variables. 
The five mapped values are then averaged, but with some values having more weight than the 
others. This is done with the “Fuzzy Logic Weighted Average 5” function. In this example, Health 
has double the weight compared to the other Fuzzy Logic Variables. 
The output value of this simple node graph is a value which determines the overall Truthfulness 
of this statement: “Player Stats Healthy”. 
This variable then gets used for decision making purposes in different parts of my project such 
as in the score system where a score is calculated at the end of the game, or the mercy system, 
which gives mercy to the player based on how poor their stats are. 
There are a lot of creative ways to implement fuzzy logic! 



Here’s another more complicated graph from my game The Backrooms: Mass Extinction. 
If you ever want to use an Enumeration to produce fuzzy logic values, then use a select node 
and create an integer between 0 and 9 based on what value you want each element to 
correspond to. There’s a few ways you could implement something like that, such as the way I 
have above, turning difficulty settings for the game into Fuzzy Logic values that are then 
measured up in a weighted average. 
This graph also has an example of inversion, where for the two fuzzy logic variables, in order to 
be used in a function together, one has to be inverted. This can happen when a variable 
represents a concept that needs to be inverted, such as: Player Hungry, to Player Not Hungry. 


