

Regular Definitions

These will look like the productions of a context free grammar we saw previously,
but there are differences. Let Σ be an alphabet, then a regular definition is a
sequence of definitions

 d1 → r1
 d2 → r2
 ...
 dn → rn
where the d's are unique and not in Σ and​
ri is a regular expressions over Σ ∪ {d1,...,di-1}.

Note that each di can depend on all the previous d's.

Example: C identifiers can be described by the following regular definition

 letter_ → A | B | ... | Z | a | b | ... | z | _
 digit → 0 | 1 | ... | 9
 CId → letter_ (letter_ | digit)*

Example : Unsigned numbers (integer or floating point) are strings such as 5280, 0.01234,
6.336E4, or 1.89E-4.

The regular definition

Extensions of Regular Expressions:
1.​ One or more instances. The unary, postfix operator + represents the positive closure of

a regular expression and its language. Tha t is, if r is a regular expression, then (r) +
denotes the language (L(r)) + . The operator + has the same precedence and
associativity as the operator *.
Two useful algebraic laws, r* = r + e and r = rr* = r*r relate the Kleene closure and
positive closure.

2.​ Zero or one instance. The unary postfix operator ? means "zero or one occurrence."
That is, r? is equivalent to r|e, or put another way, L(r?) = L(r) U {e}. The ? operator
has the same precedence and associativity as * and +.

3.​ Character classes. A regular expression qi,, where the a^s are each symbols of the
alphabet, can be replaced by the shorthand [a1,a2,….. an]. More importantly, when
a1,a2,….. an in a logical sequence, e.g., consecutive uppercase letters, lowercase
letters, or digits, we can replace them by a1-an , that is, just the first and last separated
by a hyphen. Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand for a|b|.--|z

Write a We can Rewrite Regular definition for unsigned number using above extension

Extensions of Regular Expressions:
1. One or more instances. The unary, postfix operator + represents the positive closure of a regular
expression and its language. Tha t is, if r is a regular expression, then (r) + denotes the language (L(r))
+ . The operator + has the same precedence and associativity as the operator *. Two useful algebraic
laws, r* = r + e and r = rr* = r*r relate the Kleene closure and positive closure.

2. Zero or one instance. The unary postfix operator ? means "zero or one occurrence."

Tha t is, r? is equivalent to r|e, or put another way, L(r?) = L(r) U {e}.

The ? operator has the same precedence and associativity as * and +. 3.

Character classes. A regular expression qi,, where the a^s are each symbols of the alphabet, can be
replaced by the shorthand [aia,2 • • - an]. More importantly, when 01,02,.. . ,a n f° r m a logical
sequence, e.g., consecutive uppercase letters, lowercase letters, or digits, we can replace them by oi-a
n , tha t is, just the first and last separated by a hyphen. Thus, [abc] is shorthand for a|b|c, and [a-z] is
shorthand for a|b|.--|z

3.4 Recognition of Tokens
we must study how to take the patterns for all the needed tokens and build a piece of code that
examines the input string and finds a prefix that is a lexeme matching one of the patterns.

• Patterns are denoted with regular expressions, and recognized with finite state automata

 • Regular definitions, a mechanism based on regular expressions, are popular for specification of
tokens

 • Transition diagrams, a variant of finite state automata, are used to implement regular definitions and
to recognize tokens • Usually used to model LA before translating them to executable programs.

Assume the following grammar for the following discussion

where the terminals if, then, else, relop, id and num generates sets of strings given by following
regular definitions

●​ For this language, the lexical analyzer will recognize the keywords if, then, and else, as well
as lexemes that match the patterns for relop, id, and number.

●​ We know that keywords are also reserved words: that is they cannot be used as identifiers.
●​ The num represents the unsigned integer and real numbers of Pascal.
●​ In addition, we assume lexemes are separated by white space, consisting of nonnull sequences

of blanks, tabs, and newlines.
●​ Our lexical analyzer will strip out white space. It will do so by comparing a string against the

regular definition ws, below.

•​ If a match for ws is found, the lexical analyzer does not return a token to the parser.

•​ It is the following token that gets returned to the parser.

Tha following table shows, for each lexeme or family of lexemes, which token name is returned to the
parser and what attribute value.

Transition Diagrams
It is a directed labeled graph consisting of nodes and edges. Nodes represent states, while edges
represent state transitions.

Components of Transition Diagram
One state is labelled the Start State. It is the initial state of transition diagram where control resides
when we begin to recognize a token.

Position is a transition diagram are drawn as circles and are called states.

The states are connected by Arrows called edges. Labels on edges are indicating the input characters

Zero or more final states or Accepting states are represented by double circle in which the tokens has
been found.

Here is the transition diagram of Finite Automata that recognizes the lexemes
matching the token relop.

Here is the Finite Automata Transition Diagram for the Identifiers and
Keywords.

Here is the Finite Automata Transition Diagram for the Unsigned Numbers

Transition Diagram for whitespace:

	Regular Definitions
	Extensions of Regular Expressions:
	Extensions of Regular Expressions:
	3.4 Recognition of Tokens
	Transition Diagrams
	Components of Transition Diagram
	Here is the transition diagram of Finite Automata that recognizes the lexemes matching the token relop.
	Here is the Finite Automata Transition Diagram for the Identifiers and Keywords.
	Here is the Finite Automata Transition Diagram for the Unsigned Numbers
	Transition Diagram for whitespace:

