Why is arrow utf8 neq kernel slower
than native Rust

Dec 12, 2020
Andrew Lamb

[Update (Dec 13): There is a PR up for arrow that brings the performance closer to parity -- see
Dec 13, 2020 update section]

In the Rusty intro to Arrow InfluxDB 10x Tech Talks — December 2020 edition, and (slides) we
observed that arrow is slower than native Rust for string comparison and | hand waved it away
as it was a minor point in a larger discussion.

rdettai@gmail.com brought it up in an email, and we looked into the discrepancy more.

It turns out that most of the difference can be accounted for by the time needed to create the
output arrow array. Running under Instruments on my laptop, fully 38 percent of the time is
actually spent creating the output bitset:

(3 File Edit View Document Window Help © & M523 %8 B1o0% 2 38 1825RPM 105°) . 2 4 100%B SatDec12 826AM Q @ i=

eoe Untitled
B MacBook Pro) All Processes Run 10f 1 | 00:00:12 + A8) B

EXT® Threads CPUs Instruments Duplicste
. L e e T e T
%
Wit |
e ML
" Bl
© Points of Interest
o points
Cisnent]
© thermalstate
e current [
chU Usage
Profile) Root rusty string_comp (49547) a n
Weightv Self Weight Symbol Name: Heaviest Stack Trace =

6075 98.8% 0s 6065 Main Thread Oxd7b24e
6065 98.8% o0s oee e
6065 98.8% os a 6062 main
6065 98.8% 0s ebeagfbsofes 20
et o Rl oot eT00 [6062 std:irtlang start internal:hebeaB3fb59fes72e
6065 98.8% os 1 try:he14232182020729 4] € camz M EAEIEER
6065 98.8% os A \g:try::do_callzh2d40babdadc2dcdb rust mp I 6062 std::par
6065 98.8% os 1 LT OncesLT$ASGT: $::call f <O rusty_string_comp ¥ 6062 std:zpar
6065 98.8% os 1 vstd art:: Su7b$$u7bSclosureSu7d$Su7ds:hbd6d4241ef20e2f1 rusty comp 6062
6065 98.8% os [vsta _rust_begin_short_ sty_string_comp I 6062 stdsrtlan
6065 98.8% os [1090 rusty.string ¥ 6062 stat:s short_backtrace::h27821c667d2480bd
3845 62.5% os [hf3d6f67808d6c4 1 rusty string comp 1 cos2
3805 61.9% os 1 62¢a227778586af2 rusty.string comp
e o T ¥ 2224 rusty_string_comp::on: arrow:h5b71060841441036
o oo I 1414 uis,
5.00 m: 5.00ms Y 538 _sLTs: build TS
4.00 m: 4.00ms [70 arrow:utitzbit_utilzset bit_raw::h317512665807b83c
1.00 m 1.00 m:
[2225 362% __ osa
< 25.0% e 3705198 gcom
< 536.00 s>8. 7% 3B000 TS T ~ h tat build
—mwms §e%_ 0s| i Creation of the output bit array takes ~ 38% of the time
00 2.3% 21.00ms [rusty_string_com
Ums 0.5% 8L fer. raits. iterat RangesLTSASGTSSGT Actual comparison takes ~30% of the time
14.00ms 0.2% ust o
5.00ms 0.0% s » s build TSarrow. datat build ATraitsLT:
1.00ms 0.0% os 1 118 scal rusty.string_com Br of call to
0o ms 124" B x
30.00ms 0.4% 3000ms | DYCB-STUBSSmememp. rusty string com neq_utf8_scalar
9.00ms 0.1% os 1 i 7102661
5.00ms 0.0% os
2.00ms 0.0% os 1 usty.string_con
2.00ms 0.0% os [057 rusty string comp
100ms 0.0% os Accessing each string element
3.00ms 0.0% 0s (and bounds checks)
54.00ms 0.8% o0s o
7 00me 0.1% s takes ~17% of the time
6.00ms 0.0% o0s
1.00ms 0.0% os

Input Fiter | @ CallTree) Call Tree Constraints Data Mining

When | dug into it a little, there was a bunch of seemingly low hanging fruit. For example
ensuring the size was reserved once up front rather than each time.

mailto:rdettai@gmail.com
https://github.com/apache/arrow/pull/8900
https://www.youtube.com/watch?v=dQFjKa9vKhM&feature=emb_logo
https://docs.google.com/presentation/d/1BuG1XA9CrM-KjFGMzFEcomsu06whX8ZegXh2VjuqYAs/edit#slide=id.gaecbcc972c_0_36

®7..).)r.)) B $iTsarro build T$arrow. datat

ypest TraitLTarrow. datatypes. PeSGTSSGT:
2 G BN %
impl BufferBuilderTrait<BooleanType> for BufferBuilder<BooleanType> {
n new(capacity: usize) —> Self {
let byte_capacity = bit_util::ceil(capacity, 8);
let actual_capacity = bit_util::round_upto_multiple_of_64(byte_capacity);
let mut buffer = MutableBuffer::new(actual_capacity);
buffer.set_null_bits(@, actual_capacity);
self {
buffer,
len: @,
_marker: PhantomData,
¥
¥
n advance(&mut self, i: usize) -> Result<()> {
let new_buffer_len = bit_util::ceil(self.len + i, 8);
self.buffer.resize(new_buffer_len)?;
self.len += i;
ok(())
¥
n append(&mut self, v: bool) -> Result<()> { 0 154x
self.reserve(1)?; 0 79x
if v { o 1x
// For performance the ‘len’ of the buffer is not updated on each append but
// is updated in the 'freeze' method instead.
unsafe {
bit_util::set_bit_raw(self.buffer.raw_data_mut(), self.len); 0 79
364 bl
b
self.len += 1; 0 ax
ok(()) o 14
} 0 153

n append_n(&mut self, n: usize, v: bool) -> Result<()>
self.reserve(n)?;
ifni=08& v {

Experimental setup:

The code | used can be found here: https://github.com/alamb/arrow_string_comp and did two
things:

1. Profile with instruments to see where the time (in arrow) is going
2. Run against latest arrow mater (rather than 2.0 release)

The program makes 20M instances of 3 distinct strings and then filters out 1 of 3 of those 10
times in a loop

Here is what example_with_vec does:
let not west bitset: Vec<bool> = string vec
.iter()

.map(|s| s !'= "us-west")
.collect () ;

Here is what example_with_arrow does:

let not west bitset = neq utf8 scalar(&array, "us-west").unwrap();

https://github.com/alamb/arrow_string_comp

Here is the output:
cargo run --release

Hello,

world!

example with vec
created array with 20000000 elements in 1.096240239s

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

finding
finding
finding
finding
finding
finding
finding
finding
finding
finding

bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:

20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000

elements
elements
elements
elements
elements
elements
elements
elements
elements
elements

in
in
in
in
in
in
in
in
in
in

62
51

57

57

.169064ms
.469797ms
51.
53.
55.
56.
.243619ms
55.
.317761ms
58.

104856ms
626129ms
967121ms
630698ms

918409ms

78041ms

example with arrow

20000000 elements in 688.
141.382892ms
139.243362ms
135.835819ms
134.969208ms
136.255583ms
134.158282ms
136.794011ms
134.795349ms
137.669832ms
133.383716ms

created array with 184769%ms
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000

20000000

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

| also tried the same experiment on arrow master at
db20c7a611adac7be5cdd9350792852345f5b6b4 and it turns out the performance has actually

slowed down a bit.

example with arrow

20000000 elements in 1.346098327s
180.012658ms
175.848718ms
178.413715ms
173.68871ms
179.408338ms
176.348492ms
173.9123ms
176.258987ms

created array with
20000000 not
20000000 not
20000000
20000000
20000000
20000000
20000000
20000000

Found in west in

Found in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

https://github.com/apache/arrow/commit/db20c7a611adac7be5cdd9350792852345f5b6b4

Found 20000000 not in west in 173.501113ms
Found 20000000 not in west in 172.746955ms

Update December 13, 2020: community is working!

rdettai@gmail.com points at this PR from Daniél Heres
https://github.com/apache/arrow/pull/8900 which speeds things up (largely by avoiding the
Builder).

And when using the code in commit/23c8ff28e56ccb381bcbb321dcbbb946d8fd7db0, the output
now shows arrow almost at par with basic rust (and still handling nulls, etc):

Hello, world!
example with vec

created array with 20000000 elements in 1.200794699s

Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed
Completed

finding
finding
finding
finding
finding
finding
finding
finding
finding
finding

bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:
bitset:

20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000

elements
elements
elements
elements
elements
elements
elements
elements
elements
elements

in
in
in
in
in
in
in
in
in
in

82

62

.056189%ms
59.
53.
.333645ms
55.
55.
53.
53.
53.
55.

89274 6ms
485284ms

681219ms
758439%ms
423546ms
974439%ms
547294ms
003746ms

example with arrow

20000000 elements in 801.
85.545518ms
77.341209ms
80.133018ms
80.703599ms
81.245902ms
79.48747ms
78.57811ms
78.758314ms
77.196055ms
78.034662ms

created array with 781593ms
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000
20000000

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

Found not in west in

mailto:rdettai@gmail.com
https://github.com/apache/arrow/pull/8900
https://github.com/Dandandan/arrow/commit/23c8ff28e56ccb381bcbb321dcbbb946d8fd7db0

	Why is arrow utf8_neq kernel slower than native Rust
	Experimental setup:
	Update December 13, 2020: community is working!

