
GSoC 19: GRAPH C++ Boost graph algorithms 
for pgRouting  

 
 

1. Contact Details 
2. Title 

3. Brief Project Description 

4. State of the Project Before GSoC 

5. Benefits to Community 

6. Deliverables 

7. Timeline 

8. Do you understand this is a serious commitment, equivalent to a full​ time paid summer 
internship or summer job? 

9. Do you have any known time conflicts during the official coding period? 

10. Studies 
What is your School and degree? 
Would your application contribute to your ongoing studies/degree? If 
so, how? 

11. Programming and GIS 
Computing experience 
GIS experience as a user 
GIS programming and other software programming 

12. GSoC Participation 
Have you participated to GSoC before? 
Have you submitted/will you submit another proposal for this year's GSoC to a different 
org? 

13. pgRouting Application Requirements 

14. Detailed Proposal 
topological sort 

Proposed Signature 
Usage 

transitive closure: 
Proposed Signature 
Usage 

pgr_lengauer_tarjan_dominator_tree 



Proposed Signature 
Usage 

15. References 

1. Contact Details 
 

●​ Name:​​ Hang Wu 
●​ Country:​ China 
●​ Email:​ ​ nike0good@gmail.com 
●​ Phone:​​ +86-18650996599 
●​ Location:​ Xi’an, China, +8:00 GMT 
●​ Github:​​ https://github.com/nike0good 
●​ Personal blog: blog.csdn.net/nike0good  
●​ Personal blog: nike0good.com 

 

2. Title 
Implement GRAPH C++ Boost graph algorithms for pgRouting. 

 

3. Brief Project Description 
 
My project will focus on implementing: 

●​ topological sort 
Topological sort is a sorting algorithm. It is a linear ordering of its vertices such that 

for every directed edge uv from vertex u to vertex v, u comes before v in the ordering.[1] 
●​ transitive closure 

The concept of transitive closure can be thought of as constructing a data structure 
that makes it possible to answer reachability questions. That is, can one get from node a to 
node d in one or more hops? A binary relation tells you only that node a is connected to 
node b, and that node b is connected to node c, etc.[2] 

●​ lengauer tarjan dominator tree 
A dominator tree is a tree where each node's children are those nodes it immediately 

dominates. Because the immediate dominator is unique, it is a tree. The start node is the 
root of the tree.[3] 

 
I propose to add the above 3 algorithms into pgRouting during the GSoC period. 
 

4. State of the Project Before GSoC 
pgRouting currently does not have these algorithms implemented.  
 
Topological sort is a common sorting algorithm of graph. However, a single standard function 
does not exist.   
 



Floyd’s algorithm implemented in pgRouting can also answer reachability question. 
However, it has a higher run-time complexity. Transitive closure is required 
 
Also lengauer tarjan dominator tree is not implemented before in pgRouting. So far, a single 
standard function does not exist. 
  

5. Benefits to Community 
These three algorithms help users in some cases. 
 
For instance, if a person wants to go to various places, and there are some restrictions, like 
a place should go after another. Then topological sort works. 
 
Secondly, sometimes people there are some blocks or traffic jam, and people want to know 
whether it is possible to go to one place from another place. They can use transitive closure. 
 
What’s more, lengauer tarjan dominator tree helps users know which vertices are ‘important’. 
That is to say, if node u dominate node v, it means node u is important because one cannot 
travel from the root to node v without node u. 
 
 

6. Deliverables 
1.​ Implementation of topological sort for pgRouting. 

I need to construct function pgr_topological_sort() and it will return one of the 
possible ordering according to the DAG. 

2.​ Implementation of transitive closure for pgRouting. 
I need to construct function pgr_transitive_closure() and it will return which node it 
can reach. 

3.​ Implementation of lengauer tarjan dominator tree for pgRouting. 
I need to construct a function pgr_lengauer_tarjan_dominator_tree() and it will return 
which node it can reach. 
To construct dominator tree from a graph $G$, we have such steps: 

1.​ choose a node as root R 
2.​ DFS and relabeled the nodes. 
3.​ Calc the sdom. 
4.​ Calc some nodes’ idom from sdom according to the formula. 
5.​ Again, calc the rest nodes’ idom. 

PS: Union-Find Set is required during Step 4 and Step 5.   
 

Each implemented function will be delivered with the relevant documentation and tests 
included. 
 

7. Timeline 
Community Bonding Period 

➢​ Set up the development environment. 



➢​ Interact with mentors, introduce myself to the community and actively get 
involved in the discussion. 

➢​ Get familiar with pgRouting’s development style. Understand expected 
coding, documentation and testing standards set by pgRouting. 

➢​ Set up wiki page to keep track of weekly progress. 
➢​ Develop a better understanding of PostgreSQL, PostGIS, Pl/pgSQL and how 

they interact with pgRouting. 
➢​ Learn to create unit tests using pgTap. 
➢​ Implement simple dummy functions to better understand pgRouting. 

 
 
 

 
First Coding Period 

 

Time Period Proposed Work 

Week 1  
(May 27th - June 
2nd)  

➢​ Design pgr_topological_sort() function. 

Week 2 
(June 2nd - 
June 9th) 

➢​ Create a basic skeleton for documentation and tests. 

Week 3  
(June 10th - 
June 16th) 

➢​ Implement pgr_topological_sort() function along its helper files. 
➢​ Basic testing. 

Week 4 
(June 17th - 
June 23rd) 

➢​ Prepare a report for First Evaluation. 

 
 
➢​First Evaluation Period: 

○​ Submit working pgr_topological_sort() function (albeit without documentation 
and pgTap tests). 

○​ Mentors evaluate me and vice-versa. 
 
 

Second Coding Period 
 

Time Period Proposed Work 



Week 5 
(June 24th - 
June 30th) 

➢​ Work on feedback provided from the first evaluation. 
➢​ Prepare documentation for pgr_topological_sort() function. 

Week 6 
(July 1st - July 
7th) 

➢​ Complete testing along with writing pgTap tests for 
pgr_topological_sort() function. 

Week 7 
(July 8th - July 
14th) 

➢​ Design pgr_transitive_closure() function. 
➢​ Create a basic skeleton for documentation and tests. 

Week 8 
(July 15th - July 
21st) 

➢​ Begin implementation of pgr_transitive_closure() function. 
➢​ Create a basic skeleton for documentation and tests. 
➢​ Design pgr_lengauer_tarjan_dominator_tree() function. 
➢​ Prepare a report for Second Evaluation.  

 
 
➢​Second Evaluation Period: 

○​ Submit documentation and all tests for pgr_topological_sort() function. 
○​ Submit design of pgr_transitive_closure() function 

pgr_lengauer_tarjan_dominator_tree() function and along with a basic 
skeleton of its helper files, documentation and tests. 

○​ Mentors evaluate me and vice-versa. 
 
 
 

Third Coding Period 
 

Time Period Proposed Work 

Week 9  
(July 22nd - July 
28th) 

➢​ Work on feedback provided from the second evaluation. 
➢​ Complete the implementation of pgr_transitive_closure() 

function.Each implemented function will be delivered with the 
relevant documentation and tests included. 

Week 10 
(July 29th - 
August 4th) 

➢​ Begin implementation of pgr_lengauer_tarjan_dominator_tree() 
function. 

Week 11  
(August 5th - 
August 11th) 

➢​ Complete testing along with writing pgTap tests for 
pgr_transitive_closure() function and 
pgr_lengauer_tarjan_dominator_tree() function. 

Week 12 
(August 12th - 
August 18th) 

➢​ Review, complete and finalize all documentation and tests. 
➢​ Create a detailed final report. 



 
➢​Final Evaluation Period: 

○​ Submit complete project with all required functions, documentation and unit 
tests. 

○​ Submit final report and evaluation of mentors. 

8. Do you understand this is a serious commitment, 
equivalent to a full​ time paid summer internship or 
summer job? 
 
Yes, I understand that this is a serious commitment and the expectations from me are the 
same as any other full-time internship/job. I am ready to put in my best efforts, improve 
pgRouting and help the community. 
 
 

9. Do you have any known time conflicts during the 
official coding period? 
 
No. 
 
10. Studies 
 
What is your School and degree? 
School:​ Xi’an Jiaotong University 
Degree:​ Master of Technology in Computer Science and Technology 
 
Would your application contribute to your ongoing studies/degree? 
If 
so, how? 
Yes, this application will contribute to my ongoing Degree.  
 
I am an algorithmic coder, and I always represent my university to host algorithm 
competitions. However, I lack the experience of practical projects. This project broadens my 
vision and makes a good influence on my resume. 

 
 



11. Programming and GIS 
 
Computing experience 
➢​ Programming Languages: C++, C, Python 3, MATLAB, Java, Pascal, HTML, CSS, 

SQL 
➢​ Operating Systems:Windows 10, MacOS 
➢​ Tools: Git 
➢​ Relevant Courses Completed: Data Structures, Java(Android). 

 
GIS experience as a user 
 
GIS programming and other software programming 
➢​ Worked on “Wuzi Chess”(Andriod Project) in Java&Android Class. 
➢​ Graduation Project, Research of Knowledge Graph for medicial.  
➢​ Public C++ related programming/projects:  

○​ Code submissions on various competitive programming platforms such as 
Codeforces, BZOJ, POJ, vjudge, Topcoder, etc. I have a small Github 
repository of a few C++ algorithm templates I use frequently in various 
algorithmic competitions. 

○​ Set problems for contest, such as ACM-ICPC, Asia Shenyang Regional Contest  
 
 
 

12. GSoC Participation 
 
Have you participated in GSoC before? 
No, I have not participated in GSoC before. This year will be my first time applying. 
 
Have you submitted/will you submit another proposal for this year's 
GSoC to a different org? 
No. 
 

13. pgRouting Application Requirements 
 
The requirements for applying to pgRouting(under OSGeo) are mentioned here - 
https://github.com/pgRouting/pgrouting/wiki/GSoC-Ideas%3A-2019#pgrouting-application-re
quirements  
The links to the respective issues: 

●​ issue: Build locally pgRouting -> 
https://github.com/nike0good/GSoC-pgRouting/issues/1 

https://codeforces.com/profile/niike0goood
https://www.lydsy.com/JudgeOnline/userinfo.php?user=nike0good
http://poj.org/userstatus?user_id=nike0good
https://vjudge.net/user/nike0good#
https://www.topcoder.com/members/nike0good/
https://github.com/nike0good/Template
https://github.com/nike0good/Template
https://codeforces.com/blog/entry/63275?tdsourcetag=s_pctim_aiomsg
https://github.com/pgRouting/pgrouting/wiki/GSoC-Ideas%3A-2019#pgrouting-application-requirements
https://github.com/pgRouting/pgrouting/wiki/GSoC-Ideas%3A-2019#pgrouting-application-requirements
https://github.com/nike0good/GSoC-pgRouting/issues/1


●​ issue: Get familiar with C++-> 
https://github.com/nike0good/GSoC-pgRouting/issues/2  

●​ issue: Get familiar with pgRouting on Github -> 
https://github.com/nike0good/GSoC-pgRouting/issues/3 

 
 

14. Detailed Proposal 

topological sort 
A topological sort or topological ordering of a directed graph is a linear ordering of its 

vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in 
the ordering. For instance, the vertices of the graph may represent tasks to be performed, 
and the edges may represent constraints that one task must be performed before another; in 
this application, a topological ordering is just a valid sequence for the tasks. A topological 
ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed 
acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are 
known for constructing a topological ordering of any DAG in linear time.[1] 

complexity: O(|V|+|E|). 
code in C++: 
https://paste.ubuntu.com/p/6hwWGDJ7XD/ 
https://blog.csdn.net/nike0good/article/category/1273967 
For instance,the DAG is 
A->B,B->C,D D->C C->E 

 
Fig: Example of DAG[4] 

​ We label id $A.id=1 ,B.id = 2 ,\cdots, E.id=5$ 
​ And the topological sorted array of this graph is {A,B,D,C,E} (1,2,4,3,5 for id) 
​  
Proposed Signature 
The possible variants are: 

●​ pgr_topological_sort()  

pgr_topological_sort(edges_sql ) 

RETURNS SET OF (seq, sorted_v) 

 
Parameters[6]: 
 

https://github.com/nike0good/GSoC-pgRouting/issues/2
https://github.com/nike0good/GSoC-pgRouting/issues/3
https://paste.ubuntu.com/p/6hwWGDJ7XD/
https://blog.csdn.net/nike0good/article/category/1273967


edges_sql: an SQL query, which should return a set of rows with the following 
columns: 

Edges_sql[6]: It should be an sql query which returns the following:​
 

Column Type 

De
fa
ult Description 

id ANY-INTEG

ER 
  Identifier of the edge. 

source ANY-INTEG

ER 
  Identifier of the first end point vertex of the edge. 

target ANY-INTEG

ER 
  Identifier of the second end point vertex of the edge. 

cost ANY-NUMER

ICAL 
  Weight of the edge (source, target) 

●​ When negative: edge (source, target) does not 
exist, therefore it’s not part of the graph. 

reverse
_cost 

ANY-NUMER

ICAL 
-1 Weight of the edge (target, source), 

●​ When negative: edge (target, source) does not 
exist, therefore it’s not part of the graph. 

Where: 

ANY-INTEGER: SMALLINT, INTEGER, BIGINT 



ANY-NUMERICAL: SMALLINT, INTEGER, BIGINT, REAL, 
FLOAT 

Description of Return Values: 
 

Column Type Description 

seq INT Sequential value starting from 1. 

sorted_
v 

BIGINT Identifier the ordering of vertex. 

 

 

Usage 
The examples[7] in this section use the following Network for queries marked as directed and 
only cost column is used 

 

http://docs.pgrouting.org/latest/en/sampledata.html#fig3
http://docs.pgrouting.org/latest/en/sampledata.html#fig3
http://docs.pgrouting.org/latest/en/sampledata.html#network-for-queries-marked-as-directed-and-only-cost-column-is-used


Fig: Example[7] 
 

SELECT * FROM pgr_topological_sort( 

    'SELECT id, source, target FROM edges_sql' 

); 

1,2,3,4,7,8,5,6,9,10,11,12,15,14,13,16,17 

 seq | sorted_v  

-----+--------- 

   1  |        1  

   2  |        2 

   3  |        3 

   4  |        4 

   5  |        7 

   6  |        8 

   7  |        5  

   8  |        6 

   9  |        9 

   10 |        10 

   11 |        11 

   12 |        12 

   13 |        14 

   14 |        15 

   15 |        13 

   16 |        16 

   17 |        17 

 

 

(17 rows) 

 

http://docs.pgrouting.org/latest/en/sampledata.html#fig1


 

Fig: the ordering of the vertexs of the example DAG[7] 
 

The figure tells us the result of sorted_v,  topological ordering of a directed graph. 
 

transitive closure: 
​ The concept of transitive closure can be thought of as constructing a data structure 
that makes it possible to answer reachability questions. That is, can one get from node a to 
node d in one or more hops? A binary relation tells you only that node a is connected to 
node b, and that node b is connected to node c, etc. After the transitive closure is 
constructed, as depicted in the following figure, in an O(1) operation one may determine that 
node d is reachable from node a. The data structure is typically stored as a matrix, so if 
matrix[1][4] = 1, then it is the case that node 1 can reach node 4 through one or more 
hops.[2] 
​ From my perspective, transitive closure is the basic idea of Floyd algorithm. We can 
know whether it is possible to find a path from node $u$ to node $v$ or not. Also we can use 
bitset(data structure) with bit operations to solve many problems. 
 



 
Fig: The picture was found in Wikipedia[2] 

 
 
Proposed Signature 
The possible variants are: 

●​ pgr_transitive_closure()  

pgr_transitive_closure(edges_sql ) 

RETURNS SET OF (seq, target_array ) 

 
 
Parameters[6]: 
 

edges_sql: an SQL query, which should return a set of rows with the following 
columns: 

Edges_sql[6]: It should be an sql query which returns the following:​
 

Column Type 

De
fa
ult Description 

id ANY-INTEG

ER 
  Identifier of the edge. 

source ANY-INTEG

ER 
  Identifier of the first end point vertex of the edge. 



target ANY-INTEG

ER 
  Identifier of the second end point vertex of the edge. 

cost ANY-NUMER

ICAL 
  Weight of the edge (source, target) 

●​ When negative: edge (source, target) does not 
exist, therefore it’s not part of the graph. 

reverse
_cost 

ANY-NUMER

ICAL 
-1 Weight of the edge (target, source), 

●​ When negative: edge (target, source) does not 
exist, therefore it’s not part of the graph. 

Where: 

ANY-INTEGER: SMALLINT, INTEGER, BIGINT 

ANY-NUMERICAL: SMALLINT, INTEGER, BIGINT, REAL, 
FLOAT 

Description of Return Values: 
 

Column Type Description 

seq INT Sequential value starting from 1. 

vid BIGINT Identifier of the starting vertex. 

target_a
rray 

BIGINT[] Identifier of the union of the edges. 

 

 



Usage 
The examples[7] in this section use the following Network for queries marked as directed and 
only cost column is used 

 
Fig: Example[7] 

 

 

SELECT * FROM pgr_transitive_closure( 

    'SELECT id, source, target FROM edges_sql' 

); 

 seq | vid| target_array  

-----+----+----- 

   1  | 1 |   {2,5,6,9,10,11,12,13,15}   

   2  | 2 |   {5,6,9,10,11,12,13,15} 

   3  | 3 |   {6,9,11,12} 

   4  | 4 |    {9,12} 

   5  | 5 |    {6,9,10,11,12,13,15} 

   6  | 6 |    {9,11,12} 

   7  | 7 |    {5,6,8,9,10,11,12,13,15}  

   8  | 8 |   {5,6,9,10,11,12,13,15}  

   9  | 9 |    {12} 

   10 |10 |    {11,12,13,15} 

   11 |11 |     {12} 

http://docs.pgrouting.org/latest/en/sampledata.html#fig3
http://docs.pgrouting.org/latest/en/sampledata.html#fig3
http://docs.pgrouting.org/latest/en/sampledata.html#fig1


   12 |12 |     {} 

   13 |13 |    {} 

   14 |14 |    {13,15} 

   15 |15 |    {13} 

   16 |16 |    {17} 

   17 |17 |    {} 

 

(17 rows) 

 

 

For instance, what can 1 travel to: 

 
Fig: Example of reachability of vextex 1[7] 

 it is possible to find a path from node $1$ to node $2,5,6,9,10,11,12,13,15$. 

pgr_lengauer_tarjan_dominator_tree 
​  

In computer science, in control flow graphs, a node d dominates a node n if every 
path from the entry node to n must go through d. Notationally, this is written as d dom n (or 
sometimes d {\displaystyle \gg } \gg  n). By definition, every node dominates itself. 

There are a number of related concepts: 
A node d strictly dominates a node n if d dominates n and d does not equal n. 
The immediate dominator or idom of a node n is the unique node that strictly 

dominates n but does not strictly dominate any other node that strictly dominates n. Every 
node, except the entry node, has an immediate dominator. 



The dominance frontier of a node d is the set of all nodes n such that d dominates an 
immediate predecessor of n, but d does not strictly dominate n. It is the set of nodes where 
d's dominance stops. 

A dominator tree is a tree where each node's children are those nodes it immediately 
dominates. Because the immediate dominator is unique, it is a tree. The start node is the 
root of the tree.[3]  

We can use dominator tree to answer which we can not access from one specific 
node. Also the data structure was implemented in the boost. 

To construct dominator tree from a graph $G$, we have such steps: 
6.​ choose a node as root R 
7.​ DFS and relabeled the nodes. 
8.​ Calc the sdom. 
9.​ Calc some nodes’ idom from sdom according to the formula. 
10.​Again, calc the rest nodes’ idom. 

PS: Union-Find Set is required during Step 4 and Step 5.[5]  
Proposed Signature 
The possible variants are: 

●​ pgr_lengauer_tarjan_dominator_tree()  

pgr_lengauer_tarjan_dominator_tree(edges_sql,root ) 

RETURNS SET OF (id, sdom, idom) 

 
Parameters: 

Parameter Type Default Description 

edges_sql TEXT   Described above. 

root BIGINT  0 Identifier of the root vertex of the graph. 

Edges_sql[6]: It should be an sql query which returns the following: 
 

Column Type 

De
fa
ult Description 

id ANY-INTEG

ER 
  Identifier of the edge. 



source ANY-INTEG

ER 
  Identifier of the first end point vertex of the edge. 

target ANY-INTEG

ER 
  Identifier of the second end point vertex of the edge. 

cost ANY-NUMER

ICAL 
  Weight of the edge (source, target) 

●​ When negative: edge (source, target) does not 
exist, therefore it’s not part of the graph. 

reverse
_cost 

ANY-NUMER

ICAL 
-1 Weight of the edge (target, source), 

●​ When negative: edge (target, source) does not 
exist, therefore it’s not part of the graph. 

Where: 

ANY-INTEGER: SMALLINT, INTEGER, BIGINT 

ANY-NUMERICAL: SMALLINT, INTEGER, BIGINT, REAL, 
FLOAT 

 
Description of Return Values: 
 
 

Parameter Type Default Description 

id BIGINT   Sequential value starting from 1. 

vid BIGINT  Identifier of the vertex. 



sdom BIGINT  0 Identifier of the sdom vertex of the id vertex. 

If path from root vertex to id vertex does not 
exist, return the default value. 

idom BIGINT 0 Identifier of the idom vertex of the id vertex. 

If path from root vertex to id vertex does not 
exist, return the default value. 

    

 

Usage 
The examples[7] in this section use the following Network for queries marked as directed and 
only cost column is used 

 
Fig: Example[7] 

 

http://docs.pgrouting.org/latest/en/sampledata.html#fig3
http://docs.pgrouting.org/latest/en/sampledata.html#fig3
http://docs.pgrouting.org/latest/en/sampledata.html#network-for-queries-marked-as-directed-and-only-cost-column-is-used


 
 

SELECT * FROM pgr_lengauer_tarjan_dominator_tree( 

    'SELECT id, source, target FROM edges_sql',1 

); 

|id   | vid  | sdom | idom|  

+-----+------+------+-----+ 

   1  |   1  |   0  |  0  | 

   2  |   2  |   1  |  1  | 

   3  |   3  |   0  |  0  | 

   4  |   4  |   0  |  0  | 

   5  |   5  |   2  |  2  | 

   6  |   6  |   5  |  5  | 

   7  |   7  |   0  |  0  | 

   8  |   8  |   0  |  0  | 

   9  |   9  |   6  |  6  | 

   10 |   10 |   5  |  5  | 

   11 |   11 |   6  |  5  | 

   12 |   12 |   9  |  5  | 

   13 |   13 |  10  | 15  | 

   14 |   14 |   0  |  0  | 

   15 |   15 |  10  | 10  | 

   16 |   16 |   0  |  0  | 

   17 |   17 |   0  |  0  | 

 

 

(17 rows) 

 
The sdom of 11 is 6 because there is a path go from 6 to 11 without going through nodes 
labeled less than 6. 

http://docs.pgrouting.org/latest/en/sampledata.html#fig1


 
Fig: Example of sdom of vextex 11[7] 

 
The idom of 11 is 6 because there is a path go from 5 to 11 and it is impossible to go from 1 
to 11 without vertex 5, as well as vertex 6 is the unique node that strictly dominates 11 but 
does not strictly dominate any other node that strictly dominates 11. 



 
Fig: Example of idom of vextex 11[7] 

 
Vextex 1,2 also dominate vertex 11, but they are not vertex 11’s idom. 



 
Fig: Example of idom and sdom relation, relations of idom construct the dominator tree[7] 

 
 

15. References 
 
[1]. Topological sorting From Wikipedia, the free encyclopedia 
[2]. transitive closure From Wikipedia, the free encyclopedia 
[3]. Dominator_(graph_theory)#Algorithms From Wikipedia, the free encyclopedia. 
[4]. DAG From th7.com 
[5]. lengtarj Persudo code & implement figures on cl.cam.ac.uk. 
[6]. pgr_bdDijkstra Documentation 
[7]. pgRouting Sample Data. 
 
 

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Transitive_closure
http://en.wikipedia.org/wiki/Dominator_(graph_theory)#Algorithms
https://m.baidu.com/tc?from=bd_graph_mm_tc&srd=1&dict=20&src=http%3A%2F%2Fwww.th7.cn%2Fweb%2Fjs%2F201608%2F179332.shtml&sec=1554819720&di=302233a63ff9bbd4
https://www.cl.cam.ac.uk/~mr10/lengtarj.pdf
https://docs.pgrouting.org/dev/en/pgr_bdDijkstra.html
https://docs.pgrouting.org/dev/en/sampledata.html

	1. Contact Details 
	2. Title 
	3. Brief Project Description 
	4. State of the Project Before GSoC 
	5. Benefits to Community 
	6. Deliverables 
	7. Timeline 
	8. Do you understand this is a serious commitment, equivalent to a full​ time paid summer internship or summer job? 
	9. Do you have any known time conflicts during the official coding period? 
	10. Studies 
	What is your School and degree? 
	Would your application contribute to your ongoing studies/degree? If 
	so, how? 

	11. Programming and GIS 
	Computing experience 
	GIS experience as a user 
	GIS programming and other software programming 

	12. GSoC Participation 
	Have you participated in GSoC before? 
	Have you submitted/will you submit another proposal for this year's GSoC to a different org? 

	13. pgRouting Application Requirements 
	14. Detailed Proposal 
	topological sort 
	Proposed Signature 
	Usage 

	transitive closure: 
	Proposed Signature 
	Usage 

	pgr_lengauer_tarjan_dominator_tree 
	Proposed Signature 
	Usage 


	15. References 

