1. Indices

- 1. Evaluate the value of x in $81^{+1} + 3^{4x} = 246$.
- 2. Solve for **y** in the equation: $5^{(2y+1)} = 4(5)^{y+1} 15$
- 3. Without logarithm tables or calculators, evaluate: $25^{3/4} \times 0.9^2 \times 2^2$ in the form A/B where A and B are integers $5^{5/2} \times 3^3$
- 4. Find the value of x given that : $2^{x}=0.0625$ (x is an integer)
- 6. Find the value of x which satisfies the equation $16^{x^2} = 8^{4x-3}$
- 7. Solve the equation; $9^{x+1} + 3^{2x+1} = 36$
- 8. By letting $P = 4^{-y}$ in the equation: $4^{-2y+1} - 3 \times 4^{-y} - 10 = 0$
 - (a) Write the above equation in terms of P(b) Hence find the possible values of y
- 9. Solve for \mathbf{x} in the equation.
- 10. In the expansion of the constant term is 4860. Find the value of **a**