| ATOMIC STRUCTURE | | |--|---| | Speed of light = (frequency)(wavelength) | $c = f\lambda$ | | Energy = (Planck's constant)(frequency) | $E_{\rm photon} = hf$ | | $Energy = \frac{(Planck's constant)(speed of light)}{(wavelength)}$ | $E_{\text{photon}} = \frac{hc}{\lambda}$ | | BEHAVIOR OF GASES | | | Total pressure of a gas = $\begin{pmatrix} \text{sum of the partial pressures} \\ \text{of the component gases} \end{pmatrix}$ $P_{\text{T}} = R_{\text{T}}$ | $P_1 + P_2 + P_3 + \dots$ | | (Pressure)(volume) = (moles)(ideal gas constant)(temperature) | PV = nRT | | $\frac{\text{(Initial pressure)(initial volume)}}{\text{(Initial moles)(initial temperature)}} = \frac{\text{(final pressure)(final volume)}}{\text{(final moles)(final temperature)}}$ | $\frac{\frac{P_1V_1}{n_1T_1}}{\frac{P_2V_2}{n_1T_2}} = \frac{\frac{P_2V_2}{n_2T_2}}{\frac{P_2V_2}{n_2T_2}}$ | | (Initial pressure)(initial volume) = (final pressure)(final volume) | $P_1V_1 = P_2V_2$ | | $\frac{\text{(Initial volume)}}{\text{(Initial temperature)}} = \frac{\text{(final volume)}}{\text{(final temperature)}}$ | $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ | | $\frac{\text{(Initial volume)}}{\text{(Initial moles)}} = \frac{\text{(final volume)}}{\text{(final moles)}}$ | $\frac{V_1}{n_1} = \frac{V_2}{n_2}$ | | SOLUTIONS | | | $Molarity = \frac{moles \text{ of solute}}{liter \text{ of solution}}$ | $M = \frac{\text{mol}}{\text{L}}$ | | $Ionization \ constant \ of \ water = \left(\begin{array}{l} \text{hydrogen ion} \\ \text{concentration} \end{array} \right) \!\! \left(\begin{array}{l} \text{hydroxide ion} \\ \text{concentration} \end{array} \right)$ | $K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$ | | | $V_1 M_1 = V_2 M_2$ | | pH = –logarithm (hydrogen ion concentration) | $pH = -log[H^+]$ | | THERMOCHEMISTRY | | | Heat gained or lost = $(mass)$ $\binom{specific}{heat}$ $\binom{change in}{temperature}$ | $Q = mc_p \Delta T$ | | Enthalpy of reaction = $\begin{pmatrix} \text{enthalpy} \\ \text{of products} \end{pmatrix} - \begin{pmatrix} \text{enthalpy} \\ \text{of reactants} \end{pmatrix}$ $\Delta H = \Delta H_f^0 \text{(products)}$ | $\Delta H_{\rm f}^{\rm o}$ (reactants) | #### **OTHER FORMULAS** Density = $$\frac{\text{mass}}{\text{volume}}$$ $$D = \frac{m}{V}$$ Percent error = $$\left(\frac{\text{accepted value} - \text{experimental value}}{\text{accepted value}}\right)$$ (100) Percent yield = $$\left(\frac{\text{actual yield}}{\text{theoretical yield}}\right)$$ (100) #### **CONSTANTS AND CONVERSIONS** Avogadro's number = 6.02×10^{23} particles per mole $$h = Planck's constant = 6.63 \times 10^{-34} J \cdot s$$ $$c = \text{speed of light} = 3.00 \times 10^8 \frac{\text{m}}{\text{s}}$$ $$K_{\rm w} = \text{ionization constant of water} = 1.00 \times 10^{-14} \left(\frac{\text{mol}}{\text{I}}\right)^2$$ alpha particle ($$\alpha$$) = ${}_{2}^{4}$ He beta particle ($$\beta$$) = ${0 \atop -1}$ e neutron = ${1 \atop 0}$ n neutron = $$\frac{1}{0}$$ n standard temperature and pressure (STP) = 0°C and 1 atm $$0^{\circ}C = 273 \text{ K}$$ volume of ideal gas at STP = 22.4 $$\frac{L}{mol}$$ $$1 \text{ cm}^3 = 1 \text{ mL} = 1 \text{ cc}$$ $$R = ideal gas constant = 0.0821 \frac{L \cdot atm}{mol \cdot K} = 8.31 \frac{L \cdot kPa}{mol \cdot K} = 62.4 \frac{L \cdot mm \, Hg}{mol \cdot K}$$ 1000 calories (cal) = 1 Calorie (Cal) = 1 kilocalorie (kcal) #### **RULES FOR SIGNIFICANT FIGURES** - 1. Non-zero digits and zeros between non-zero digits are always significant. - 2. Leading zeros are not significant. - 3. Zeros to the right of all non-zero digits are only significant if a decimal point is shown. - 4. For values written in scientific notation, the digits in the coefficient are significant. - 5. In a common logarithm, there are as many digits after the decimal point as there are significant figures in the original number. | POLYATOMIC
IONS | | SOLUBILITY OF CO | ACTIVITY
SERIES | | |--|--|---|--|--| | Acetate C ₂ H ₃ O ₂ - | , сн _у соо- | Soluble | Common exceptions | Metal | | Ammonium | NH ⁺ ₄ | C ₂ H ₃ O ₂ , CH ₃ COO ⁻ | None | Lithium | | Carbonate | CO ₃ - | NH ⁺ ₄ | None | Potassium | | Chlorate | CIO ₃ | NO ₃ | None
None | Barium Calcium | | Chlorite | CIO ₂ | CIO- | None | Sodium | | Chromate | CrO ₄ ²⁻ | CIO ₂ | None | Magnesium | | Cyanide | CNT | CIO ₃ | None
None | Aluminum
Manganese | | Dichromate | Cr ₂ O ₇ ²⁻ | Br ⁻ | Compounds of Ag+, Pb2+, and Hg2+ | | | Hydrogen carbonate | HCO3 | CI ⁻ | Compounds of Ag ⁺ , Pb ²⁺ , and Hg ²⁺
Compounds of Ag ⁺ , Pb ²⁺ , and Hg ²⁺ | Chromium Iron | | Hydroxide | OH- | SO ₄ ²⁻ | Compounds of Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , and Hg ₂ ²⁺ | | | Hypochlorite | CIO- | Insoluble | Common exceptions | Cobalt Di Cobalt | | Nitrate | NO ₃ | compounds contain
CO ₃ ² | Compounds of NH ⁺ and the alkali metal cations | Tin 60 | | Nitrite | NO ₂ | PO ₄ ³ - | Compounds of NH ₄ and the alkali metal cations | Nickel Signature Cobalt | | Perchlorate | CIO ₄ | CrO ₄ ²⁻ | Compounds of NH ₄ and the alkali metal cations | (Hydrogen) | | Permanganate | MnO ₄ | Cr ₂ O ₇ ²⁻ | Compounds of $\mathrm{NH_4^+}$ and the alkali metal cations | Copper | | Phosphate | PO ₄ 3- | OH- | Compounds of NH ₄ , the alkali metal cations, | Mercury
Silver | | Sulfate | SO ₄ ²⁻ | S ² - | Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ Compounds of NH ⁺ , the alkali metal cations, | Platinum | | Sulfite | SO ₃ ² - | 3 | Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ | Gold | ## PERIODIC TABLE OF THE ELEMENTS | 1 2 | 1
1A
1
H
1.008
Hydrogen
3
Li
6.341
Lithium | 2
2A
4
Be
9.012
Beryllun | Atomic number ———————————————————————————————————— | | | | | | | | | | | 14
4A
6
C
12.011
Carton | 15
5A
7
N
14,007
Niregen | 16
6A
8
O
15,229
Oxygen | 17
7A
9
F
18.298
Flusine | 18
8A
2
He
4,003
Hellum
10
Ne
20,180
Neon | | |-----|---|---|--|--------------------------------|-------------------------------------|------------------------------------|--|---------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-------------------------------|---|--|---|--|---|--|--| | 3 | Na
22.990
Sodium | Mg
24305
Vagordum | 3
38 | 4
4B | 5
5B | 6
6B | 7
7B | .8. | 9
8B | 10 | 11
1B | 12
2B | 13
Al
26562
Aluminum | Si
28.086
Silicon | 15
P
30.974
Phosphorus | 16
S
32.066
Suitur | 17
CI
35.453
Chlorine | 18
Ar
39.948
Argon | | | 4 | 19
K
39.098 | Ca
Ca
40.078 | 21
Sc
44.956
Scandium | 22
Ti
47.867
Titanium | 23
V
50.942 | Cr
51.996 | Mn
54.938 | 26
Fe
55.845 | 27
Co
58,933
Cotat | 28
Ni
Sa.693 | 29
Cu
63.546
Copper | 30
Zn
65.38 | 31
Ga
69.723 | Ge
72.64
Germanium | 33
As
74,922
Amenic | Se
78.95
Selenium | 35
Br
79.904
Frances | 36
Kr
83.798
Kopton | | | 5 | 37
Rb
85.468 | 38
Sr
87.62 | 39
Y
88.906 | 40
Zr
91.224 | 41
Nb
92.906 | 42
Mo
85.96 | 43
Tc
(28) | 44
Ru
101.07 | 45
Rh
102.906 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112,412 | 49
In
114,818 | 50
Sn
118.711 | 51
Sb
121.760 | 52
Te
127.60 | 53
I
126.904 | 54
Xe
131.294 | | | 6 | 55
Cs
132,905 | 56
Ba
137,328 | 71
Lu
174,967 | 72
Hf
178.49 | 73
Ta
180,948 | 74
W
183,84 | 75
Re
186,207 | 76
Os
190,23 | 77
Ir
192,217 | 78
Pt
195,065 | 79
Au
196,967 | 80
Hg
200.50 | 81
TI
204,383 | 82
Pb | 83
Bi
208,980 | Po
(209) | 85
At
(210) | 86
Rn
(222) | | | 7 | 87
Fr
(223) | 88
Ra
(226) | 103
Lr
(262) | 104
Rf
(267) | 105
Db
(268) | 106
Sg
(271) | 107
Bh
(272) | 108
Hs
(270) | 109
Mt
(276) | 110
Ds
(281) | 111
Rg
(280) | Mass num | | | | | | | | | | Francium | | | 57
La
138905
Lastanum | 58
Ce
140.116
Cesiun
90 | 59
Pr
140.908
Praecoprium | 60
Nd
144,242
Neodymium
92 | 61
Pm
(145)
Promethium | 62
Sm
150.36
Sanurium
94 | 63
Eu
151.964
Europium
95 | 64
Gd
157.25
Gadelnium
96 | 65
Tb
158.925
Teckun | 66
Dy
162,500
Dyspresium
98 | 67
Ho
164,930
Holmium | 68
Er
167,259
Erbium
100 | 69
Tm
168,934
Thulun | 70
Yb
173.055
Yzerbium
102 | | | | | Actini | ide Serie | s \ | Ac
(227)
Actinium | Th
232,038
Thorum | Pa
231.036
Protectinium | 238.029
Utanium | Np
(237)
Neptunium | Pu
(244)
Plutonium | Am
(243)
Americian | Cm
(247)
Curium | Bk
(247)
Bertelium | Cf
(251)
Californium | Es
(252)
Einsteinium | Fm
(257)
Fernium | Md
(258)
Mendelesium | No
(259)
Nobelium | | | Updated Spring 2011