
Datafusion invariants change to support
qualified column

In order to support referencing qualified columns in Datafusion queries, we need introduce
some changes to the existing invariants design documented in
https://docs.google.com/document/d/1Asnz29uUS1t60QNbNBU9SiME274rja-hcDvX_RDraFU/e
dit#heading=h.w9oks8pxurba.

Notation change and expansion
●​ Field or physical field (was metadata): the tuple name, arrow::DataType and

nullability flag (a bool whether values can be null), represented in this document by
PF(name, type, nullable)

●​ Logical field: Field with a relation name. Represented in this document by
LF(relation, name, type, nullable)

●​ Physical column: field name with an unique index. Represented

in this document by PCol(index, name)

●​ Logical column: field name with relation name. Represented by

LCol(relation, name)

●​ Projected plan: plan with projection as the root node

Logical schema and physical schema
Logical schema is a schema associated with a logical plan. It is modeled as the DFSchema
struct in Datafusion. Its fields are stored as a vector of logical fields.

Physical schema is a schema associated with a physical plan. It is modeled as the Arrow
Schema struct in Datafusion. Its fields are stored as a vector of physical fields. It is used by both
physical plan and record batch.

There are two main differences between logical and physical schemas:

1.​ Logical schema fields are uniquely identified by their (relation, name) tuples.
2.​ Physical schema fields do not have the concept of relation and it can contain fields with

the same names.

https://docs.google.com/document/d/1Asnz29uUS1t60QNbNBU9SiME274rja-hcDvX_RDraFU/edit#heading=h.w9oks8pxurba
https://docs.google.com/document/d/1Asnz29uUS1t60QNbNBU9SiME274rja-hcDvX_RDraFU/edit#heading=h.w9oks8pxurba

Set equality/invariant
We say Set(vector1) === Set(vector2) when Sorted(vector1) === Sorted(vector2). In order
words, vector1 and vector2 contain the same set of items, but these items could be stored in
different orders.

For example:

●​ Set([F1, F2]) === Set([F2, F1])
●​ Set([F1, F2]) !== Set([F1, F2, F3])

Builder
A function that knows how to build a new logical plan from an existing logical plan and some
extra parameters.

build(logical_plan, params…) -> logical_plan

Dropped invariant

Field names are unique

We have dropped this invariant because physical fields do not contain relation. The reason we

don’t want to include relation in physical fields is because inherently, relation should be treated

as external metadata to a piece of data file like parquet, csv or json. In real world production

systems, relations are tracked by external metadata systems like Hive metastore and Delta

tables.

For example, consider we have a csv file `1.csv` tracked as table `customer` in a metadata store

and we want to perform an ETL transformation on `customer` table to populate

`customer_blocked` table and store the output as a csv file `2.csv`.

The physical schema for the resulting Arrow record batch from the following query:

`SELECT customer.id FROM customer WHERE blocked = true`

should contain the field name: `id` instead of `customer.id`. If we store the result in `2.csv` using

`customer.id` as the field name, then when we load the `2.csv` file into memory as

`customer_blocked` table, we will end with up a new field name with a redundant relation prefix:

`customer_blocked.customer_blocked.id`. This is clearly not what one would expect.

Existing systems like MySQL, PostgreSQL and Spark also strip relation field/column qualifiers

from query outputs. For example, running the query `SELECT test.id FROM test` in MySQL

outputs:

| id |

| 1 |

| 2 |

Note that users can always use explicit aliases `select customer.id as “customer.id”` to obtain

the alternate behavior if they so desire.

Added invariant

(relation, name) tuples in logical fields and logical columns are
unique
Every logical field’s (relation, name) in a schema MUST be unique. Every logical column’s

(relation, name) in a logical plan MUST be unique.

This invariant guarantees that SELECT t1.id, t2.id FROM t1 JOIN t2...

unambiguously selects the field t1.id and t2.id in a logical schema in the logical plane.

Responsibility

It is the logical builder and optimizer’s responsibility to guarantee this invariant, by erroring if the

user’s statement violates it.

Validation

Builder and optimizer MUST error if this is invariant violated on any logical node that creates a

new schema (e.g. scan, projection, aggregation, join, etc.).

Changed/updated invariant

The physical schema is invariant under planning (3.5)

The physical schema derived by a physical plan returned by the planner MUST be equivalent to

the physical schema derived by the logical plan passed to the planner. I.e.

plan(logical_plan).schema === logical_plan.physical_schema

Logical plan’s physical schema is defined as logical schema with relation qualifiers stripped for

all logical fields:

logical_plan.physical_schema = vector[strip_relation(f) for f in logical_plan.logical_fields]

This is used to ensure that the physical schema of its (logical) plan is what it gets in record

batches, so that users can rely on the optimized logical plan to know the resulting physical

schema.

Note that since a logical plan can be as simple as a single projection with a single function,

“Projection f(c1,c2)”, a corollary of this is that the physical schema of every “logical function ->

physical function” must be invariant under planning.

Responsibility

Developers of physical and logical plans and planners MUST guarantee this invariant for every

triplet (logical plan, physical plan, conversion rule).

Validation

Planners MUST validate this invariant, and in particular return an error when, during planning, a

physical function’s derived schema does not match the logical functions’ derived schema.

The output schema equals the physical plan schema (3.6)

The schema of every RecordBatch in every partition outputted by a physical plan MUST be

equal to the schema of the physical plan. Specifically,

physical_plan.evaluate(batch).schema = physical_plan.schema

Together with other invariances, this ensures that the consumers of record batches do not need

to know the output schema of the physical plan; they can safely rely on the record batch’s

schema to perform downscaling and naming.

Responsibility

Physical nodes MUST guarantee this invariant.

Validation

Execution Contexts CAN validate this invariant.

Logical schema is set invariant under logical optimization for

non-projected plan (3.7)

The logical schema derived by a non-projected logical plan returned by the logical optimizer

MUST be set equivalent to the schema derived by the logical plan passed to the planner:

Set(optimize(logical_plan).schema) === Set(logical_plan.schema)

This is used to ensure that plans can be optimized without jeopardizing future referencing

columns (name) or assumptions about their schemas. By relaxing the equality restriction to set

equality, we give the optimizer extra room for optimization by reordering fields. For example,

switching the join side in JOIN optimizer.

Responsibility

Logical optimizers MUST guarantee this invariant.

Validation

Users of logical optimizers SHOULD validate this invariant.

Logical schema is invariant under logical optimization for

projected plan (3.7)

The logical schema derived by a projected logical plan returned by the logical optimizer MUST

be equivalent to the logical schema derived by the logical plan passed to the planner:

optimize(logical_plan).schema === logical_plan.schema

This is used to ensure that plans can be optimized without jeopardizing future referencing

logical columns (name and index) or assumptions about their schemas. Enforcing strict equality

for projected plans gives users the ability to control field orders using projections. One of such

use-cases would be accessing columns with duplicate names in resulting record batches by

index.

Responsibility

Logical optimizers MUST guarantee this invariant.

Validation

Users of logical optimizers SHOULD validate this invariant.

Physical schema is set invariant under physical optimization for

non-projected plan (3.8)

The physical schema derived by a non-projected physical plan returned by the physical

optimizer MUST be set equivalent to the physical schema derived by the physical plan passed

to the planner:

Set(optimize(physical_plan).schema) === Set(physical_plan.schema)

This is used to ensure that physical plans can be optimized without jeopardizing assumptions

about their schema. By relaxing the equality restriction to set equality, we give the optimizer

extra room for optimization by reordering fields. For example, switching the join side in JOIN

optimizer.

Responsibility

Optimizers MUST guarantee this invariant.

Validation

Users of optimizers SHOULD validate this invariant.

Physical schema is invariant under physical optimization for

projected plan (3.8)

The physical schema derived by a projected physical plan returned by the physical optimizer

MUST match the physical schema derived by the physical plan passed to the planner:

optimize(physical_plan).schema === physical_plan.schema

This is used to ensure that plans can be optimized without jeopardizing future referencing

logical columns (name and index) or assumptions about their schemas. Enforcing strict equality

for projected plans gives users the ability to control field orders using projections. One of such

use-cases would be accessing columns with duplicate names in resulting record batches by

index.

Responsibility

Optimizers MUST guarantee this invariant.

Validation

Users of optimizers SHOULD validate this invariant.

	Datafusion invariants change to support qualified column
	Notation change and expansion
	Logical schema and physical schema
	Set equality/invariant
	Builder

	Dropped invariant
	Field names are unique

	Added invariant
	(relation, name) tuples in logical fields and logical columns are unique
	Responsibility
	Validation

	Changed/updated invariant
	The physical schema is invariant under planning (3.5)
	Responsibility
	Validation

	The output schema equals the physical plan schema (3.6)
	Responsibility
	Validation

	Logical schema is set invariant under logical optimization for non-projected plan (3.7)
	Responsibility
	Validation

	Logical schema is invariant under logical optimization for projected plan (3.7)
	Responsibility
	Validation

	Physical schema is set invariant under physical optimization for non-projected plan (3.8)
	Responsibility
	Validation

	Physical schema is invariant under physical optimization for projected plan (3.8)
	Responsibility
	Validation

