
Casper the Friendly Finality Gadget: Basic Structure 
Vitalik Buterin Ethereum Foundation 

August 17, 2017 

Abstract 

We give an introduction to the consensus algorithm details of Casper: the Friendly Finality Gadget, as 
an overlay on an existing proof of work blockchain such as Ethereum. Byzantine fault tolerance analysis 
is included, but economic incentive analysis is out of scope. 

1 Principles 
Casper the Friendly Finality Gadget is designed as an overlay that must be built on top of some 
kind of “proposal mechanism” - a mechanism which “proposes” blocks which the Casper 
mechanism can then set in stone by “fi- nalizing” them. The Casper mechanism depends on the 
proposal mechanism for liveness, but not safety; that is, if the proposal mechanism is entirely 
cor- rupted and controlled by adversaries, then the adversaries can prevent Casper from finalizing 
any blocks, but cannot cause a safety failure in Casper; that is, they cannot force Casper to 
finalize two conflicting blocks. 

The base mechanism is heavily inspired by partially synchronous sys- tems such as 
Tendermine [cite] and PBFT fault tolerance and is safe under asynchrony [cite], and dependent 
and thus has on the 1 

3 

Byzantine proposal mechanism for liveness. We later introduce a modification which increases 
Byzantine 1 (think 3 

<x< D ≈ 1 2 

fault can tolerance delay new to blocks 1 

2 , with the proviso that attackers being finalized by some period 3 weeks), at the cost of a 
“tradeoff synchrony assumption” with size of time D where 

1 



fault tolerance decreases as network latency goes up, decreasing to zero when network latency 
reaches D. 

In the Casper Phase 1 implementation for Ethereum, the “proposal mech- anism” is the 
existing proof of work chain, modified to have a greatly reduced block reward because the chain 
no longer relies as heavily on proof of work for security, and we describe how the Casper 
mechanism, and fork choice rule, can be “overlaid” onto the proof of work mechanism in order 
to add Casper’s guarantees. 

2 Introduction, Protocol I 
In the Casper protocol, there exists a set of validators, and in each epoch (see below) validators 
have the ability to send two kinds of messages: 

[P REP ARE, epoch, hash, epoch 

source 

, hash 

source 

] 

and 

[COMMIT,epoch,hash] 

An epoch is a period of 100 epochs; epoch n begins at block n ∗ 100 and ends at block 
n∗100+99. A checkpoint for epoch n is a block with number n∗ 100−1; in a smoothly running 
blockchain there will usually be one checkpoint per epoch, but due to network latency or 
deliberate attacks there may be multiple competing checkpoints. The parent checkpoint of a 
checkpoint is the 100th ancestor of the checkpoint block, and an ancestor checkpoint of a 
checkpoint is either the parent checkpoint, or an ancestor checkpoint of the parent checkpoint. 
We define the ancestry hash of a checkpoint as follows: 

• The ancestry hash of the implied “genesis checkpoint” before epoch 0 is zero. 

2 



• The ancestry hash of any other checkpoint is the keccsk256 hash of the ancestry hash of its 
parent concatenated with the hash of the check- point. 

Ancestry hashes thus form a direct hash chain, and otherwise have a one-to-one 
correspondence with checkpoint hashes. 

During epoch n, validators are expected to send prepare and commit mes- sages specifying 
epoch n, and the ancestry hash of a checkpoint for epoch n (i.e. with block number n∗100−1). 
Prepare messages are expected to spec- ify as hash 

source 

a checkpoint for any previous epoch which is justified (see below), and the 
epoch 

source 

is expected to be the epoch of that checkpoint. Each validator has a deposit size; when a validator 
joins their deposit size is equal to the number of coins that they deposited, and from there on 

each validator’s deposit size rises and falls as the validator receives rewards and penalties. are 
referring to For the rest of this paper, when we a deposit-weighted fraction; that is, say a set “2 3 

of of validators validators”, whose we 

combined entire set deposit size equals to at least 2 3 

of the total deposit size of the 

from their deposit 2 3 

of of validators. validators”. We also use At first, we “2 

will 3 

commits” as shorthand consider the set for “commits of validators, and sizes, static, but in later 
sections we will introduce the notion of validator set changes. 

If, during an epoch e, for some specific ancestry hash h, for any specific (epoch 

source 

, hash 

source 

pair), there exist 2 3 

prepares of the form 

[P REP ARE, e, h, epoch 

source 

, hash 

source 



] 

, then h is considered justified. If 2 3 

commits are sent of the form 

[COMMIT,e,h] 

then h is considered finalized. 

We add the following modifications: 

• For a checkpoint to be finalized, it must be justified. 

• For a checkpoint to be justified, the hash 

source 

used to justify it must itself be justified. 

• Prepare and commit messages are only accepted as part of blocks; that is, for a client such that 
in the to see chain 2 

3 

commits terminating of some at hash, that they must receive a block 
block hash have been processed. 

2 3 

commits for that 

3 



This gives substantial gains in implementation simplicity, because this means that we can 
now have a fork choice rule where the “score” of a block only depends on the block and its 
children, putting it into a similar category as more traditional PoW-based fork choice rules such 
as the longest chain rule and GHOST. However, this fork choice rule is also finality-bearing: it is 
impossible for two incompatible checkpoints to be finalized of the validators violated a slashing 
condition (see below). 

unless at least 1 3 

There are two slashing conditions: 

1. NO DBL PREPARE: a validator cannot prepare two different check- 

points for the same epoch. 

2. PREPARE COMMIT CONSISTENCY: if a validator has made a commit with epoch n, they 
cannot make a prepare with epoch > n and epoch 

source 

< n. 

Earlier versions of Casper had four slashing conditions, but we can reduce to two because of 
the three modifications above; they ensure that blocks will not register commits or prepares that 
violate the other two conditions. 

3 Proof Sketch of Safety and Plausible Live- 

ness 
We give a proof sketch of two properties of this scheme: safety and plausible liveness. Safety 

means that two incompatible checkpoints cannot be finalized unless means at that least it is 1 3 of 
validators violate always possible for checkpoint, regardless of what previous a slashing 

condition. Plausible liveness 2 3 

of honest validators events took place. 

to finalize a new 

Suppose that two conflicting checkpoints A (epoch e 

A 

) and B (epoch e 

B 

) are finalized. 

4 



. In the triv- ial case where e 

A 

= e 

B , must have violated NO this DBL implies PREPARE. that some In intersection other cases, of 
there 1 

3 

of validators must exist two checkpoints, chains e 

A both > e1 A terminating > e2 A 

> ... at > the G and genesis. e 

B 

> Suppose e1 

B 

> e2 

B 

without > ... > G loss of of justified gener- ality that e of B 

validators > ei+1 A 

e 

A . . > e 

B Then, there must In the first case, since Ai violated NO DBL PREPARE. be some and B both 
ei A Otherwise, that have either 2 

3 

prepares, ei A 

= e 

B or B has ei A 

> and at least 2 

3 

commits 1 3 

1 proves 3 

there exist of validators 2 3 

prepares with epoch > B and epoch 

source 



< B, so at least 

safety. 

violated PREPARE COMMIT CONSISTENCY. This 

Now, we prove liveness. Suppose that all existing validators have sent some sequence of 
prepare and commit messages. Let M with epoch e 

M be the 
highest-epoch checkpoint that was justified. Honest validators have not committed on any block 
which is not justified. Hence, neither slashing condition stops them from making prepares on a 
child of M, using e 

M 

as epoch 

source 

, and then committing this child. 

4 Fork Choice Rule 
The mechanism described above ensures plausible liveness; however, it by itself does not ensure 
actual liveness - that is, while the mechanism cannot get stuck in the strict sense, it could still 
enter a scenario where the proposal mechanism (i.e. the proof of work chain) gets into a state 
where it never 

5 

This implies 2 3 

commits and 2 3 

prepares in epochs e 

A 

and e 

B 



ends up creating a checkpoint that could get finalized. 

Here is one possible example: 

In this case, HASH1 or any descendant thereof cannot be finalized with- out interpret 
slashing HASH1 1 

6 

of validators. as the head However, and start miners mining on a descendants proof of work of it. 

chain would 

In fact, when any checkpoint gets point can get finalized without k − k > 1 3 

commits, no conflicting check- necessitates modifying the fork choice 1 3 rule of used validators 
by participants getting slashed. This in the under- lying proposal mechanism (as well as users 

and validators): instead of blindly following a longest-chain rule, there needs to be an overriding 
rule that (i) finalized checkpoints are favored, and (ii) when there are no further finalized 

checkpoints, checkpoints with more (justified) commits are favored. 

One complete description of such a rule would be: 

1. Start with HEAD equal to the genesis of the chain. 

2. Select the descendant checkpoint of HEAD with the most commits 

(only justified checkpoints are admissible) 

3. Repeat (2) until no descendant with commits exists. 

4. Choose the longest proof of work chain from there. 

6 



The commit-following part of this rule can be viewed in some ways as mirroring the ”greegy 
heaviest observed subtree” (GHOST) rule that has been proposed for proof of work chains [cite]. 
The symmetry is this: in GHOST, a node starts with the head at the genesis, then begins to move 
forward down the chain, and if it encounters a block with multiple children then it chooses the 
child that has the larger quantity of work built on top of it (including the child block itself and its 
descendants). 

Here, we follow a similar approach, except we repeatedly seek the child that comes the 
closest to achieving finality. Commits on a descendant are implicitly commits on all of its 
ancestors, and so if a given descendant of a given block has more commits than any other 
descendant, then we know that all children along the chain from the head to this descendant are 
closer to finality than any of their siblings; hence, looking for the descendant with the most 
commits and not just the child replicates the GHOST principle most faithfully. Finalizing a 
checkpoint requires 2/3 commits within a single epoch, and so we do not try to sum up commits 
across epochs and instead simply take the maximum. 

This rule ensures that if there is a checkpoint such that no conflicting checkpoint can be 
finalized without at least some validators violating slashing conditions, then this is the checkpoint 
that will be viewed as the “head” and thus that validators will try to commit on. 

5 Dynamic Validator Sets 
In an open protocol, the validator set needs to be able to change; old valida- tors need to be able 
to withdraw, and new validators need to be able to enter. To accomplish this end, we define a 
variable kept track of in the state called the dynasty counter. When a user sends a “deposit” 
transaction to become a validator, if this transaction is included in dynasty n, then the validator 
will be inducted in dynasty n + 2. The dynasty counter is incremented when the chain detects 
that the checkpoint of the current epoch that is part of its own history has been finalized (that is, 
the checkpoint of epoch e must be finalized during epoch e, and the chain must learn about this 
before epoch e ends). In simpler terms, when a user sends a “deposit” transaction, they need to 
wait for the transaction to be finalized, and then they need to wait again for that epoch to be 
finalized; after this, they become part of the validator set. We call such a validator’s start dynasty 
n + 2. 

7 



For a validator to leave, they must send a “withdraw” message. If their withdraw message 
gets included during dynasty n, the validator similarly leaves the validator set during dynasty n + 
2; we call n + 2 their end dy- nasty. When a validator withdraws, their deposit is locked for four 
months before they can take their money out; if they are caught violating a slashing condition 
within that time then their deposit is forfeited. 

For a checkpoint to be justified, it must be prepared by a set of validators which contains (i) at 
least startDynasty ≤ curDynasty 2 

3 vious dyansty (that is, validators of the current dynasty (that is, validators with 

< endDynasty), and (ii) at least with startDynasty ≤ curDynasty 2 

3 

of the pre- − 1 < endDynasty. Finalization with commits works similarly. The current and 
previous dynasties will usually mostly overlap; but in cases where they sub- stantially diverge 

this “stitching” mechanism ensures that dynasty diver- gences do not lead to situations where a 
finality reversion or other failure can happen because different messages are signed by different 

validator sets and so equivocation is avoided. 

6 Mass Crash Failure Recovery 
Suppose that more than one third of validators crash-fail at the same time; that is, they either are 
no longer connected to the network due to a network partition, or their computers fail, or they do 
this as a malicious attack. Then, no checkpoint will be able to get finalized. 

We can recover from this by instituting a rule that validators who do not prepare or commit 
for a long time start to see their deposit sizes decrease 

8 



(depending on the desired economic incentives this can be either a compul- sory partial 
withdrawal or an outright confiscation), until eventually their deposit sizes decrease low enough 
that the validators that are preparing and committing Note are once again a that this does 
introduce 2 

3 

supermajority. 

the possibility of two conflicting check- points being 
finalized, with validators only losing money on one of the two checkpoints: 

If the goal is simply to achieve maximally close to 50% fault tolerance, then clients should 
simply favor the finalized checkpoint that they received earlier. However, if clients are also 
interested in defeating 51% censorship at- tacks, then they may want to at least sometimes 
choose the minority chain. All forms of “51% attacks” can thus be resolved fairly cleanly via 
“user- activated soft forks” that reject what would normally be the dominant chain. Particularly, 
note that finalizing even one block on the dominant chain pre- cludes the attacking validators 
from preparing on the minority chain because of PREPARE COMMIT CONSISTENCY, at least 
until their balances decrease to the point where the minority can commit, so such a fork would 
also serve the function of costing the majority attacker a very large portion of their deposits. 

9 



7 Conclusions 
This introduces the basic workings of Casper the Friendly Finality Gadget’s prepare and commit 
mechanism and fork choice rule, in the context of Byzan- tine fault tolerance analysis. Separate 
papers will serve the role of explaining and analyzing incentives inside of Casper, and the 
different ways that they can be parametrized and the consequences of these paramtrizations. 

8 References 
• Aviv Zohar and Yonatan Sompolinsky, “Fast Money Grows on Trees, not Chains”: 
https://eprint.iacr.org/2013/881.pdf 

• Jae Kwon, “Tendermint”: http://tendermint.org/tendermint.pdf 

• Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Toler- ance”: 
http://pmg.csail.mit.edu/papers/osdi99.pdf 

10 


