Casper the Friendly Finality Gadget: Basic Structure

Vitalik Buterin Ethereum Foundation

August 17, 2017
Abstract

We give an introduction to the consensus algorithm details of Casper: the Friendly Finality Gadget, as
an overlay on an existing proof of work blockchain such as Ethereum. Byzantine fault tolerance analysis
is included, but economic incentive analysis is out of scope.

1 Principles

Casper the Friendly Finality Gadget is designed as an overlay that must be built on top of some
kind of “proposal mechanism” - a mechanism which “proposes” blocks which the Casper
mechanism can then set in stone by “fi- nalizing” them. The Casper mechanism depends on the
proposal mechanism for liveness, but not safety; that is, if the proposal mechanism is entirely
cor- rupted and controlled by adversaries, then the adversaries can prevent Casper from finalizing
any blocks, but cannot cause a safety failure in Casper; that is, they cannot force Casper to
finalize two conflicting blocks.

The base mechanism is heavily inspired by partially synchronous sys- tems such as
Tendermine [cite] and PBFT fault tolerance and is safe under asynchrony [cite], and dependent
and thus has on the 1

3

Byzantine proposal mechanism for liveness. We later introduce a modification which increases
Byzantine 1 (think 3

<x<D=12
fault can tolerance delay new to blocks 1

2, with the proviso that attackers being finalized by some period 3 weeks), at the cost of a
“tradeoff synchrony assumption” with size of time D where



fault tolerance decreases as network latency goes up, decreasing to zero when network latency
reaches D.

In the Casper Phase 1 implementation for Ethereum, the “proposal mech- anism” is the
existing proof of work chain, modified to have a greatly reduced block reward because the chain
no longer relies as heavily on proof of work for security, and we describe how the Casper
mechanism, and fork choice rule, can be “overlaid” onto the proof of work mechanism in order
to add Casper’s guarantees.

2 Introduction, Protocol 1

In the Casper protocol, there exists a set of validators, and in each epoch (see below) validators
have the ability to send two kinds of messages:

[P REP ARE, epoch, hash, epoch

source

, hash

source

]

and
[COMMIT,epoch,hash]

An epoch is a period of 100 epochs; epoch n begins at block n * 100 and ends at block
n*100499. A checkpoint for epoch n is a block with number n* 100-1; in a smoothly running
blockchain there will usually be one checkpoint per epoch, but due to network latency or
deliberate attacks there may be multiple competing checkpoints. The parent checkpoint of a
checkpoint is the 100th ancestor of the checkpoint block, and an ancestor checkpoint of a
checkpoint is either the parent checkpoint, or an ancestor checkpoint of the parent checkpoint.
We define the ancestry hash of a checkpoint as follows:

* The ancestry hash of the implied “genesis checkpoint” before epoch 0 is zero.

2



* The ancestry hash of any other checkpoint is the keccsk256 hash of the ancestry hash of its
parent concatenated with the hash of the check- point.

Ancestry hashes thus form a direct hash chain, and otherwise have a one-to-one
correspondence with checkpoint hashes.

During epoch n, validators are expected to send prepare and commit mes- sages specifying
epoch n, and the ancestry hash of a checkpoint for epoch n (i.e. with block number n*100-1).
Prepare messages are expected to spec- ify as hash

source

a checkpoint for any previous epoch which is justified (see below), and the
epoch

source

is expected to be the epoch of that checkpoint. Each validator has a deposit size; when a validator
joins their deposit size is equal to the number of coins that they deposited, and from there on
each validator’s deposit size rises and falls as the validator receives rewards and penalties. are
referring to For the rest of this paper, when we a deposit-weighted fraction; that is, say a set “2 3
of of validators validators”, whose we

combined entire set deposit size equals to at least 2 3
of the total deposit size of the

from their deposit 2 3
of of validators. validators”. We also use At first, we “2
will 3

commits” as shorthand consider the set for “commits of validators, and sizes, static, but in later
sections we will introduce the notion of validator set changes.

If, during an epoch e, for some specific ancestry hash h, for any specific (epoch

source

, hash

source
pair), there exist 2 3
prepares of the form

[P REP ARE, e, h, epoch
source

, hash

source



|
, then h is considered justified. If 2 3
commits are sent of the form
[COMMIT,e,h]
then h is considered finalized.
We add the following modifications:
* For a checkpoint to be finalized, it must be justified.
* For a checkpoint to be justified, the hash
source
used to justify it must itself be justified.

* Prepare and commit messages are only accepted as part of blocks; that is, for a client such that
in the to see chain 2
3

commits terminating of some at hash, that they must receive a block
block hash have been processed.
23

commits for that

3



This gives substantial gains in implementation simplicity, because this means that we can
now have a fork choice rule where the “score” of a block only depends on the block and its
children, putting it into a similar category as more traditional PoW-based fork choice rules such
as the longest chain rule and GHOST. However, this fork choice rule is also finality-bearing: it is
impossible for two incompatible checkpoints to be finalized of the validators violated a slashing
condition (see below).

unless at least 1 3

There are two slashing conditions:

1. NO DBL PREPARE: a validator cannot prepare two different check-
points for the same epoch.

2. PREPARE COMMIT CONSISTENCY: if a validator has made a commit with epoch n, they
cannot make a prepare with epoch > n and epoch

source

<n.

Earlier versions of Casper had four slashing conditions, but we can reduce to two because of
the three modifications above; they ensure that blocks will not register commits or prepares that
violate the other two conditions.

3 Proof Sketch of Safety and Plausible Live-

ness

We give a proof sketch of two properties of this scheme: safety and plausible liveness. Safety
means that two incompatible checkpoints cannot be finalized unless means at that least it is 1 3 of
validators violate always possible for checkpoint, regardless of what previous a slashing
condition. Plausible liveness 2 3

of honest validators events took place.
to finalize a new

Suppose that two conflicting checkpoints A (epoch e
A

) and B (epoch e

B

) are finalized.



. In the triv- ial case where e

A
=e

B, must have violated NO this DBL implies PREPARE. that some In intersection other cases, of
there 1

of validators must exist two checkpoints, chains e
A both > el A terminating >e2 A

> ... at > the G and genesis. e

> Suppose el

B
>e2
B
without > ... > G loss of of justified gener- ality that e of B
validators > ei+1 A
e
A..>e

B Then, there must In the first case, since Ai violated NO DBL PREPARE. be some and B both
ei A Otherwise, that have either 2

prepares, el A

BorBhasei A

> and at least 2

3

commits 1 3
1 proves 3
there exist of validators 2 3

prepares with epoch > B and epoch

source



< B, so at least
safety.
violated PREPARE COMMIT CONSISTENCY. This

Now, we prove liveness. Suppose that all existing validators have sent some sequence of
prepare and commit messages. Let M with epoch e

M be the
highest-epoch checkpoint that was justified. Honest validators have not committed on any block
which is not justified. Hence, neither slashing condition stops them from making prepares on a
child of M, using e

M

as epoch

source

, and then committing this child.

4 Fork Choice Rule

The mechanism described above ensures plausible liveness; however, it by itself does not ensure
actual liveness - that is, while the mechanism cannot get stuck in the strict sense, it could still
enter a scenario where the proposal mechanism (i.e. the proof of work chain) gets into a state
where it never

5
This implies 2 3
commits and 2 3

prepares in epochs e
A
and e

B



ends up creating a checkpoint that could get finalized.
Here is one possible example:

In this case, HASH1 or any descendant thereof cannot be finalized with- out interpret
slashing HASHI1 1

6

of validators. as the head However, and start miners mining on a descendants proof of work of it.
chain would

In fact, when any checkpoint gets point can get finalized withoutk -k > 1 3

commits, no conflicting check- necessitates modifying the fork choice 1 3 rule of used validators
by participants getting slashed. This in the under- lying proposal mechanism (as well as users
and validators): instead of blindly following a longest-chain rule, there needs to be an overriding
rule that (i) finalized checkpoints are favored, and (ii) when there are no further finalized
checkpoints, checkpoints with more (justified) commits are favored.

One complete description of such a rule would be:

1. Start with HEAD equal to the genesis of the chain.

2. Select the descendant checkpoint of HEAD with the most commits
(only justified checkpoints are admissible)

3. Repeat (2) until no descendant with commits exists.

4. Choose the longest proof of work chain from there.

6



The commit-following part of this rule can be viewed in some ways as mirroring the ~greegy
heaviest observed subtree” (GHOST) rule that has been proposed for proof of work chains [cite].
The symmetry is this: in GHOST, a node starts with the head at the genesis, then begins to move
forward down the chain, and if it encounters a block with multiple children then it chooses the
child that has the larger quantity of work built on top of it (including the child block itself and its
descendants).

Here, we follow a similar approach, except we repeatedly seek the child that comes the
closest to achieving finality. Commits on a descendant are implicitly commits on all of its
ancestors, and so if a given descendant of a given block has more commits than any other
descendant, then we know that all children along the chain from the head to this descendant are
closer to finality than any of their siblings; hence, looking for the descendant with the most
commits and not just the child replicates the GHOST principle most faithfully. Finalizing a
checkpoint requires 2/3 commits within a single epoch, and so we do not try to sum up commits
across epochs and instead simply take the maximum.

This rule ensures that if there is a checkpoint such that no conflicting checkpoint can be
finalized without at least some validators violating slashing conditions, then this is the checkpoint
that will be viewed as the “head” and thus that validators will try to commit on.

5 Dynamic Validator Sets

In an open protocol, the validator set needs to be able to change; old valida- tors need to be able
to withdraw, and new validators need to be able to enter. To accomplish this end, we define a
variable kept track of in the state called the dynasty counter. When a user sends a “deposit”
transaction to become a validator, if this transaction is included in dynasty n, then the validator
will be inducted in dynasty n + 2. The dynasty counter is incremented when the chain detects
that the checkpoint of the current epoch that is part of its own history has been finalized (that is,
the checkpoint of epoch e must be finalized during epoch e, and the chain must learn about this
before epoch e ends). In simpler terms, when a user sends a “deposit” transaction, they need to
wait for the transaction to be finalized, and then they need to wait again for that epoch to be
finalized; after this, they become part of the validator set. We call such a validator’s start dynasty
n+2.

7



For a validator to leave, they must send a “withdraw” message. If their withdraw message
gets included during dynasty n, the validator similarly leaves the validator set during dynasty n +
2; we call n + 2 their end dy- nasty. When a validator withdraws, their deposit is locked for four
months before they can take their money out; if they are caught violating a slashing condition
within that time then their deposit is forfeited.

For a checkpoint to be justified, it must be prepared by a set of validators which contains (i) at
least startDynasty < curDynasty 2

3 vious dyansty (that is, validators of the current dynasty (that is, validators with

< endDynasty), and (ii) at least with startDynasty < curDynasty 2
3

of the pre- — 1 < endDynasty. Finalization with commits works similarly. The current and
previous dynasties will usually mostly overlap; but in cases where they sub- stantially diverge
this “stitching” mechanism ensures that dynasty diver- gences do not lead to situations where a
finality reversion or other failure can happen because different messages are signed by different
validator sets and so equivocation is avoided.

6 Mass Crash Failure Recovery

Suppose that more than one third of validators crash-fail at the same time; that is, they either are
no longer connected to the network due to a network partition, or their computers fail, or they do
this as a malicious attack. Then, no checkpoint will be able to get finalized.

We can recover from this by instituting a rule that validators who do not prepare or commit
for a long time start to see their deposit sizes decrease

8



(depending on the desired economic incentives this can be either a compul- sory partial
withdrawal or an outright confiscation), until eventually their deposit sizes decrease low enough
that the validators that are preparing and committing Note are once again a that this does
introduce 2

3
supermajority.

the possibility of two conflicting check- points being
finalized, with validators only losing money on one of the two checkpoints:

If the goal is simply to achieve maximally close to 50% fault tolerance, then clients should
simply favor the finalized checkpoint that they received earlier. However, if clients are also
interested in defeating 51% censorship at- tacks, then they may want to at least sometimes
choose the minority chain. All forms of “51% attacks” can thus be resolved fairly cleanly via
“user- activated soft forks” that reject what would normally be the dominant chain. Particularly,
note that finalizing even one block on the dominant chain pre- cludes the attacking validators
from preparing on the minority chain because of PREPARE COMMIT CONSISTENCY, at least
until their balances decrease to the point where the minority can commit, so such a fork would
also serve the function of costing the majority attacker a very large portion of their deposits.

9



7 Conclusions

This introduces the basic workings of Casper the Friendly Finality Gadget’s prepare and commit
mechanism and fork choice rule, in the context of Byzan- tine fault tolerance analysis. Separate
papers will serve the role of explaining and analyzing incentives inside of Casper, and the
different ways that they can be parametrized and the consequences of these paramtrizations.

8 References

* Aviv Zohar and Yonatan Sompolinsky, “Fast Money Grows on Trees, not Chains”:
https://eprint.iacr.org/2013/881.pdf

* Jae Kwon, “Tendermint”: http://tendermint.org/tendermint.pdf

* Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Toler- ance”:
http://pmg.csail.mit.edu/papers/osdi99.pdf

10



