Pandas Development Roadmap
12/29/15 Initial Creation

This document show some recent changes in the pandas library and some directions for future
work. Please add helpful comments / major features that should be considered.

Some previous discussions are here:

Pandas Meeting Notes thru June 2015
Scipy 2015 BOF

Table of contents

Pandas Development Roadmap

Some recent changes in pandas
Some on-deck enhancements are:

Future Possibilities:

pandas and NumPy compatibility

Replacing BlockManager with new C++ data structures

Missing data support in integer and boolean data

Interfacing pandas with numba, dask, and other Python projects

Some recent changes in pandas

e dtype enhancements (categorical, Timedelta, Datetime W/tz) & making these first class objects
code refactoring to remove subclassing of ndarrays for Series & Index
e carving out/ deprecating non-core parts of pandas
o datareader
O SparsePanel, WidePanel & other aliases (TimeSeries)
o rpy, rplot, irow et al.
o google-analytics
o removed residual statsmodels type things (o1s, VAR)
e APl changes to make things more consistent
0 pd.rolling/expanding *-> .rolling/expanding (this is in master now)
.resanple becoming a full deferred like groupby (PR up)
multi-index slicing along any level (obviates need for . xs) and allows assignment
.loc/.iloc - for the most part obviates use of .ix
.pipe & .assign
plotting accessors
fixing of the sorting API
e many performance enhancements both micro & macro (e.g. release GIL)

0O O O O O

o}

https://docs.google.com/document/d/1tGbTiYORHiSPgVMXawiweGJlBw5dOkVJLY-licoBmBU/edit#heading=h.fwo3xcbnullz
https://docs.google.com/document/d/1la7eIrGvvhB5hPro26ybzCR5s2e29oJrZdRvskXn0tQ/edit#heading=h.x9zx2a6h6du9

Some on-deck enhancements are:

° IntervalIndex (and eventually make reriodIndex just a sub-class of this)
https://qithub.com/pydata/pandas/pull/8707

[] RangeIndex https://github.com/pvdata/pandas/pull/11892

Future Possibilities:

e |O support
o parquet
avro https://github.com/pydata/pandas/issues/11752

BSON https://github.com/pydata/pandas/issues/9166 (more of a refactor here)
SFrame format?

e whatis public API? / do we need lower-level ‘dev’ API?
e Impl API
o currently only support an actual numpy API, ideally support a numpy-like API
o if this is fleshed out a bit, could support memap/bcolz/DyND/SFrame/new c-API,
IOW swap out for specific dtypes, providing easy transition
e pandas 1.0
o Some ideas are here: https://qgithub.com/pydata/pandas/issues/10000
Fix [[/__getitem__ (#9595)
Make the index/column distinction less painful (#5677, #8162)
Clean up the Index vs Multiindex API (#3268)
DataFrame constructor reindexes, but every expects overwriting the index
instead (everyone finds this confusing)
o Sparse
m remove / deprecate?
m carve to own library?
m support more? mostly functional, but need champion
o Panel
m defer to x-ray? / deprecate?
e +1 most of the pandas logic just doesn't generalize well beyond
1D/2D (shoyer)
+1 | think x-ray is a better approach to ND labeled arrays. (Travis)
Some user commentary here:
https://github.com/pydata/pandas/issues/8906
m fix some warts (indexing when reducing dimensions is a bit non-intuitive)
e crazy things that would probably break too much but might be worth thinking about /
opinions:
o enforce immutability in group by apply

O

o

O

o O O O

https://github.com/pydata/pandas/pull/8707
https://github.com/pydata/pandas/pull/11892
https://github.com/pydata/pandas/issues/11752
https://github.com/pydata/pandas/issues/9166
https://github.com/pydata/pandas/issues/10000
https://github.com/pydata/pandas/issues/9595
https://github.com/pydata/pandas/issues/5677
https://github.com/pydata/pandas/issues/8162
https://github.com/pydata/pandas/issues/3268
https://github.com/pydata/pandas/issues/8906

o use numba for all aggregations instead of python-generated cython (would
need AOT to avoid explict numba dep; this is currently available in numba >=
0.22).

m shoyer: | have some proof of concept for this in numbagg. In my tests,
performance is very good.

o view numpy as a necessary evil and *only* compatibility reasons and where that
doesn’t work we don’t bend over backwards to make it work (dynd has a similar
view 1IUC)

o factory functions for Series & DataFrame constructors

m WM: This would reduce constructor complexity (to separate internal
object construction from user construction) and result in better
microperformance. As long as you have a fastpath option for internal use |
think it’s fine to leave it as is because the API breakage would be too
severe.

m breaks API, what benefit is this?

pandas and NumPy compatibility

Per above, what NumPy compatibility should we actually care about?

Replacing BlockManager with new C++ data structures

e |Internals rewrite in c++ (1ibpandas)

O pros:
m Allows better micro performance (what exactly are we expecting here)?
m c-api (potential to create multi-lang bindings)
m Dbetter maintainability (how is this true?)
m New dtypes could be added and treated as first-class citizens rather than
glued on
o cons:

m this would make the base library *harder* for newcomers to contribute
(not that the internals are easy now, but they are mostly in python)

m this is a fair amount of work, so have to weigh roi

m not re-using a lot of the low-level work that is already in DyND

e consolidation policy
o allowpolicy=block|column|split

m block is backwards compat

m column is keep blocks separate if passed that way or created (e.g. a dict
now will support direct view access), this would be the default

m splitis forced splitting of ndarrays on pass in to dict-like (this can be
expensive so its optional)

https://github.com/shoyer/numbagg

m column/split provide superior row aggregations as the cache is fully
utilized (as these are contiguous in memory)
m hitps://qithub.com/jreback/pandas/iree/consolidate, not a PR yet (and a
bit behind master)
o related is supporting copy-on-write to allow chained indexing to work (rather
than either fail silently in older versions of pandas of showing a
SettingWithCopyWarning, which is a bit unintuitive for users),
https://qithub.com/pydata/pandas/pull/11500
e Adding new data types

Missing data support in integer and boolean data

Decision: depends on BlockManager / libpandas investigation and decision

e Missing value support for int NA & boolean NA
o Use bitfields
m pros

e no additional dependencies

e much easier to understand than DyND for non-c++ wizards

e allows missing value support for basically any type that we can
come up with (though presumably the set of types that are useful
isn’t that large)

e precedence in at least one other system (postgres) for doing it this
way (not the strongest argument in favor, but evidence thatit’s a
valid solution to the problem)

e this works with nested data, not sure how sentinels would work
with that (dynd keeps an extra bool in the char* indicating whether
the value is missing or not but only does this for complex types. it
uses sentinels for scalar types)

m cons
e probably a fair amount of work up front
less easier to understand than DyND for non-bitfield wizards
different than using sentinel (like all other dtypes in pandas ATM)
need to implement our own bitarray or find a good
implementation
e how would this jive with the buffer interface which is presumably
the interface we’d target for numpy compatibility
e numpy compat is very difficult because numpy doesn’t support the
notion of missing values, though i guess we could go to a masked
array (blah)

o Use DyND
m pros

https://github.com/jreback/pandas/tree/consolidate
https://github.com/pydata/pandas/pull/11500

already supports missing values
have proof-of-concept impl
no more heavyweight than NumPy
DyND has explored much of the space here already, has learned
from its mistakes
m cons
e fairly heavyweight to have as a hard dependency (its currently
pip (wheels) and conda installable, on all platforms, though)
DyND needs to flesh out numpy compat.
Requires waiting on another project to do something -- we can
also collaborate with the DyND developers, they are fairly
approachable
e the way dynd allocates memory is exactly like C and NumPYy,
meaning any in-memory layout optimizations specific to analytics
applications, like using a columnar layout are basically not
possible because how memory is allocated is part of the user
interface (this is what datashape is). How is this a con?

Interfacing pandas with numba, dask, and other Python projects

defer to numba in .apply
o provides easy way to handle UDF’s
o numba is adding extension dtypes so can interoperate with Series
o adding ‘real’ indexing support within udfs is possible but tricky. would have to
extend the Series dtype so that the c-indexing routines could be directly called
(e.g. if someone does say self.iloc[] within a udf)
this would need benchmarking
biggest APl issue is that we need to handle what happens when the udf goes to
nopython mode, should we just continue on with regular apply, or raise (need a
kw arg for this | think).
o makes sense to have engine="numba’ kw arg here (are there other engines
we could defer t0?)
interfacing to dask
o via groupby with engine=’dask’ default (if installed) for auto-parallelism
0 .to_parallel tosimply return a dask.dataframe (easy way for people to
then parallelize)

Supporting new data types

Other dtype support (just putting these out there for discussion)

o O 0O O O O O

ragged arrays (e.g. lists in cells)

json-like

images

variable len strings

pd.String (make all string-likes into an impl of categorical)
datetimes with non-ns units

unit support https://github.com/pydata/pandas/issues/10349

https://github.com/pydata/pandas/issues/10349

	Pandas Development Roadmap
	Some recent changes in pandas
	Some on-deck enhancements are:
	Future Possibilities:

	pandas and NumPy compatibility
	Replacing BlockManager with new C++ data structures
	Missing data support in integer and boolean data
	Interfacing pandas with numba, dask, and other Python projects
	Supporting new data types

