
Pandas Development Roadmap
12/29/15 Initial Creation

This document show some recent changes in the pandas library and some directions for future
work. Please add helpful comments / major features that should be considered.

Some previous discussions are here:
Pandas Meeting Notes thru June 2015
Scipy 2015 BOF

Table of contents

Pandas Development Roadmap
Some recent changes in pandas
Some on-deck enhancements are:
Future Possibilities:

pandas and NumPy compatibility
Replacing BlockManager with new C++ data structures
Missing data support in integer and boolean data
Interfacing pandas with numba, dask, and other Python projects

Some recent changes in pandas
●​ dtype enhancements (Categorical, Timedelta, Datetime w/tz) & making these first class objects
●​ code refactoring to remove subclassing of ndarrays for Series & Index
●​ carving out / deprecating non-core parts of pandas

○​ datareader
○​ SparsePanel, WidePanel & other aliases (TimeSeries)
○​ rpy, rplot, irow et al.
○​ google-analytics
○​ removed residual statsmodels type things (ols, VAR)

●​ API changes to make things more consistent
○​ pd.rolling/expanding * -> .rolling/expanding (this is in master now)
○​ .resample becoming a full deferred like groupby (PR up)
○​ multi-index slicing along any level (obviates need for .xs) and allows assignment
○​ .loc/.iloc - for the most part obviates use of .ix
○​ .pipe & .assign
○​ plotting accessors
○​ fixing of the sorting API

●​ many performance enhancements both micro & macro (e.g. release GIL)

https://docs.google.com/document/d/1tGbTiYORHiSPgVMXawiweGJlBw5dOkVJLY-licoBmBU/edit#heading=h.fwo3xcbnullz
https://docs.google.com/document/d/1la7eIrGvvhB5hPro26ybzCR5s2e29oJrZdRvskXn0tQ/edit#heading=h.x9zx2a6h6du9

Some on-deck enhancements are:
●​ IntervalIndex (and eventually make PeriodIndex just a sub-class of this)

https://github.com/pydata/pandas/pull/8707
●​ RangeIndex https://github.com/pydata/pandas/pull/11892

Future Possibilities:

●​ IO support
○​ parquet
○​ avro https://github.com/pydata/pandas/issues/11752
○​ BSON https://github.com/pydata/pandas/issues/9166 (more of a refactor here)
○​ SFrame format?

●​ what is public API? / do we need lower-level ‘dev’ API?
●​ Impl API

○​ currently only support an actual numpy API, ideally support a numpy-like API
○​ if this is fleshed out a bit, could support memap/bcolz/DyND/SFrame/new c-API,

IOW swap out for specific dtypes, providing easy transition
●​ pandas 1.0

○​ Some ideas are here: https://github.com/pydata/pandas/issues/10000
○​ Fix []/__getitem__ (#9595)
○​ Make the index/column distinction less painful (#5677, #8162)
○​ Clean up the Index vs MultiIndex API (#3268)
○​ DataFrame constructor reindexes, but every expects overwriting the index

instead (everyone finds this confusing)
○​ Sparse

■​ remove / deprecate?
■​ carve to own library?
■​ support more? mostly functional, but need champion

○​ Panel
■​ defer to x-ray? / deprecate?

●​ +1 most of the pandas logic just doesn't generalize well beyond
1D/2D (shoyer)

●​ +1 I think x-ray is a better approach to ND labeled arrays. (Travis)
●​ Some user commentary here:

https://github.com/pydata/pandas/issues/8906
■​ fix some warts (indexing when reducing dimensions is a bit non-intuitive)

●​ crazy things that would probably break too much but might be worth thinking about /
opinions:

○​ enforce immutability in group by apply

https://github.com/pydata/pandas/pull/8707
https://github.com/pydata/pandas/pull/11892
https://github.com/pydata/pandas/issues/11752
https://github.com/pydata/pandas/issues/9166
https://github.com/pydata/pandas/issues/10000
https://github.com/pydata/pandas/issues/9595
https://github.com/pydata/pandas/issues/5677
https://github.com/pydata/pandas/issues/8162
https://github.com/pydata/pandas/issues/3268
https://github.com/pydata/pandas/issues/8906

○​ use numba for all aggregations instead of python-generated cython (would
need AOT to avoid explict numba dep; this is currently available in numba >=
0.22).

■​ shoyer: I have some proof of concept for this in numbagg. In my tests,
performance is very good.

○​ view numpy as a necessary evil and *only* compatibility reasons and where that
doesn’t work we don’t bend over backwards to make it work (dynd has a similar
view IIUC)

○​ factory functions for Series & DataFrame constructors
■​ WM: This would reduce constructor complexity (to separate internal

object construction from user construction) and result in better
microperformance. As long as you have a fastpath option for internal use I
think it’s fine to leave it as is because the API breakage would be too
severe.

■​ breaks API, what benefit is this?

pandas and NumPy compatibility
Per above, what NumPy compatibility should we actually care about?

Replacing BlockManager with new C++ data structures
●​ Internals rewrite in c++ (libpandas)

○​ pros:
■​ Allows better micro performance (what exactly are we expecting here)?
■​ c-api (potential to create multi-lang bindings)
■​ better maintainability (how is this true?)
■​ New dtypes could be added and treated as first-class citizens rather than

glued on
○​ cons:

■​ this would make the base library *harder* for newcomers to contribute
(not that the internals are easy now, but they are mostly in python)

■​ this is a fair amount of work, so have to weigh roi
■​ not re-using a lot of the low-level work that is already in DyND

●​ consolidation policy
○​ allow policy=block|column|split

■​ block is backwards compat
■​ column is keep blocks separate if passed that way or created (e.g. a dict

now will support direct view access), this would be the default
■​ split is forced splitting of ndarrays on pass in to dict-like (this can be

expensive so its optional)

https://github.com/shoyer/numbagg

■​ column/split provide superior row aggregations as the cache is fully
utilized (as these are contiguous in memory)

■​ https://github.com/jreback/pandas/tree/consolidate, not a PR yet (and a
bit behind master)

○​ related is supporting copy-on-write to allow chained indexing to work (rather
than either fail silently in older versions of pandas of showing a
SettingWithCopyWarning, which is a bit unintuitive for users),
https://github.com/pydata/pandas/pull/11500

●​ Adding new data types

Missing data support in integer and boolean data
Decision: depends on BlockManager / libpandas investigation and decision

●​ Missing value support for int NA & boolean NA
○​ Use bitfields

■​ pros
●​ no additional dependencies
●​ much easier to understand than DyND for non-c++ wizards
●​ allows missing value support for basically any type that we can

come up with (though presumably the set of types that are useful
isn’t that large)

●​ precedence in at least one other system (postgres) for doing it this
way (not the strongest argument in favor, but evidence that it’s a
valid solution to the problem)

●​ this works with nested data, not sure how sentinels would work
with that (dynd keeps an extra bool in the char* indicating whether
the value is missing or not but only does this for complex types. it
uses sentinels for scalar types)

■​ cons
●​ probably a fair amount of work up front
●​ less easier to understand than DyND for non-bitfield wizards
●​ different than using sentinel (like all other dtypes in pandas ATM)
●​ need to implement our own bitarray or find a good

implementation
●​ how would this jive with the buffer interface which is presumably

the interface we’d target for numpy compatibility
●​ numpy compat is very difficult because numpy doesn’t support the

notion of missing values, though i guess we could go to a masked
array (blah)

○​ Use DyND
■​ pros

https://github.com/jreback/pandas/tree/consolidate
https://github.com/pydata/pandas/pull/11500

●​ already supports missing values
●​ have proof-of-concept impl
●​ no more heavyweight than NumPy
●​ DyND has explored much of the space here already, has learned

from its mistakes
■​ cons

●​ fairly heavyweight to have as a hard dependency (its currently
pip (wheels) and conda installable, on all platforms, though)

●​ DyND needs to flesh out numpy compat.
●​ Requires waiting on another project to do something -- we can

also collaborate with the DyND developers, they are fairly
approachable

●​ the way dynd allocates memory is exactly like C and NumPy,
meaning any in-memory layout optimizations specific to analytics
applications, like using a columnar layout are basically not
possible because how memory is allocated is part of the user
interface (this is what datashape is). How is this a con?

Interfacing pandas with numba, dask, and other Python projects

●​ defer to numba in .apply
○​ provides easy way to handle UDF’s
○​ numba is adding extension dtypes so can interoperate with Series
○​ adding ‘real’ indexing support within udfs is possible but tricky. would have to

extend the Series dtype so that the c-indexing routines could be directly called
(e.g. if someone does say self.iloc[] within a udf)

○​ this would need benchmarking
○​ biggest API issue is that we need to handle what happens when the udf goes to

nopython mode, should we just continue on with regular apply, or raise (need a
kw arg for this I think).

○​ makes sense to have engine=’numba’ kw arg here (are there other engines
we could defer to?)

●​ interfacing to dask
○​ via groupby with engine=’dask’ default (if installed) for auto-parallelism
○​ .to_parallel to simply return a dask.dataframe (easy way for people to

then parallelize)

Supporting new data types

●​ Other dtype support (just putting these out there for discussion)

○​ ragged arrays (e.g. lists in cells)
○​ json-like
○​ images
○​ variable len strings
○​ pd.String (make all string-likes into an impl of categorical)
○​ datetimes with non-ns units
○​ unit support https://github.com/pydata/pandas/issues/10349

https://github.com/pydata/pandas/issues/10349

	Pandas Development Roadmap
	Some recent changes in pandas
	Some on-deck enhancements are:
	Future Possibilities:

	pandas and NumPy compatibility
	Replacing BlockManager with new C++ data structures
	Missing data support in integer and boolean data
	Interfacing pandas with numba, dask, and other Python projects
	Supporting new data types

