
Binary 
Base-2 number system. (The radix of binary is 2) 
Computers are limited in their ability to represent things, so on/off, high/low, 0/1 is much more 
straightforward. 
There are only 0s and 1s in Binary, but using these two symbols you can create all the same 
numbers as the decimal system can. 
*The farthest right digit is always the least significant (least weight on number) 
 
   Binary -> Decimal 
​ 0=0 
​ 1=1 
​ 10=2 
​ 11=3 
​ 100=4 
​ 101=5 
​ 110=6 
​ 111=7 
​ 1000=8 
​ 1001=9 
​ 1010=10 
 
Exponentiating the number 2 to a power is how you calculate binary with decimal  
Can divide by 2 and find remainders to calculate binary (read bottom to top for left to right) 
The length of a binary number is the amount of 1s and 0s it has 
​  
​ each 1 or 0 is called a bit 
​ a group of 4 bits is called a nibble 
​ 8-bits, or 2 nibbles make a byte 
​ word can mean longer bits (16+ long) 
 
Leading zeros can add information about whether you are working with nibbles or bytes. But 
don’t change the value 
In addition to basic mathematical manipulation like addition, subtraction, etc, you can use the 
bitwise operators to perform functions bit-by-bit. 
 
​ 1) Complement (NOT) means finding the exact opposite of everything (switching 1s and 
0s) and is the only bitwise operator that operates on a single binary value 
​ 2) OR takes two numbers and produces the union of them. This operator has four 
possible outcomes: 

1.​ 0 OR 0 = 0 
2.​ 1 OR 1 = 1 
3.​ 0 OR 1 = 1 



4.​ 1 OR 0 = 1 

OR is like addition. 0 + 0 = 0, but 1 + anything will always = 1 
 
​ 3) AND takes two binaries and produces the conjunction of them. If either or both bits 
are 0 then the resulting bit is 0. If both values are 1, the resulting bit is also 1: 

1.​ 0 AND 0 = 0 
2.​ 0 AND 1 = 0 
3.​ 1 AND 0 = 0 
4.​ 1 AND 1 = 1 

AND is like multiplication 
​  
​ 4) XOR is an exclusive OR because it behaves the same but will only produce a 1 if 
either one or the other number has a 1 in the position: 

1.​ 0 XOR 0 = 0  
2.​ 0 XOR 1 = 1 
3.​ 1 XOR 0 = 1 
4.​ 1 XOR 1 = 0 (both are 1 in this case so it doesn’t work!) 

​  
Bit Shifts are handy for manipulating a single binary value. Each shift has two components: 
direction and amount of bits that are shifted. 
 
​ Right: one or more of the least significant digits on the far right will get cut off. Adding 
leading zeroes will keep the bit-length the same (same as dividing by 2^n) 
​ Left: all of the bits are pushed towards the most significant digits on the far left, and for 
each shift a 0 must be added to the least significant position on the far right. (same as 
multiplying by 2^n) 
 
Binary is what drives all electronics! 
 
In most programming languages, binary numbers are represented by a 0b preceding the 
number, without this it would just be a decimal number.  
 
Bitwise operators can be used in programming: 
& = AND 
| = OR 
~ = NOT  
^ = XOR 
Left shift: <<n 
Right shift: >>n 


