
Remove Arguments Adaptor Frame in Deoptimizer
Attention: Shared Google-externally

Author: victorgomes@
Tracking Bug: v8:10201

Status: Done

Background
We are removing the arguments adaptor frame, used when there is a mismatch between the
actual number of arguments and the formal parameter count, see the design doc. This
document explores the changes needed to be done in the deoptimizer.

The Deoptimizer
The deoptimizer is responsible to reconstruct all the non-optimized frames (it can be more than
one in case of inlining). It reconstruct 4 possible frames:

-​ Interpreted Frames
-​ ArgumentAdaptor Frame
-​ BuiltinContinuation Frame
-​ ConstructStub Frame

During compilation, TurboFan creates code metadata (TranslatedFrames and TranslatedValues)
that guide the reconstruction of these frames during deoptimization.

What needs to be done
If we eliminate the argument adaptor frame, the deoptimizer will need to:

1.​ Push the extra arguments.
2.​ Push the actual arguments count in the correct interpreted frame slot.

Push the extra arguments
Nothing needs to be done for ConstructStub and BuiltinContinuation frames, since they work
without an adaptor frame. They already contain the number of arguments and a copy of each
argument (see frame-constants.h and the builtins that create them [1, 2]). The interpreted
frame, however, does not know how many arguments were pushed in the stack. And in case of
inline frames, it relies on the reconstruction of an adaptor frame. TurboFan creates a
FrameState node that contains this information.

Push the actual argument count
As I mentioned, the interpreted frame does not know how many arguments were pushed. If the
deoptimizer is reconstructing the bottom most frame, it can use the information provided by the

https://bugs.chromium.org/p/v8/issues/detail?id=10201
https://chromium-review.googlesource.com/c/v8/v8/+/2410195
https://bit.ly/2KV4QNv
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/execution/frame-constants.h;drc=a2fd94f0140ff7b524c4356eb74bcab916a29db6;l=123
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/execution/frame-constants.h;bpv=1;bpt=1;l=238?gsn=BuiltinContinuationFrameConstants&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fv8%2Fsrc%2Fexecution%2Fframe-constants.h%239o4_f8tPMxrLYIjHpg1pnj9CLw6eRHbNFCUDX5NnlVs
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/builtins/x64/builtins-x64.cc;drc=e950f0407e597a2c2a99049d73ce523b0ed80b15;l=115
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/builtins/x64/builtins-x64.cc;drc=e950f0407e597a2c2a99049d73ce523b0ed80b15;l=1671
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/compiler/js-inlining.cc;drc=608018e557896338caf7f348440c79e46899b661;l=608

optimized frame. But in cases of inlined frames, the deoptimizer currently does not have the
actual argument count.

Solution #1: extra metadata in the FrameState
A possible solution is to incorporate more metadata in the InterpretedFrameState. We would
need to distinguish two cases, either it is the outermost frame state or an inline frame.

In the case of outermost frame state, the compiler cannot know how many arguments will be
used to call the optimized code. The deoptimizer will simply use the arguments count provided
by the optimized code frame. The extra arguments will not need to be pushed, since it should be
already on the stack. Arguments with index below the formal parameter count will still need to
be pushed (or even materialized), since the optimized code might have clobberred them.

In case of inlined frame state, the compiler knows how many arguments will be pushed. It
should record the count and all the extra arguments in the frame state node, instead of creating
an arguments adaptor frame state. Here lies a tricky question: which frame state should contain
this information? In the caller or in the callee? Usually, arguments should be part of the caller,
but what does it mean to attach this information to the caller frame state? What happens if the
caller calls more than one function? The actual argument count in V8 is actually in the callee
frame.

This solution also breaks any optimization in TurboFan that uses the
AgumentsAdaptorFrameState. Note that these optimizations are only used in case of inlined
functions, since the FrameState is otherwise never introduced in the TF graph.

Solution #2: an ArgumentsAdaptor virtual FrameState
The second solution is to continue to have the ArgumensAdaptorFrameState. Although we no
longer have an ArgumentsAdaptor frame in the runtime, it is useful to compile inlined functions
as if we did, emitting a virtual (fake?) frame state to the deoptimizer. This frame state contains
the TranslatedValues for all the arguments and the actual argument count. When reconstructing
the frames in the deoptimizer, it will just simply push the arguments. A WIP CL for this solution
can be found here (check DoComputeArgumentsAdaptorFrame).

This solution does not break any of the inlined optimizations in TF.

Extra: what happens to the arguments object?
In the case of the bottom most frame, the arguments object can be reconstructed during
deoptimization by accessing the arguments directly from the stack. For inlined frames, the
object is reconstructed by materializing the elements from the ArgumentsAdaptorFrameState.

https://chromium-review.googlesource.com/c/v8/v8/+/2410195/4/src/deoptimizer/deoptimizer.cc#1210

	Remove Arguments Adaptor Frame in Deoptimizer
	Background
	The Deoptimizer
	What needs to be done
	Push the extra arguments
	Push the actual argument count

	Solution #1: extra metadata in the FrameState
	Solution #2: an ArgumentsAdaptor virtual FrameState
	Extra: what happens to the arguments object?

