FOSS and SEEd Standard Alignment Sixth Grade

Strand 6.1: STRUCTURE AND MOTION WITHIN THE SOLAR SYSTEM

The solar system consists of the Sun, planets, and other objects within the Sun's gravitational influence. Gravity is the force of attraction between masses. The Sun-Earth-Moon system provides an opportunity to study interactions between objects in the solar system that influence phenomena observed from Earth. Scientists use data from many sources to determine the scale and properties of objects in our solar system.

argument from evidence, Obtaining, evaluating and communicating information. CCC: System and system models, scale proportion and quantity Standard Content: Earth is a system composed of subsystems. Part 3: Moon Watch SEP: Developing and using models, Planning and carrying out investigations CCC: System and system models, scale proportion and quantity Standard Content: The Moon can be observed both day and night.		
Planetary Science Investigation 2: Earth/ Sun Relationship Part 1: Day and Night SEP: Developing and using models, Planning and carrying out investigations, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluating, and communicating information CCC: Scale, proportion and quantity, Patterns, System and system models. Cause and effect Standard Content: At times, half of Earth is illuminated and half is dark. Daytime and nighttime are the result of Earth's rotation on its axis. Earth's	6.1.1 Develop and use a model of the Sun-Earth-Moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and Moon, and seasons. Examples of models could be physical, graphical, or conceptual. (ESS1.A, ESS1.B)	6.1.1 Episodes 1- 10 FOSS Reading Earth's Systems Seasons on Earth

axis tilts at an angle of 23.5 degrees and points toward the	The First Voyage of
North Star.	Columbus
	Columbus
Part 2: Summer Heat	Lunar Myths
SEP: Developing and using models, Analyzing and	
interpreting data,	
Using mathematics and computational thinking,	
Constructing	
explanations, Engaging in argument from evidence	
CCC: Scale, proportion and quantity, Patterns, Structure and	
function, Energy and matter,, Cause and effect	
Standard Content: Earth's axis tilts at an angle of 23.5	
degrees and	
points toward the North Star. The intensity of solar radiation	
on Earth's	
surface depends on the solar angle - that angle at which	
sunlight strikes	
the surface. The tilt of the Earth's axis and Earth's revolution	
around the	
Sun results in seasons.	
Part 3: Day Length	
SEP: Asking questions, Developing and using models,	
Planning and	
carrying out investigations, Analyzing and interpreting	
data, Using	
mathematics and computational thinking, Constructing	
explanations, Obtaining, evaluating, and communicating	
information	
CCC: Patterns, Cause and effect, Scale and proportion and	
quantity	
Standard Content: Earth's axis tilts at an angle of 23.5	
degrees and	

points toward the North Star. The intensity of solar radiation	<u> </u>	
on Earth's		
surface depends on the solar angle- that angle at which		
sunlight strikes		
the surface. The tilt of Earth's axis and Earth's revolution		
around the Sun		
results in season.		
Planetary Science	6.1.1 Develop and use a model of the	
Investigation 3: Moon Study	Sun-Earth-Moon system to describe	
	the cyclic <u>patterns</u> of lunar phases,	
Part 1: A Close Look at the Moon	eclipses of the Sun and Moon, and	
SEP: Asking questions, Obtaining, evaluating, and	seasons. Examples of models could be	
communicating	physical, graphical, or conceptual.	
information	(ESS1.A, ESS1.B)	
<u>CCC: Patterns</u> Standard Content: The Moon's surface features that can be		
identified in		
telescope images: craters, maria, and mountains. The moon,		6.1.1
Earth's		0.1.1
satellite, is about one-fourth Earth's diameter, and orbits at a		Episodes 1- 10
distance of		-p.00000 - 10
about 384,000 km.		FOSS Reading
Part 2: How Big/ How Far		Earth's Systems
SEP: Developing and using models, Planning and carrying		•
out		Seasons on Earth
investigations, Using mathematics and computational		The First Voyage of
thinking CCC: Scale proportion and quantity System and system		Columbus
CCC: Scale, proportion and quantity, System and system models, Patterns		
Standard Content: Scale is the size relationship between a		Lunar Myths
representation of an object and the object. Scale can be		
expressed as a		

ratio when an object and its representation are measured in related units. Planetary Science	6.1.3 Use computational thinking to	
Investigation 4 At a Glance	analyze data and	
Part 1: Observed Patterns SEP: Asking questions, Developing and using models, Planning and carrying out investigations, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information CCC: Patterns, System and system models. Cause and effect Standard Content: The Moon goes through phases: "new" to "full" and back to "new" in a 4-week cycle. The Moon shines as a result of reflected light from the Sun. Half of the Moon is always illuminated (except during a lunar eclipse. The Moon revolves around Earth once in 4 weeks, resulting in the Moon's rising about 50 minutes later each day. The revolution of the Moon around Earth and the rotation of Earth on its axis account for the phases of the Moon and the time of day (or night) when the Moon is visible.	determine the scale and properties of objects in the solar system. Examples of scale could include size and distance. Examples of properties could include layers, temperature, surface features, and orbital radius. Data sources could include Earth and space-based instruments such as telescopes and satellites. Types of data could include graphs, data tables, drawings, photographs, and models. (ESS1.A, ESS1.B)	6.1.3 Episodes 1-3 FOSS Reading Erathosthenes: First to Measure Earth Lunar Myths Measuring Time with Calendars Calculating the Observance of Ramadan The Hunt for Water Finding Exoplanets

Part 2: Moon- Phase Models

SEP: Asking questions, Developing and using models, Planning and

carrying out investigations, Analyzing and interpreting data.

Constructing explanations, Obtaining, evaluating and communicating information

CCC: Patterns, System and system models. Cause and effect Standard Content: The Moon shines as a result of reflected light from

the Sun. Half of the Moon is always illuminated (except during a lunar

eclipse). Moon phase depends on how much of the Moon's illuminated

surface is visible from Earth, which is determined by the relative position

of Earth and the Moon with respect to the Sun. The revolution of the

Moon around Earth and the rotation of Earth on its axis account for the

phases of the Moon and the time of day (or night) when the Moon is

visible.

Part 3: Moon: Phase Simulation

SEP: Developing and using models, Constructing explanations,

Obtaining, evaluating and communicating information CCC: Patterns, System and system models. Cause and effect Standard Content: Moon phase depends on how much of the Moon's

illuminated surface is visible from Earth, which is determined by the

relative position of Earth and the Moon with respect to the

Sun. The revolution of the Moon around Earth and the rotation of Earth on its axis account for the phases of the Moon and the time of day (or night) when the Moon is visible. Planetary Science Investigation 5: Craters Part 1: Moon Craters SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluating, and communicating information CCC: Cause and effect. Stability and change, Scale, proportion, and quantity, Patterns Standard Content: Craters of various sizes and types result when meteoroids of various sizes impact the surface of planets and satellites. Craters can be categorized by size and physical characteristic, simple, complex, terraced and flooded. Part 2: Target Earth SEP: Asking questions and defining problems, Planning and carrying	6.1.1 Develop and use a model of the Sun-Earth-Moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and Moon, and seasons. Examples of models could be physical, graphical, or conceptual. (ESS1.A, ESS1.B)	6.1.1 Episodes 1- 10 FOSS Reading Earth's Systems Seasons on Earth The First Voyage of Columbus Lunar Myths
---	---	---

out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Obtaining, evaluating, and

communicating information

CCC: Cause and effect, Scale, proportion and quantity,

Stability and

<u>change</u>

Standard Content: Earth and the Moon have been and continue to be,

subjected to the same rate of bombardement by meteoroids. Earth's

record of impacts have been erased by the actions of wind, water, and

tectonic activity.

Planetary Science

Investigation 7 The Solar System

Part 1: Where are the Planets?

SEP: Developing and using models, Using mathematics and

computational thinking, Obtaining, evaluating and communicating

information

CCC: Scale, proportion, and quantity, System and system models, and

Patterns

Standard Content: The distance between solar system objects is

enormous.

Part 2: Comparing Temperatures and Atmospheres

SEP: Developing and using models, Analyzing and interpreting data,

6.1.3 Use computational thinking to analyze data and

determine the <u>scale</u> and properties of objects in the solar system. Examples of scale could include size and distance. Examples of properties could include layers, temperature, surface features, and orbital radius. Data sources could include Earth and space-based instruments such as telescopes and satellites. Types of data could include graphs, data tables, drawings, photographs, and models. (ESS1.A, ESS1.B)

6.1.2 Develop and use a model to describe the role of gravity

6.1.2 **Episodes 1-5**

Space Missions
Craters: Real and Simulated

AND

6.1.3

Episodes 1-3 FOSS Reading

Erathosthenes: First to Measure Earth

Constructing explanations, Engaging in argument from and inertia in orbital motions of A Tour of the Solar System evidence, objects in our solar system. **Lunar Myths** Obtaining, evaluating and communicating information (ESS1.B) CCC: Patterns, Cause and effect Measuring Time with **Standard Content:** Liquid water is essential for life as we Calendars know it. The temperature on a planet depends on two major variables: Calculating the Observance distance from of Ramadan the Sun, and then nature of the planet's atmosphere. The Hunt for Water **Part 3:** Where Is the Water? SEP: Analyzing and interpreting data, Constructing Finding Exoplanets explanations, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC: Patterns, Scale, proportion and quantity **Standard Content:** Images can convey information about the presence and history of liquid water on planetary surfaces. **Part 4:** Changing Systems SEP: Asking questions, Developing and using models, **Analyzing and** interpreting data, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC: Stability and change, System and system models, Cause and effect, **Patterns**

Standard Content: Humans modify Earth's systems, creating

observable effects.

Planetary Science

Investigation 8: Space Exploration

Part 1: Light Spectra

SEP: Asking questions, Developing and using models, Analyzing and

interpreting data, Obtaining, evaluating and communicating information

CCC: Energy and matter, Scale proportion and quantity, Energy and

matter, Patterns

Standard Content: A spectroscope analyzing the wavelengths of light

(spectrum) coming from a light source.

Part 2: Exploration of the Solar System

SEP: Asking questions and defining problems, Constructing

explanations, Obtaining, evaluating and communicating information

CCC: Scale, proportion, and quantity, Patterns, Energy and matter

Standard Content: Scientific missions provide data about the

composition and environmental conditions on the planets, moons, and

other bodies in the solar system.

6.1.3 Use computational thinking to analyze data and

determine the scale and properties of objects in the solar system. Examples of scale could include size and distance. Examples of properties could include layers, temperature, surface features, and orbital radius. Data sources could space-based include Earth and instruments such as telescopes and satellites. Types of data could include graphs, data tables, drawings, photographs, and models. (ESS1.A, ESS1.B)

6.1.3 Episodes 1-3 FOSS Reading

Erathosthenes: First to
Measure Earth
A Tour of the Solar System
Lunar Myths
Measuring Time with
Calendars
Calculating the Observance
of Ramadan

Strand 6.2: ENERGY AFFECTS MATTER

Matter and energy are fundamental components of the universe. Matter is anything that has mass and takes up space. Transfer of energy creates change in matter. Changes between general states of matter can occur through the transfer of energy. Density describes how closely matter is packed together. Substances with a higher density have more matter in a given space than substances with a lower density. Changes in heat energy can alter the density of a material. Insulators resist the transfer of heat energy, while conductors easily transfer heat energy. These differences in energy flow can be used to design products to meet the needs of society.

Strand 6.3: EARTH'S WEATHER PATTERNS AND CLIMATE

All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. Heat energy from the Sun, transmitted by radiation, is the primary source of energy that affects Earth's weather and drives the water cycle. Uneven heating across Earth's surface causes changes in density, which result in convection currents in water and air, creating patterns of atmospheric and oceanic circulation that determine regional and global climates.

FOSS	STANDARDS	SEED STORYLINE
Weather and Water Investigation 1: What is Weather	6.2.1 Develop models to show that molecules are made of	6.2.1
Part 1: Intro to Weather SEP: Asking questions, Obtaining, evaluating and communicating information	different kinds, proportions and quantities of atoms. Emphasize understanding that there are	Episodes 1-3 FOSS Reading
CCC: Cause and effect, Patterns, Stability and change Standard Content: Weather is the condition of Earth's atmosphere at a given time in a given place. Severe weather has the potential to cause	differences between atoms and molecules, and that certain combinations of atoms form	Severe Weather What's in the Air?

death and destruction in the environment. Meteorology is the science of weather, and meteorologists are people who study Earth's weather. Weather and climate are different. Part 2: The Air around Us SEP: Asking questions, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations, Engaging in argument from evidence CCC: Cause and effect, System and system models Standard Content: Air is matter, it occupies space, has mass and can be compressed. Part 3: Earth's Atmosphere SEP: Developing and using models, Using mathematics and computational thinking, Obtaining, evaluating and communicating information CCC: Patterns, Cause and effect, Stability and change Standard Content: The atmosphere is the layers of gases surrounding Earth. Weather happens in the atmosphere, the layer of the atmosphere closest to earth's surface. The troposphere is a mixture of nitrogen (78%), oxygen (21%), and other gases (1%) including argon, carbon dioxide, and water vapor.	specific molecules. Examples of simple molecules could include water (H2O), atmospheric oxygen (O2), and carbon dioxide (CO2). (PS1.A) 6.2.1 - molecules are introduced in this investigation. This investigation provides the background to the rest of the investigations.	A Think Blue Veil
Weather and Water Investigation 2: Air Pressure and Wind Part 1: Air-Pressure Inquiry SEP: Asking questions, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Construing explanations, Obtaining, evaluating and communicating information	6.2.1 Develop models to show that molecules are made of different kinds, proportions and quantities of atoms. Emphasize understanding that there are differences between atoms and molecules, and that certain	6.2.1 Episodes 1-3 FOSS Reading What is Air Pressure?

CCC: Scale, proportion and quantity, Cause and effect

Standard Content: Pressure exerted on a gas reduces its volume and increases its density

Part 2: Pressure Maps

SEP: Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking

CCC: Patterns, Cause and effect, Scale, proportion and quantity, Patterns, Cause and effect

Standard Content: Wind is a large-scale movement of air. Air tends to move from regions of high pressure to regions of low pressure. Air pressure is represented on a map by contour lines called isobars.

combinations of atoms form specific molecules. Examples of simple molecules could include water (H2O), atmospheric oxygen (O2), and carbon dioxide (CO2). (PS1.A)

Weather and Water

Investigation 3: Convection

Part 1: Density of Fluids

SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations

CCC: Patterns

Standard Content: Density is the ratio of a mass to its volume. If two fluids have equal volumes but differ in mass, the one with the greater mass

is denser.

Part 2: Convection in Water

SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information

CCC: Patterns, Cause and effect, Energy and matter

Standard Content: As matter heats up, it expands, causing the matter

6.2.2 Develop a model to predict

the <u>effect</u> of heat energy on states of matter and density. Emphasize the arrangement of particles in states of matter (solid, liquid, or gas) and during phase changes (melting, freezing, condensing, and evaporating).(PS1.A, PS3.A)

6.3.2 Investigate the interactions between air masses that <u>cause</u> changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of

6.2.2 Episodes 1-8

FOSS Reading

Density

Density with Day

6.3.2

Episodes 1-3 FOSS Reading

Severe Weather What's in the Air? A Think Blue Veil

to

become less dense. Convection is the circulation of fluid (liquid or gas) that results from energy transfer; relatively warm masses rise and relatively cool masses sink.	data collection could include field observations, laboratory experiments, weather maps, or diagrams. (ESS2.C, ESS2.D)	What Is Air Pressure? Wind on Earth
Part 3: Convection in Air SEP: Developing and using models, Analyzing and interpreting data, Constructing explanations, Obtaining, evaluating and communicating information CCC: Cause and effect, Scale, proportion, and quantity, System and system models Standard Content: Convection is the circulation of fluid (liquid or gas) that results from energy transfer; relatively warm masses rise and relatively cool masses sink.		
Weather and Water Investigation 4: Radiation Part 1: Latitude SEP: Asking questions, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations CCC: Patterns Standard Content: Latitude is a factor that affects local weather and climate.	6.2.2 Develop a model to predict the effect of heat energy on states of matter and density. Emphasize the arrangement of particles in states of matter (solid, liquid, or gas) and during phase changes (melting, freezing, condensing, and evaporating).(PS1.A, PS3.A)	6.2.2 Episodes 1-8 FOSS Reading Density Density with Day 6.2.3
Part 2: Solar Angle SEP: Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing	6.2.3 Plan and carry out an investigation to determine the	Episodes 1-3

explanations, Obtaining, evaluating and communicating information CCC: Scale, proportion and quantity, System and system models, Cause and

effect

Standard Content: The angle at which light from the Sun strikes the surface

of Earth is the solar angle. The lower the solar angle is, the less intense the light is on Earth's surface. The Sun is the major source of energy that heats

the atmosphere, and solar energy (light and thermal energy) is transferred

by radiation.

Part 3: Heating Earth

SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information

CCC: Patterns, Cause and effect, energy and matter, Stability and change, Scale, proportion and quantity

Standard Content: The Sun is the major source of energy that heats the atmosphere, and solar energy (light and thermal energy) is transferred

radiation. Heating transfers energy from one material to another.

Heating

by

of

effects the particles; the more kinetic energy particles possess, the more they move and the hotter that material is. Temperature is the measure

the average kinetic energy of the particles in a substance.

relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation. (PS3.A)

6.3.3 Develop and use a model to show how unequal heating of the Earth's systems causes patterns of atmospheric and circulation that oceanic determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional weather patterns such lake-effect snow and wintertime temperature inversions. (ESS2.C, ESS2.D)

FOSS Reading

Seasons

Thermometer: A Device

to Measure

Temperature

6.3.3 and 6.3.4

Episodes 1-6

FOSS Reading

Convection

Weather and Water

Investigation 5: Conduction

Part 1: Fluid Conduction

SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations and designing solutions

CCC: System and system models. Energy and matter

Standard Content: Energy can transfer through materials by particle collision (conduction).

Part 2: Insulation

SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations and designing solutions

CCC: Cause and effect, Energy and matter, System and system models **Standard Content:** Insulating materials reduce energy transfer via conduction. Materials with widely spaced particles serve as insulators. Engineers try to solve problems that satisfy a set of criteria and that conform to constraints placed on a solution to the problem.

Part 3: Home Design

SEP: Asking questions and defining problems, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations and designing solutions,

Obtaining, evaluating, and communicating information

CCC: System and system models, Energy and matter, Structure and function, Cause and effect

Standard Content: Insulating materials reduce energy transfer via conduction. Materials with widely spaced particles serve as insulators. Engineers try to solve problems that satisfy a set of criteria and that conform to constraints placed on a solution to the problem.

6.2.3 Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation. (PS3.A)

6.2.4 Design an object, tool, or process that minimizes or maximizes heat energy transfer. Identify criteria and constraints, develop a prototype for iterative testing, analyze data from testing. and propose modifications for optimizing the design solution. **Emphasize** demonstrating how the structure of differing materials allows them to <u>function</u> as either conductors or insulators. (PS3.A, PS3.B, ETS1.A, ETS1.B, ETS1.C)

6.3.3 Develop and use a model to show how unequal heating of the Earth's <u>systems</u> causes

6.2.3
Episodes 1-3
FOSS Reading

Home Insulation

6.2.4

Episode 4
FOSS Reading

Home Insulation
Convection

6.3.3 and 6.3.4 Episodes 1-6 FOSS Reading

Convection

patterns of atmospheric and circulation oceanic that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional weather patterns such lake-effect snow and wintertime temperature inversions. (ESS2.C, ESS2.D)

Weather and Water

Investigation 6: Air Flow

Part 1: Atmospheric Heating

SEP: Developing and using models, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information

CCC: Cause and effect

Standard Content: Temperature is a measure of the average kinetic energy

of particles of a substance. Energy transfers between particles when they collide. Energy transfer by contact is conduction. Energy always transfers from particles with more kinetic energy to particles with less kinetic energy.

Part 2: Local Winds

SEP: Developing and using models, Constructing explanations

CCC: Patterns, Cause and effect, Energy and matter

Standard Content: Differential heating of Earth's surface by the Sun can

6.2.2 Develop a model to predict

the <u>effect</u> of heat energy on states of matter and density. Emphasize the arrangement of particles in states of matter (solid, liquid, or gas) and during phase changes (melting, freezing, condensing, and evaporating).(PS1.A, PS3.A)

6.2.3 Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and

6.2.2
Episodes 1-8
FOSS Reading

Heating the Atmosphere

6.2.3

Episodes 1-3 FOSS Reading

Seasons

Thermometer: A Device

to Measure

Temperature

create high and low pressure areas. Local winds blow in predictable patterns determined by local differential heating.

Part 3: Global Winds

SEP: Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information

CCC: Cause and effect, Energy and matter, Patterns, System and system models

Standard Content: Convection is the circulation of fluid (liquid or gas) that

results from energy transfer; relatively warm masses rise and relatively cool

masses sink. Convection cells and Earth's rotation determine prevailing winds on Earth.

evaluating data, and communicating the results of the investigation. (PS3.A)

6.3.2 Investigate the interactions between air masses that <u>cause</u> changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of data collection could include field observations, laboratory experiments, weather maps, or diagrams. (ESS2.C, ESS2.D)

6.3.3 Develop and use a model to show how unequal heating of the Earth's systems causes patterns of atmospheric and oceanic circulation that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional weather patterns such lake-effect snow and

6.3.2 Episodes 1-3 FOSS Reading

Severe Weather
What's in the Air?
A Think Blue Veil
What Is Air Pressure?
Wind on Earth

6.3.3 Episodes 1-6 FOSS Reading

Heating the Atmosphere
Wind on Earth
Convection

	wintertime temperature inversions. (ESS2.C, ESS2.D)	
Weather and Water		
Investigation 7: Water in the Air		
Part 1: Is Water Really There? SEP: Planning and carrying out investigations, Analyzing and interpreting data, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC: Cause and effect, System and system models Standard Content: Water changes from gas to a liquid by condensation. Part 2: Phase change and Energy Transfer SEP: Developing and using models, Analyzing and interpreting data, Constructing explanations, Obtaining, evaluating and communicating information CCC: Cause and effect, Energy and matter Standard Content: Water changes from liquid to gas (vapor) by evaporation. Temperature change, which is evidence of energy transfer, accompanies evaporation. Dew point is the temperature at which air is saturated with water vapor and vapor condenses into liquid. Part 3: Clouds and Precipitation SEP: Asking questions, Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information CCC: Scale, proportion and quantity, Cause and effect, System and system models, Energy and matter	6.2.3 Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation. (PS3.A) 6.3.1 Develop a model to describe how the cycling of water through Earth's systems is driven by energy from the Sun, gravitational forces, and density. (ESS2.C)	6.2.3 Episodes 1-3 FOSS Reading Home Insulation Heating the Atmosphere Weather Balloons and the Radiosonde Animal Rains 6.3.1 Episodes 1-5 FOSS Reading Weather Balloons and the Radiosonde Animal Rains

Standard Content: Water changes from a gas to liquid by condensation. Dew point is the temperature at which air is saturated with water vapor and

vapor condenses into liquid. Increasing the pressure of a given volume of air increases the temperature of air.

Weather and Water

Investigation 8: The Water Planet

Part 1: Water Cycle Simulation

SEP: Developing and using models, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information

CCC: Scale, proportion and quantity, System and system models, Energy and matter, Stability and change

Standard Content: Most of Earth's water is salt water in the ocean, and Earth's freshwater is found in many locations. Water particles might follow

many different paths as it travels through the water cycle.

Part 2: Ocean Currents

SEP: Analyzing and interpreting data, Constructing explanations, Obtaining, evaluating and communicating information

CCC: Patterns, Cause and effect, Energy matter

Standard Content: Ocean currents are caused primarily by winds, convection of ocean water, and the Coriolis effect.

Part 3: Ocean Climate

SEP: Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information

6.3.2 Investigate the interactions between air masses that <u>cause</u> changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of data collection could include field observations, laboratory experiments, weather maps, or diagrams. (ESS2.C, ESS2.D)

6.3.3 Develop and use a model to show how unequal heating of the Earth's <u>systems</u> causes <u>patterns</u> of atmospheric and oceanic circulation that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah

6.3.2
Episodes 1-3
FOSS Reading

Earth: The Water Planet

6.3.3 and 6.3.4 Episodes 1-6 FOSS Reading

Convection
Ocean Currents and
Gyres
Fl Nino

CCC: Patterns, Cause and effect, System and system models, Energy and matter Standard Content: A location's proximity to a large body of water generally results in less temperature variation and more precipitation.	regional weather patterns such as lake-effect snow and wintertime temperature inversions. (ESS2.C, ESS2.D)	
Weather and Water		
Part 1: Climate Change SEP: Planning and carrying out investigations, Analyzing and	6.3.1 Develop a model to describe how the cycling of water	6.3.1
interpreting data, Using mathematics and computational thinking, Engaging in argument from evidence, Obtaining, evaluating and communicating information	through Earth's systems is driven by <u>energy</u> from the Sun, gravitational forces, and density.	Episodes 1-5
CCC: Patterns, Scale, proportion and quantity Standard Content: Weather is the condition of the atmosphere at a specific	(ESS2.C)	FOSS Reading Climates Past Present
time and location; climate is the average weather in a region over a long period of time.	6.3.3 Develop and use a model to show how unequal heating of the Earth's <u>systems</u> causes	and Future 6.3.3 and 6.3.4
Part 2: The Role of Carbon Dioxide SEP: Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinning, Constructing	patterns of atmospheric and oceanic circulation that determine regional climates.	Episodes 1-6
explanations, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC: System and system models, Energy and matter, Cause and effect,	Emphasize how warm water and air move from the equator	FOSS Reading Convection
Stability and change Standard Content: When greenhouse- gas concentrations in the	toward the poles. Examples of models could include Utah	Ocean Currents and
the atmosphere increases, the global temperature rises. Human activity can affect Earth's weather and climate.	regional weather patterns such as lake-effect snow and	Gyres El Nino
Part 3: Climate in the News SEP: Asking questions, Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations and designing solutions, Engaging in	wintertime temperature inversions. (ESS2.C, ESS2.D)	

argument from evidence, Obtaining, evaluating td communicating information

CCC: Patterns, Cause and effect, System and system models, Patterns, Stability and change

Standard Content: Human activity can affect Earth's weather and climate.

Climate can change over time because of natural Earth- cycles and human-

induced changes.

Weather and Water

Investigation 10: Meteorology

Part 1: Weather Maps

SEP: Asking questions, Developing and using models, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluations and communicating information

CCC: Cause and effect, Patterns, System and system models,

Standard Content: Weather maps combine many kinds of atmospheric and surface data, including pressure, temperature, wind direction, wind speed, and precipitation. Fronts are areas where large air masses collide.

Part 2: Identify Key Ideas

SEP: Constructing explanations, Engaging in argument from evidence,

Obtaining, evaluations and communicating information

CCC: Cause and effect, Patterns, Stability and change

Standard Content: Weather is the condition of the atmosphere at a specific time and location; climate is the average weather in a region over a long period of time. Climate can change over time because natural Earth cycles and human-induced changes.

6.2.3 Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation. (PS3.A)

6.3.1 Develop a model to describe how the cycling of water through Earth's systems is driven by energy from the Sun, gravitational forces, and density. (ESS2.C)

6.2.3
Episodes 1-3
FOSS Reading

Home Insulation
Heating the Atmosphere
Weather Balloons and
the Radiosonde
Animal Rains

6.3.1

Episodes 1-5 FOSS Reading

Climates Past Present and Future

between air masses that <u>cause</u> changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of data collection could include field observations, laboratory experiments, weather maps, or diagrams. (ESS2.C, ESS2.D)

6.3.3 Develop and use a model to show how unequal heating of the Earth's systems causes patterns of atmospheric and oceanic circulation that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional weather patterns such lake-effect snow and wintertime temperature inversions. (ESS2.C, ESS2.D)

6.3.4 Construct an explanation supported by evidence for the

6.3.2
Episodes 1-3
FOSS Reading

Severe Weather
What's in the Air?
A Think Blue Veil
What Is Air Pressure?
Wind on Earth

6.3.3 And 6.3.4 Episodes 1-6 FOSS Reading

Convection
Climates: Past, Present,
and Future
Severe Weather

role of the natural greenhouse	
effect in Earth's energy balance,	
and how it enables life to exist	
on Earth. Examples could include	
comparisons between Earth and	
other planets such as Venus and	
Mars. (ESS2.D)	

Strand 6.4: STABILITY AND CHANGE IN ECOSYSTEMS

The study of ecosystems includes the interaction of organisms with each other and with the physical environment. Consistent interactions occur within and between species in various ecosystems as organisms obtain resources, change the environment, and are affected by the environment. This influences the flow of energy through an ecosystem, resulting in system variations.

Additionally, ecosystems benefit humans through processes and resources, such as the production of food, water and air purification, and recreation opportunities. Scientists and engineers investigate interactions among organisms and evaluate design solutions to preserve biodiversity and ecosystem resources.

FOSS	STANDARDS	SEED STORYLINE
Populations and Ecosystems		
Investigation 1: Milkweed Bugs		
Part 1: Introducing Milkweed Bugs SEP: Asking questions, Planning and carrying out investigations, Obtaining, evaluating and communicating information CCC: Patterns Standard Content: An organism is any living thing, and a population is a group of organisms of the same kind living in an area at the specified time.		
Part 2: Milkweed Bug Habitat SEP: Developing and using models, Obtaining, evaluating and communicating information CCC: System and system models Standard Content: A habitat is where an organism lives, and it supplies all the resources an organism needs to survive and grow.		
Part 2: Observing Milkweed Bug Habitats SEP: Asking questions, Planning and carrying out investigations, Analyzing and interpreting data, Obtaining, evaluating and communicating information CCC: Scale, proportion and quantity, Stability and change, Patterns Standard Content: A habitat is where an organism lives, and supplies all the resources an organism needs to survive and grow. Organisms depend on environmental interactions with both other living things and		

nonliving

factors.

Populations and Ecosystems

Investigation 2: Sorting Out Life

Part 1: Ecosystem Card Sort

SEP: Analyzing and interpreting data, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluating and communicating information

CCC: System and system models

Standard Content: A community is all the interacting populations in one area. An ecosystem is a system of interacting organisms and nonliving factors in a specified area. Biotic factors are living factors in an ecosystem:

abiotic factors are nonliving factors.

Part 2: Video Population Study

SEP: Developing and using models, Analyzing and interpreting data, Obtaining, evaluating, and communicating information

CCC: Cause and effect, System and system models

Standard Content: A community is all the interacting populations in one

area. An ecosystem is a system of interacting organisms and nonliving factors in a specified area.

Part 3: Ecoscenaroios

SEP: Planning and carrying out investigations, Obtaining, evaluating

and communicating information

CCC: Scale, proportion and quantity, System and system models **Standard Content:** A community is all interacting populations in one area.

6.4.1 Analyze data to provide evidence for the <u>effects</u> of resource availability on organisms and populations in an ecosystem. **Ask questions** to predict how changes in resource availability affects organisms in those ecosystems. Examples could include water, food, and living space in Utah environments. (LS2.A)

6.4.2 Construct an explanation

that predicts <u>patterns</u> of

interactions among organisms across multiple ecosystems.

Emphasize consistent interactions in different environments, such as competition, predation, and mutualism. (LS2.A)

6.4.1 Episodes 1 - 4 FOSS Reading

Life in a Community
Ecoscenario
Introductions
Defining a Biome

6.4.2

Episodes 1 - 7 FOSS Reading

Ecoscenario
Introductions
Defining a Biome

An ecosystem is a system of interacting organisms and nonliving factors in a

specified area. Biotic factors are living factors in an ecosystem: abiotic factors are nonliving factors. Ecosystems are defined by their biotic and abiotic factors. Biomes are large systems on Earth with similar biotic factors. Humans depend on ecosystem services.

Populations and Ecosystems

Investigation 3: Mono Lake

Part 1: A Visit to Mono Lake

SEP: Asking questions, Analyzing and interpreting data, Obtaining, evaluating and communicating information

CCC: Cause and effect, Stability and change, Scale proportion and quantity

Standard Content: The Mono Lake alkaline- lake ecosystem is defined by

the interactions among organisms and abiotic factors.

Part 2: Mono Lake Food Web

SEP: Developing and using models, Analyzing and interpreting data, Obtaining, evaluating, and communicating information

CCC: Patterns, System and system models, Energy and Matter, Cause

<u>and</u>

<u>effect</u>

Standard Content: The path that food takes as one organism eats another

is a food chain. The feeding relationships in an ecosystem can be represented as a food web. The Mono Lake alkaline- lake ecosystem is defined by the interactions among organisms and abiotic factors.

6.4.2 Construct an explanation

that predicts <u>patterns</u> of interactions among organisms across multiple ecosystems.

Emphasize consistent interactions in different environments, such as competition, predation, and mutualism. (LS2.A)

describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. Emphasize food webs and the role of producers, consumers, and decomposers in various ecosystems. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.B)

6.4.2

Episodes 1 - 7 FOSS Reading

An Introduction to Mono Lake

6.4.3

Episodes 1 - 4 FOSS Reading

An Introduction to Mono Lake

Part 3: Ecoscenarios Food Web

SEP: Developing and using models, Analyzing and interpreting data, Obtaining, evaluating and communicating information

CCC: Patterns, System and system models, Energy and matter, Cause

<u>and</u>

effect

Standard Content: The path that food takes as one organism eats another

is a food chain. The feeding relationship in an ecosystem can be represented as a food web. All ecosystems are defined by the interactions

among the organisms and abiotic factors that exist in the region.

Populations and Ecosystems

Investigation 4: Mini Habitats

Part 1: The Physical Environment

SEP: Planning and carrying out investigations, Obtaining, evaluating

and communicating information

CCC: System and system models

Standard Content: An aquatic function in water. A terrestrial ecosystem

functions on land. Organisms depend on the abiotic elements in their ecosystem.

Part 2: Introducing Life

SEP: Developing and using models, planning and carrying out investigations, Analyzing and interpreting data, Obtaining, evaluating

and communicating information

CCC: Structure and function, Cause and effect, System and system model

evidence for the <u>effects</u> of resource availability on organisms and populations in an ecosystem.

Ask questions to predict how changes in resource availability affects organisms in those ecosystems. Examples could include water, food, and living space in Utah environments. (LS2.A)

6.4.4 Construct an argument supported by evidence that the <u>stability</u> of populations is affected by changes to an ecosystem. Emphasize how changes to living and nonliving components in an

6.4.1 Episodes 1 - 4 FOSS Reading

Biosphere 2: An Experiment in Isolation

6.4.4

Episodes 1 - 5 FOSS Reading

Biosphere 2: An Experiment in Isolation

Standard Content: Organisms depend on the abiotic elements in their ecosystem affect populations in ecosystem. that ecosystem. Examples could include Utah ecosystems such as **Part 3:** Observing Mini Habitats mountains, Great Salt Lake. SEP: Developing and using models, Planning and carrying out wetlands, and deserts. (LS2.C) investigations. Analyzing and interpreting data, Obtaining, evaluating and communicating information CCC: Cause and effect, System and system models, Stability and change **Standard Content:** An aquatic ecosystem functions in water. A terrestrial ecosystem functions on land. Organisms depend on the abiotic elements in their ecosystem. Populations and Ecosystems 6.4.2 Construct an explanation 6.4.2 **Investigation 5: Producers** that predicts patterns of interactions among organisms Episodes 1 - 7 **Part 1:** Growing Producers across multiple ecosystems. SEP: Planning and carrying out investigations, Analyzing and Emphasize consistent interactions **FOSS Reading** interpreting data, Constructing explanations in different environments, such as CCC: Cause and effect, Energy and matter, Patterns, System and system **Energy and Life** competition, predation, models mutualism. (LS2.A) Where Does Food Come **Standard Content:** Photosynthesis is the process by which energy-rich molecules are made from water, carbon dioxide and light. From? 6.4.3 Develop a model to Part 2: Biomass Producers describe the cycling of matter 6.4.3 SEP: Analyzing and interpreting data, using mathematics and and flow of energy among living computational thinking, Constructing explanations, Obtaining, Episodes 1 - 4 and nonliving parts of an evaluating dan communicating information ecosystem. Emphasize food webs CCC: Patterns, Energy and matter **FOSS Reading** and the role of producers, **Standard Content:** Photosynthesis is the process by which energy -

rich

molecules are made from water carbon dioxide and light.

consumers, and decomposers in

various ecosystems. Examples

Ecoscenarios

Photosynthesis produces potential energy, and aerobic cellular respiration transfers usable energy to organisms. Producers increase the biomass of an ecosystem through photosynthesis. Part 3: Ecoscenario Producers SEP: Analyzing and interpreting data, Obtaining, evaluating and communicating information	could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.B)	Biomes
CCC: System and system models		
Standard Content: Photosynthesis produces potential energy, and		
aerobic		
cellular respiration transfers usable energy to organisms. Ecosystems		
are		
defined by their producers.		
Part 4: Energy and Transfer from Food SEP: Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information CCC: Energy and matter, Scale and proportion and quantity, System and system models Standard Content: Food is energy-rich organic matter that organisms need to conduct their life processes.		
Populations and Ecosystems	6.4.1 Analyze data to provide	
Investigation 6 Following Energy	evidence for the effects of	
	resource availability on organisms	
Part 1: Using Energy	and populations in an ecosystem.	6.4.1
SEP: Analyzing and interpreting data, Constructing explanations,		0.4.1
	Ask questions to predict how	Enicodos 1 /
Engaging in argument from evidence	changes in resource availability	Episodes 1 - 4
CCC: Energy and matter	affects organisms in those	

Standard Content: Every activity undertaken by living organisms involves

expenditure of energy.

Part 2: Food-Chain Game

SEP: Asking questions, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations,

Obtaining, evaluating and communicating information

CCC: System and system models, Energy and matter, Cause and effect, Stability and change, Patterns

Standard Content: Feeding relationships identify trophic roles.

Biomass

moves through an ecosystem from one trophic level to the next.

Part 3: Trophic Levels

SEP: Asking questions, Developing and using models, Using mathematics and computational thinking, Constructing explanations,

Obtaining, evaluating and communicating information

CCC: Energy and matter, System and system models, Patterns, Scale proportion and quantity, Patterns

Standard Content: Feeding relationships identify trophic roles.

Biomass

moves through an ecosystem from one trophic level to the next. Only a small fraction of the biomass consumed at a level is used to produce growth

(biomass) at a level; most of it is used for energy, and much is lost to the environment.

Part 4: Decomposers

SEP: Developing and using models, Analyzing and interpreting data,

ecosystems. Examples could include water, food, and living space in Utah environments. (LS2.A)

6.4.2 Construct an explanation

that predicts patterns of

interactions among organisms across multiple ecosystems.

Emphasize consistent interactions in different environments, such as competition, predation, and mutualism. (LS2.A)

6.4.3 Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. Emphasize food webs and the role of producers, consumers, and decomposers in various ecosystems. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.B)

FOSS Reading

Spring
Trophic Levels
Decomposers

6.4.2

Episodes 1 - 7 FOSS Reading

Rachel Carson and Silent
Spring
Trophic Levels
Decomposers

6.4.3

Episodes 1 - 4 FOSS Reading

Rachel Carson and Silent
Spring
Trophic Levels
Decomposers

Constructing explanations, Obtaining, evaluating and communicating

information

CCC: Energy and matter, Stability and change, System and system models

Standard Content: Decomposers recycle food molecules to basic particles

for use by organisms in the ecosystem.

Populations and Ecosystems

Investigation 7: Population Size

Part 1: Reproductive Potential

SEP: Asking questions, Developing and using models, Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations

<u>CCC: Cause and effect, Scale proportion and quantity, Patterns, Systems</u> and

system models, Stability and change

Standard Content: Reproductive potential is the theoretical unlimited growth of a population over time. A limiting factor is a biotic or abiotic component of the ecosystem that controls the size of the population.

Part 2: Limiting Factors

of

SEP: Analyzing and interpreting data, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC: Cause and effect, Patterns, Stability and change

Standard Content: A limiting factor is any biotic or abiotic component

the ecosystem that controls the size of the population.

Part 3: Population Dynamics

SEP: Analyzing and interpreting data, Constructing explanations,

6.4.1 Analyze data to provide evidence for the <u>effects</u> of resource availability on organisms and populations in an ecosystem. **Ask questions** to predict how changes in resource availability affects organisms in those ecosystems. Examples could include water, food, and living space in Utah environments. (LS2.A)

6.4.2 Construct an explanation

that predicts <u>patterns</u> of interactions among organisms across multiple ecosystems.

Emphasize consistent interactions in different environments, such as competition, predation, and mutualism. (LS2.A)

6.4.1 Episodes 1 - 4 FOSS Reading

Milkweed Bugs
Limiting Factors
Mono Lake Throughout
the Year

6.4.2

Episodes 1 - 7 FOSS Reading

Milkweed Bugs
Limiting Factors
Mono Lake Throughout
the Year

Obstation and an analysis and an analysis at the state and	CAA Construct on an arm	
Obtaining, evaluating and communicating information CCC: Cause and effect, Patterns	6.4.4 Construct an argument supported by evidence that the	6.4.4
Standard Content: A limiting factor is any biotic or abiotic component of	stability of populations is affected by changes to an ecosystem.	Episodes 1 - 5
the ecosystem that controls the size of the population.	Emphasize how changes to living and nonliving components in an ecosystem affect populations in that ecosystem. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.C)	FOSS Reading Milkweed Bugs Limiting Factors Mono Lake Throughout the Year
Populations and Ecosystems		
Investigation 8: Human Impact		
Part 1: Biodiversity SEP: Planning and carrying out investigations, Analyzing and interpreting data, Using mathematics and computational thinking, Constructing explanations, Obtaining, evaluating and communicating information CCC: Scale proportion and quantity, cause and effect, Stability and change, Patterns, System and system models Standard Content: Biodiversity is the variety of organisms in an ecosystem. A biodiversity index is one measure of the health of an ecosystem and its ability to recover from stress; in a sustainable ecosystem, the system is	6.4.4 Construct an argument supported by evidence that the stability of populations is affected by changes to an ecosystem. Emphasize how changes to living and nonliving components in an ecosystem affect populations in that ecosystem. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.C)	6.4.4 Episodes 1 - 5 FOSS Reading Biodiversity Invasive Species Mono Lake in the Spotlight

resilient to change. **Part 2:** Invasive Species SEP: Analyzing and interpreting data, Constructing explanations, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC: Cause and effect, Stability and change **Standard Content:** Introduced species compete with native species in an ecosystem. If an introduced species has no predictors in the new ecosystem, it can thrive and become invasive. Part 3: Mono Lake Revisited SEP: Analyzing and interpreting data, Constructing explanations, Obtaining, evaluating and communicating information CCC: Cause and effect, System and system models, Stability and change, Cause and effect **Standard Content:** Humans affect ecosystems in both positive and negative ways. **Populations and Ecosystems** 6.4.4 6.4.4 Construct an argument **Investigation 9: Ecoscnearios** supported by evidence that the Episodes 1 - 5 stability of populations is affected Part 1: Human Involvement by changes to an ecosystem. SEP: Asking questions, and defining problems, Analyzing and **FOSS Reading** Emphasize how changes to living interpreting data, Obtaining, evaluating and communicating and nonliving components in an Ecoscenario information ecosystem affect populations in CCC: Cause and effect, System and system models Introductions **Standard Content:** Humans rely on ecosystems for ecosystem service that ecosystem. Examples could (provisioning, regulating, cultural and supporting services). Ecosystems include Utah ecosystems such as 6.4.5 are mountains, Great Salt Lake, dynamic systems of complex interactions. Disruptions to abiotic factors **Episodes 1-2** wetlands, and deserts. (LS2.C) in

ecosystems can cause shifts in population and changes to ecosystem sustainability. Changes in ecosystems can affect services essential to humans. Solutions can be engineered to mitigate human impact.

Part 2: Evaluating Solutions

SEP: Planning and carrying out investigations analyzing and interpreting data, Constructing explanations and designing solutions,

Engaging in argument from evidence, Obtaining, evaluating and communicating information

CCC: Cause and effect, System and system models, Stability and change **Standard Content:** Humans rely on ecosystems for ecosystem services (provisioning, regulating, cultural and supporting services). Ecosystems are dynamic systems of complex interactions. Disruptions

abiotic factors in ecosystems can cause shifts in population and changes

ecosystem sustainability. Changes in ecosystems can affect services essential to humans. Solutions can be engineered to mitigate human impact.

Part 3: Presentations

to

to

are

in

SEP: Asking questions and defining problems, Constructing explanations and designing solutions, Engaging in argument from evidence, Obtaining, evaluating and communicating information CCC:

Standard Content: Humans rely on ecosystems for ecosystem services (provisioning, regulating, cultural and supporting services). Ecosystems

 $\ \, \text{dynamic systems of complex interactions. } \ \, \text{Disruptions to abiotic factors}$

ecosystems can cause shifts in population and changes to ecosystem

6.4.5 Evaluate competing design solutions for preserving ecosystem services that protect resources and biodiversity based on how well the solutions maintain stability within the ecosystem. Emphasize obtaining, evaluating, and communicating information of differing design solutions. Examples could include policies affecting ecosystems, responding to invasive species or solutions for the preservation of ecosystem resources specific to Utah, such as air and water quality and prevention of soil erosion. (LS2.C, LS4.D, ETS1.A, ETS1.B, ETS1.C)

FOSS Reading

Ecoscenario Introductions

sustainability. Changes in ecosystems can affect services essential to	
humans. Solutions can be engineered to mitigate human impact.	