

Master Test Strategy

A common approach across all projects

Layer5: Master Test Strategy

Document Purpose and Scope​ 3
Testing Basics​ 3

Strata of Test Types​ 3
Test Plan​ 4

Proposed Automated Tests​ 4
Summary​ 4
Meshery Docs​ 5
Meshery Server and Meshery UI​ 5
Meshery CLI/mesheryctl​ 6
Meshery Adapters​ 7
Meshery Install Artifacts​ 7

Other Testing Considerations​ 7
Testing Methods​ 8

UI Testing​ 8
Pros:​ 8
Cons:​ 8

Function/Module Level Testing​ 9
Pros​ 9
Cons​ 9

Criteria for making a release​ 9
Beta​ 9
Rc​ 9

Layer5: Master Test Strategy

Document Purpose and Scope
The purpose of this document is to layout the master test strategy across the Layer5 projects.
Layer5’s master test strategy focuses on the approach to testing, the strata of test types, when they
are run, for what purpose, and so on, while a given project’s test plan focuses on specific test cases
and their status.

Purpose of Testing

●​ To ensure that the intent of the application is met.
●​ To enhance confidence in the results put out by the application.
●​ To ensure that changes/enhancements made have not broken the application.

Scope

All Layer5 projects are in scope except prototypes, those that are in the very early stages of
conception and such candidates.

Testing Basics
The following are the basic aspects to consider in setting up a test strategy:

●​ Integration Testing: An end-to-end test which will run through all the user requirements. This
could be a test that can be run at a major release.

●​ Unit testing: A test that is conducted for a unit of the application such as a
function/procedure/module/functionality.

●​ Regression Testing: A series of tests run to ensure that existing functionality was not broken
as a result of introducing changes.

Strata of Test Types

 Performance

 End-to-End / Functional

 Smoke

 Integration

Unit

1.​ Performance - quantitative; high load; soak over extended period; or spike.
2.​ User Acceptance Testing - qualitative; manually performed by users.
3.​ End-to-End / Functional - broad coverage; happy path functionality.
4.​ Smoke - basic; kick the tires; does it stand up or does it fall over?

Layer5: Master Test Strategy

5.​ Integration - inter-component; great for negative tests (missing prerequisites).
6.​ Unit - intra-component - narrow; specific and edge case tests.

Test Plan
See Automated Tests for the set of current tests.

Proposed Automated Tests
The test names defined here correspond to `workflow name/job name` in the GitHub workflows.

Summary

Workflow Job Area Dependency

Meshery Docs CI Build and Preview
Site

Meshery Docs None

Meshery Server Build Go Lint Check Meshery Server None

Meshery Server Build Build Meshery
Server

Meshery Server None

Meshery UI Build Build Meshery UI Meshery UI None

Meshery Server and UI CI Run Meshery
Server Unit Tests

Meshery Server Meshery Server Build/Build
Meshery Server

Meshery Server and UI CI Run Meshery
Server Integration

Tests

Meshery Server Meshery Server Build/Build
Meshery Server

Meshery Server and UI CI Run Meshery UI
Integration Tests

Meshery UI Meshery UI Build/Build
Meshery UI

Meshery Server and UI CI Run Meshery
Smoke Test

Meshery UI,
Meshery Server

Meshery UI Build/Build
Meshery UI, Meshery Server

and UI CI/Run Meshery UI
Integration Tests

Meshery Server and UI CI Run Meshery
End-to-End Tests

Meshery UI,
Meshery Server

Meshery UI Build/Build
Meshery UI, Meshery Server

and UI CI/Run Meshery UI
Integration Tests

Meshery Server and UI CI Build Meshery
Docker Image

Meshery Server,
Meshery UI,
Dockerfile

None

Meshery Server and UI CI Generate REST
Docs

Meshery Server,
Meshery Docs

None

https://docs.google.com/spreadsheets/d/13Ir4gfaKoAX9r8qYjAFFl_U9ntke4X5ndREY1T7bnVs/edit?usp=sharing

Layer5: Master Test Strategy

Meshery Server and UI CI Generate
GraphQL Docs

Meshery Server,
Meshery Docs

None

mesheryctl Build Go Lint Check mesheryctl None

mesheryctl Build Build mesheryctl mesheryctl None

mesheryctl CI Run mesheryctl
Unit Tests

mesheryctl None

mesheryctl CI Run mesheryctl
Integration Tests

mesheryctl None

mesheryctl CI Run mesheryctl
Smoke Tests

mesheryctl mesheryctl

mesheryctl CI Run mesheryctl
End-to-End Tests

mesheryctl,
Meshery Server

mesheryctl Build/Build
mesheryctl, mesheryctl CI/

Run mesheryctl Smoke
Tests

Publish Helm Charts Validate Helm
Charts

Helm charts None

Meshery Docs
Changes made directly to Meshery docs trigger a deploy preview. Failure in builds fails the check.
Quality of changes verified manually.

Test Name: Meshery Docs CI/Build and Preview Site
Kind: Smoke
Test Summary: Builds and shows a preview of the docs site
Runs On: Pull requests to Master with changes to `docs/**`

Test Name: Meshery Server and UI CI/Generate REST Docs
Kind: Pseudo-Integration
Test Summary: Generates Swagger docs from code
Runs On: Pull requests to Master with changes to `handlers/**`

Test Name: Meshery Server and UI CI/Generate GraphQL Docs
Kind: Pseudo-Integration
Test Summary: Generates GraphQL docs from GraphQL schema
Runs On: Pull requests to Master with changes to `internal/graphql/schema/schema.graphql`

Meshery Server and Meshery UI
Runs on all changes in Meshery except for changes to Meshery docs and mesheryctl.

These tests are run in the same order as shown below.

Layer5: Master Test Strategy

Test Name: Meshery Server Build/Go Lint Check
Kind: Static
Test Summary: Runs a Golang lint check with golangci-lint
Runs On: Pull requests to Master, workflow dispatch

Test Name: Meshery Server Build/Build Meshery Server
Kind: Smoke
Test Summary: Builds Meshery Server
Runs On: Pull requests to Master, workflow dispatch

Test Name: Meshery UI Build/Build Meshery UI
Kind: Smoke
Test Summary: Builds Meshery UI
Runs On: Pull requests to Master, workflow dispatch

Test Name: Meshery Server and UI CI/Run Meshery Server Unit Tests
Kind: Unit
Test Summary: Runs unit tests defined for Meshery Server
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: Meshery Server Build/Build Meshery Server

Test Name: Meshery Server and UI CI/Run Meshery Server Integration Tests
Kind: Integration
Test Summary: Runs integration tests defined for Meshery Server
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: Meshery Server Build/Build Meshery Server

Test Name: Meshery Server and UI CI/Run Meshery UI Integration Tests
Kind: Integration
Test Summary: Runs Cypress integration tests defined for Meshery UI
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: Meshery UI Build/Build Meshery UI

Test Name: Meshery Server and UI CI/Run Meshery Smoke Test
Kind: Smoke
Test Summary: Runs a smoke test with locally build Meshery Server and Meshery UI with any one of
the adapters
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: Meshery Server Build/Build Meshery Server, Meshery UI Build/Build Meshery
UI

Test Name: Meshery Server and UI CI/Run Meshery End-to-End Tests
Kind: End-to-End
Test Summary: Runs Cypress End-to-End tests defined for Meshery UI
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: Meshery Server Build/Build Meshery Server, Meshery UI Build/Build Meshery
UI

Layer5: Master Test Strategy

Meshery CLI/mesheryctl
Runs on all changes to `mesheryctl/**`.

Test Name: mesheryctl Build/Go Lint Check
Kind: Smoke
Test Summary: Runs a Golang lint check with golangci-lint
Runs On: Pull requests to Master, workflow dispatch

Test Name: mesheryctl Build/Build mesheryctl
Kind: Smoke
Test Summary: Builds mesheryctl
Runs On: Pull requests to Master, workflow dispatch

Test Name: mesheryctl CI/Run mesheryctl Unit Tests
Kind: Unit
Test Summary: Runs unit tests defined for mesheryctl
Runs On: Pull requests to Master, workflow dispatch

Test Name: mesheryctl CI/Run mesheryctl Integration Tests
Kind: Unit
Test Summary: Runs integration tests defined for mesheryctl
Runs On: Pull requests to Master, workflow dispatch

Test Name: mesheryctl CI/Run mesheryctl Smoke Tests
Kind: Smoke
Test Summary: Runs smoke tests with
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: mesheryctl Build/Build mesheryctl

Test Name: mesheryctl CI/Run mesheryctl End-to-End Tests
Kind: End-to-End
Test Summary: Runs End-to-End tests with mesheryctl
Runs On: Pull requests to Master, workflow dispatch
Depends On/Needs: mesheryctl Build/Build mesheryctl

Meshery Adapters
Runs on all changes to Meshery Adapters (in each of the adapter repos).

TBD.

Meshery Install Artifacts

Test Name: Meshery Server and UI CI/Build Meshery Docker Image
Kind: Smoke
Test Summary: Builds Meshery Docker image
Runs On: Pull requests to Master, workflow dispatch

Layer5: Master Test Strategy

Test Name: Publish Helm Charts/Validate Helm Charts
Kind: Smoke
Test Summary: Uses "Helm Lint" to validate the Helm charts
Runs On: Pull requests to Master, workflow dispatch with changes to `install/kubernetes/**`

Other Testing Considerations
Here are some other aspects of testing, some of which are taking on more importance especially
because of the greater penetration that applications have today. Quite a few of these are design
issues. However, they do need to be addressed in testing. Also, not all tests are pass/fail such as
performance or scalability. A reliable and objective measure(s) need to be derived to determine if an
application has performed satisfactorily.

●​ Accessibility testing: Ensure that all people are capable of accessing and operating the
application. This is especially true if the application is available on the internet or is available
as a mobile app. A lot depends on the intent of the application creator, however, general
availability deems this important. This should take into account people who may be
handicapped in some way, or of a different culture. The nature of the application may
preclude some of these requirements.

●​ Installability: This goes beyond just operating system and platform considerations. It is true
that as more and more applications become mobile, this may not seem an issue. This goes
to dependencies, and clashes with them if they already exist, and other
data/metadata/configuration that may be required to run the application successfully.

●​ Backward and forward compatibility: Of course, backward and forward compatibility
cannot be guaranteed as that impedes the ability to put in new functionality. But it is
important to not leave users completely stranded. This needs to be tested.

●​ Performance testing: A measure of how fast the application instance handles a greater
load and the ability of its dependents/components to respond to that load.

●​ Scalability: A measure of how well the application musters more resources to handle an
increasing number of users and/or load.

●​ Security: How secure is the application? While it is not possible to determine the entire set
of ways in which an application can be infiltrated (as there is a lot of innovation going on in
that area too), the application must be tested for well-known vulnerabilities.

Testing Methods

UI Testing
This is where the user-interface is subjected to all the possible interactions and a record is made of
any deviations that may occur from the expected result. Examples of such frameworks are Selenium
and Cypress amongst a myriad of others.

Pros:

●​ Quick way to ensure that the basic functionality is met.
●​ Capable of being automated to give a pass/fail verdict.
●​ Can be compartmentalized to run tests selectively as required.

Layer5: Master Test Strategy

Cons:

●​ Cannot identify defects in individual program elements
●​ Cannot effectively validate performance requirements.
●​ Cannot effectively scalability.
●​ Can measure conformance to requirements from an individual perspective only.
●​ Cannot detect security vulnerabilities.
●​ Needs to be constantly updated as changes are made to the existing software. There is no

close link between development and the actual user interface as the development may be
buried in the deepest layers of the software.

●​ Cannot be used to test functionality in CLI software such as mesheryctl.

 Function/Module Level Testing
This is where a parallel project is created to mirror the individual components of the application. For
each function/procedure, a test function(s) is/are created to validate the functioning of that
function/procedure by calling that function/procedure with the required parameters and asserting
that the output is valid.

Pros

●​ Closely couples application changes to the tests.
●​ Capable of identifying the exact function/procedure that caused the error.
●​ Capable of being automated.
●​ Suitable for applications such as mesheryctl.

Cons

●​ Is not very suitable for the UI.
●​ Not suitable for identifying security vulnerabilities.
●​ Not suitable for identifying scalability deficiencies.

Adds extra development effort.

Criteria for making a release

Beta
Ensure that the major introductions have had their functionality validated.

Rc
Ensure that the major introductions for that release have been validated and that the application is
close to the previous stable version in its functionality.

	
	Master Test Strategy
	

	Document Purpose and Scope
	Testing Basics
	Strata of Test Types
	Test Plan
	Proposed Automated Tests
	Summary
	Meshery Docs
	Meshery Server and Meshery UI
	Meshery CLI/mesheryctl
	Meshery Adapters
	Meshery Install Artifacts

	Other Testing Considerations
	Testing Methods
	UI Testing
	Pros:
	Cons:

	 Function/Module Level Testing
	Pros
	Cons

	Criteria for making a release
	Beta
	Rc

