Specification — Stellar integration into
AIDApp

High-level statement.

The system is modular, scalable and blockchain-agnostic. It uses a layered architecture
where each layer has a single responsibility and communicates via queues. Redis is used
for hot caching and queue coordination; PostgreSQL is the durable store. This design allows
adding new blockchains, processing large data volumes, and enabling new features without
disrupting existing components.

Layered architecture (summary)
1. Blockchain Layer — blockchain-specific clients + DEX adapters + verifiers.

2. Scanner Layer — block scanners & interval scanners that pull raw data and push
normalized events into queues.

3. Data Processing Layer — workers that transform events, update Postgres/Redis,
and prepare hot caches.

4. Trade Layer — trade storage, aggregation, notification (WebSocket), charting & Ul
feeds.

5. Token Audit — automated token validation pipeline (multi-provider).

6. Swap Logic — swap processing, confirmation delay, fee/referral calc and
distribution.

Between layers — durable queues (Redis streams / RabbitMQ / Kafka depending on scale)
manage flow and backpressure.

Blockchain Layer — responsibilities & components

Purpose: isolate chain-specific logic and standardize outputs for the rest of the stack.

e Basic Client — pulls blocks, txs, latest block, and normalizes raw chain data to
common schema (block, tx, op).



DEX Adapter — parses exchange/AMM/orderbook events (liquidity changes, trade
logs), normalizes to trade / pool / order events.

Verifier — verifies cryptographic signatures, transaction authenticity, and supports
multiple signature schemes (Stellar signatures, EVM, Tron, etc.).

Internal Swap Adapter (optional) — inspects on-chain internal swaps for accurate
fee allocation and referral reward validation.

Outputs: normalized events pushed to Scanner Layer queues (e.g.,
chain.<network>.blocks, dex.<network>.<dex>.events).

Scanner Layer

Continuously converts blockchain data into actionable events.

Block Scanner — pulls ledger blocks sequentially; for each block: extract txs, ops,
logs; produce events per DEX and general events (deposits/withdrawals).

Interval Scanner — scheduled tasks for specific data (e.g., liquidity snapshots, pool
health, historical fills) to enrich datasets or fill gaps.

Queueing — per-DEX/per-network queues (e.g., g:stellar:dex:events) to allow
independent scaling and prioritized processing.

Behavior: scanners ensure idempotency (track last processed ledger), checkpointing, and
re-scan ability.

Data Processing Layer

Transforms scanner events into canonical records, updates storage, and prepares cache.

Transformation Workers — map chain-specific events to internal schema (deposits,
withdrawals, swaps, liquidity events, launch_events).

Storage Writers — write durable records to PostgreSQL and push hot keys to Redis
for immediate access.

Cache Preparation — build and maintain Redis hot caches used by the Trade Layer
(top pairs, recent trades, candles).



Concurrency model — each queue consumed by dedicated worker pool; workers
use optimistic locking and atomic Redis/Lua scripts where needed.

Data models (examples):

deposits(tx_hash, ledger, user_address, asset_code, issuer, amount, memo,
metadata)

swaps(tx_hash, pair, amount_in, amount_out, fees, referral_id, timestamp)

launches(launch_id, token, curve_params, threshold, status, metadata)

Trade Layer (Trading Terminal)

Handles trade ingestion, aggregation, user notifications, and Ul feeds.

Redis Trade Storage — in-memory store for low-latency access; updated atomically
with Lua scripts to prevent race conditions.

Postgres — canonical store for historical trades and compliance checks.

Hourly Aggregates — worker that recalculates hourly aggregates for analytics;
design ensures no double counting after re-scans.

Notification System — event-based pushes to WebSocket/Push services for Ul
updates (new pair, new trade, price alerts).

Al/Analytics Feed — processed trade data streamed to Al models for scanning and
signals.

Impact: users see near real-time Stellar DEX data alongside other chains, with consistent
UX and Al signals.

Token Audit

Automated integrity checks of token metadata and activity.

Selection & Queuing — periodic selection of tokens for audit based on criteria (new
tokens, suspicious activity).



e Audit Workers — call external audit providers / internal checks: metadata
consistency, ownership verification, liquidity audits, rug-signal heuristics.

e Result Storage & Ul — audit results saved in Postgres and surfaced to Ul (trust
score, warnings).

e Extensibility — new audit providers can be added as pluggable modules.

Swap Logic & Referral Rewards

Ensures correct processing of swaps, accurate fee calculation and reward distribution.

e Initiation — API hook receives swap request; backend creates a pending swap
record.

e Delay / Confirmation Window — apply configurable confirmation window (10
minutes as specified) to wait for on-chain finality and potential reorgs.

e \Validation — after delay, scanner/validator confirms tx on-chain and updates swap
record.

e Fee & Referral Calculation — compute platform fee, partner cuts, and referral
rewards based on verified on-chain data.

e Distribution — enqueue payouts; use batch payouts via Stellar (or chain-specific
bridge) for efficiency.

e Notifications — real-time status updates to user via WebSocket.

Queues, Storage & Performance

e Queues: Redis Streams or Kafka for high throughput and persistence. Segmented
by network/DEX to allow per-network scaling.

e Hot Cache: Redis for live charts, recent trades, non-blocking counters.
e Durable Store: PostgreSQL for normalized records, user data, audits, reconciliation.

e Sequence & Idempotency: every scanner/worker tracks last processed ledger/tx; all
writes are idempotent.



Where Soroban is used (role & scope)

Soroban contracts are introduced to extend Stellar’s native primitives where custom
on-chain logic is required:

e DepositContract: deposit gating, whitelist enforcement, memo metadata and event
emission for LaunchZone flows. Backend listens to contract events.

e WithdrawalContract: handles batched withdrawals, review/replay protection, admin
emergency flows.

e TradingProxyContract: advanced routing/fee logic and integration with Stellar DEX
(multi-hop path payments), exposing optimized swap endpoints.

e BondingCurveLaunchContract: fair-launch logic (curve pricing, thresholds, liquidity
locking) and immediate on-chain listing support.

Design principle: use native Stellar features for simple flows (trustline, path payment) and
Soroban for composable, auditable, and upgradeable business logic that must run on-chain.

Adding a new network (process)
1. Implement Basic Client for the network (blocks/txs/latest).
2. Build DEX Adapter for that network’s DEX logs/events.
3. Add Verifier to validate signatures/tx authenticity.
4. (Optional) Add Internal Swap Adapter to reconcile internal swaps and referral logic.

5. Add scanner configuration and queue mappings; deploy worker pools.

Because architecture is modular, adding networks does not change other layers.

Operational considerations & SLOs

e Indexer Lag: < 5s target for Stellar critical flows.



e Transaction success rate: = 98% for user swaps executed via TradingProxy.

e Throughput target: baseline architecture supports horizontal scaling to meet peak
loads; target stress tests up to 1,000 TPS for critical pipelines.

e Observability: Prometheus/Grafana, alerting on horizon latency, queue backlog,
failed tx rates.

Security & Compliance
e Replay protection & nonces per network.
e Admin controls: multisig, time-locks, and audit logs for emergency operations.
e Contract audits: external audit for Soroban contracts before mainnet deployment.

e Data privacy: Pll separation and encryption at rest for sensitive fields.

Example user flows (compact)

Bonding Curve Launch

User — LaunchZone Ul — Backend validates & deploys BondingCurveLaunchContract —
Soroban emits LaunchCreated — Indexer ingests — Ul shows launch — Users buy via buy
calls — Soroban executes buys, emits BuyExecuted — Indexer updates trades/launch state
— TradingProxy integrates pool to DEX — Terminal shows pair.

Swap (Stellar)

User — AIDA Terminal (swap Ul) — Backend Router constructs transaction or suggests
multi-hop path — User signs — tx submitted to Horizon — BlockScanner catches tx — Swap
validated — Fees/referral calculated — Redis/Postgres updated — WebSocket notifies user.



	Specification — Stellar integration into AIDApp 
	Layered architecture (summary) 
	Blockchain Layer — responsibilities & components 
	Scanner Layer 
	Data Processing Layer 
	Trade Layer (Trading Terminal) 
	Token Audit 
	Swap Logic & Referral Rewards 
	Queues, Storage & Performance 
	Where Soroban is used (role & scope) 
	Adding a new network (process) 
	Operational considerations & SLOs 
	Security & Compliance 
	Example user flows (compact) 


