
Specification — Stellar integration into 
AIDApp 
High-level statement. 

The system is modular, scalable and blockchain-agnostic. It uses a layered architecture 
where each layer has a single responsibility and communicates via queues. Redis is used 
for hot caching and queue coordination; PostgreSQL is the durable store. This design allows 
adding new blockchains, processing large data volumes, and enabling new features without 
disrupting existing components. 

 

Layered architecture (summary) 
1.​ Blockchain Layer — blockchain-specific clients + DEX adapters + verifiers.​

 
2.​ Scanner Layer — block scanners & interval scanners that pull raw data and push 

normalized events into queues.​
 

3.​ Data Processing Layer — workers that transform events, update Postgres/Redis, 
and prepare hot caches.​
 

4.​ Trade Layer — trade storage, aggregation, notification (WebSocket), charting & UI 
feeds.​
 

5.​ Token Audit — automated token validation pipeline (multi-provider).​
 

6.​ Swap Logic — swap processing, confirmation delay, fee/referral calc and 
distribution.​
 

Between layers — durable queues (Redis streams / RabbitMQ / Kafka depending on scale) 
manage flow and backpressure. 

 

Blockchain Layer — responsibilities & components 
Purpose: isolate chain-specific logic and standardize outputs for the rest of the stack. 

●​ Basic Client — pulls blocks, txs, latest block, and normalizes raw chain data to 
common schema (block, tx, op).​
 



●​ DEX Adapter — parses exchange/AMM/orderbook events (liquidity changes, trade 
logs), normalizes to trade / pool / order events.​
 

●​ Verifier — verifies cryptographic signatures, transaction authenticity, and supports 
multiple signature schemes (Stellar signatures, EVM, Tron, etc.).​
 

●​ Internal Swap Adapter (optional) — inspects on-chain internal swaps for accurate 
fee allocation and referral reward validation.​
 

Outputs: normalized events pushed to Scanner Layer queues (e.g., 
chain.<network>.blocks, dex.<network>.<dex>.events). 

 

Scanner Layer 
Continuously converts blockchain data into actionable events. 

●​ Block Scanner — pulls ledger blocks sequentially; for each block: extract txs, ops, 
logs; produce events per DEX and general events (deposits/withdrawals).​
 

●​ Interval Scanner — scheduled tasks for specific data (e.g., liquidity snapshots, pool 
health, historical fills) to enrich datasets or fill gaps.​
 

●​ Queueing — per-DEX/per-network queues (e.g., q:stellar:dex:events) to allow 
independent scaling and prioritized processing.​
 

Behavior: scanners ensure idempotency (track last processed ledger), checkpointing, and 
re-scan ability. 

 

Data Processing Layer 
Transforms scanner events into canonical records, updates storage, and prepares cache. 

●​ Transformation Workers — map chain-specific events to internal schema (deposits, 
withdrawals, swaps, liquidity_events, launch_events).​
 

●​ Storage Writers — write durable records to PostgreSQL and push hot keys to Redis 
for immediate access.​
 

●​ Cache Preparation — build and maintain Redis hot caches used by the Trade Layer 
(top pairs, recent trades, candles).​
 



●​ Concurrency model — each queue consumed by dedicated worker pool; workers 
use optimistic locking and atomic Redis/Lua scripts where needed.​
 

Data models (examples): 

●​ deposits(tx_hash, ledger, user_address, asset_code, issuer, amount, memo, 
metadata)​
 

●​ swaps(tx_hash, pair, amount_in, amount_out, fees, referral_id, timestamp)​
 

●​ launches(launch_id, token, curve_params, threshold, status, metadata)​
 

 

Trade Layer (Trading Terminal) 
Handles trade ingestion, aggregation, user notifications, and UI feeds. 

●​ Redis Trade Storage — in-memory store for low-latency access; updated atomically 
with Lua scripts to prevent race conditions.​
 

●​ Postgres — canonical store for historical trades and compliance checks.​
 

●​ Hourly Aggregates — worker that recalculates hourly aggregates for analytics; 
design ensures no double counting after re-scans.​
 

●​ Notification System — event-based pushes to WebSocket/Push services for UI 
updates (new pair, new trade, price alerts).​
 

●​ AI/Analytics Feed — processed trade data streamed to AI models for scanning and 
signals.​
 

Impact: users see near real-time Stellar DEX data alongside other chains, with consistent 
UX and AI signals. 

 

Token Audit 
Automated integrity checks of token metadata and activity. 

●​ Selection & Queuing — periodic selection of tokens for audit based on criteria (new 
tokens, suspicious activity).​
 



●​ Audit Workers — call external audit providers / internal checks: metadata 
consistency, ownership verification, liquidity audits, rug-signal heuristics.​
 

●​ Result Storage & UI — audit results saved in Postgres and surfaced to UI (trust 
score, warnings).​
 

●​ Extensibility — new audit providers can be added as pluggable modules.​
 

 

Swap Logic & Referral Rewards 
Ensures correct processing of swaps, accurate fee calculation and reward distribution. 

●​ Initiation — API hook receives swap request; backend creates a pending swap 
record.​
 

●​ Delay / Confirmation Window — apply configurable confirmation window (10 
minutes as specified) to wait for on-chain finality and potential reorgs.​
 

●​ Validation — after delay, scanner/validator confirms tx on-chain and updates swap 
record.​
 

●​ Fee & Referral Calculation — compute platform fee, partner cuts, and referral 
rewards based on verified on-chain data.​
 

●​ Distribution — enqueue payouts; use batch payouts via Stellar (or chain-specific 
bridge) for efficiency.​
 

●​ Notifications — real-time status updates to user via WebSocket.​
 

 

Queues, Storage & Performance 
●​ Queues: Redis Streams or Kafka for high throughput and persistence. Segmented 

by network/DEX to allow per-network scaling.​
 

●​ Hot Cache: Redis for live charts, recent trades, non-blocking counters.​
 

●​ Durable Store: PostgreSQL for normalized records, user data, audits, reconciliation.​
 

●​ Sequence & Idempotency: every scanner/worker tracks last processed ledger/tx; all 
writes are idempotent.​
 



 

Where Soroban is used (role & scope) 
Soroban contracts are introduced to extend Stellar’s native primitives where custom 
on-chain logic is required: 

●​ DepositContract: deposit gating, whitelist enforcement, memo metadata and event 
emission for LaunchZone flows. Backend listens to contract events.​
 

●​ WithdrawalContract: handles batched withdrawals, review/replay protection, admin 
emergency flows.​
 

●​ TradingProxyContract: advanced routing/fee logic and integration with Stellar DEX 
(multi-hop path payments), exposing optimized swap endpoints.​
 

●​ BondingCurveLaunchContract: fair-launch logic (curve pricing, thresholds, liquidity 
locking) and immediate on-chain listing support.​
 

Design principle: use native Stellar features for simple flows (trustline, path payment) and 
Soroban for composable, auditable, and upgradeable business logic that must run on-chain. 

 

Adding a new network (process) 
1.​ Implement Basic Client for the network (blocks/txs/latest).​

 
2.​ Build DEX Adapter for that network’s DEX logs/events.​

 
3.​ Add Verifier to validate signatures/tx authenticity.​

 
4.​ (Optional) Add Internal Swap Adapter to reconcile internal swaps and referral logic.​

 
5.​ Add scanner configuration and queue mappings; deploy worker pools.​

 

Because architecture is modular, adding networks does not change other layers. 

 

Operational considerations & SLOs 
●​ Indexer Lag: < 5s target for Stellar critical flows.​

 



●​ Transaction success rate: ≥ 98% for user swaps executed via TradingProxy.​
 

●​ Throughput target: baseline architecture supports horizontal scaling to meet peak 
loads; target stress tests up to 1,000 TPS for critical pipelines.​
 

●​ Observability: Prometheus/Grafana, alerting on horizon latency, queue backlog, 
failed tx rates.​
 

 

Security & Compliance 
●​ Replay protection & nonces per network.​

 
●​ Admin controls: multisig, time-locks, and audit logs for emergency operations.​

 
●​ Contract audits: external audit for Soroban contracts before mainnet deployment.​

 
●​ Data privacy: PII separation and encryption at rest for sensitive fields.​

 

 

Example user flows (compact) 
Bonding Curve Launch 

User → LaunchZone UI → Backend validates & deploys BondingCurveLaunchContract → 
Soroban emits LaunchCreated → Indexer ingests → UI shows launch → Users buy via buy 
calls → Soroban executes buys, emits BuyExecuted → Indexer updates trades/launch state 
→ TradingProxy integrates pool to DEX → Terminal shows pair. 

Swap (Stellar) 

User → AIDA Terminal (swap UI) → Backend Router constructs transaction or suggests 
multi-hop path → User signs → tx submitted to Horizon → BlockScanner catches tx → Swap 
validated → Fees/referral calculated → Redis/Postgres updated → WebSocket notifies user. 

 

 
 


	Specification — Stellar integration into AIDApp 
	Layered architecture (summary) 
	Blockchain Layer — responsibilities & components 
	Scanner Layer 
	Data Processing Layer 
	Trade Layer (Trading Terminal) 
	Token Audit 
	Swap Logic & Referral Rewards 
	Queues, Storage & Performance 
	Where Soroban is used (role & scope) 
	Adding a new network (process) 
	Operational considerations & SLOs 
	Security & Compliance 
	Example user flows (compact) 


