

Bookmarking Blog Content with
Memberships and Custom Objects
Erin Wiggers for the HubSpot Developer Blog

Maximize your content's potential by boosting engagement on your site and encouraging
repeat visits with custom bookmarks.

Who am I?
Hello there! I'm Erin, a full stack developer and a devoted HubSpot enthusiast! This is my
debut blog for HubSpot Developers, and I'm thrilled to share my passion for this platform
and the cool things you can do with it.

Who is this for?
This guide is designed for HubSpot developers of all proficiency levels. It covers everything
from basic solutions architecture to comprehensive full stack development and everything
in between!

In this guide, I'll demonstrate how to add a fantastic feature to your HubSpot portal -
bookmarks! By following the steps outlined here, you'll enable your users to bookmark
your content in a user-friendly way that's also easy to monitor and report.

Why You Should Try It
I'll guide you on how to let users bookmark your content in HubSpot in a way that's easy to
track and report. Besides being relatively easy to set up and fun for tech-savvy developers
like me, it's also a valuable functionality to add to any blog or resource center.

●​ Increase User Engagement
Enable users to quickly revisit content without having to navigate through the
website, saving time and making it more convenient to return to a favorite page.

●​ Improve the User Experience
Empower users to create a personalized collection of links to pages that intrigue
them and keep track of their favorite content.

●​ Encourage Repeat Visits
If users can easily find and access content they enjoy, they may be more likely to
return to the site and continue engaging with it over time, leading to higher
retention rates and more repeat visits to your site over time.

What We’re Building

In this post, I'll guide you through the process of setting up a bookmarking system for your
HubSpot blog using a membership portal and custom object. One of the best things about
this feature is that it's not just fun for us tech-savvy developers (although we do love it!).

Here's a glimpse of what we’ll be building:

1.​ Resource Blog Listing
2.​ Dynamic Blog Listing

The resource blog listing displays all of the blogs, allowing users to bookmark specific blogs
and see which blogs have been bookmarked. The dynamic blog listing displays only posts
that the user has bookmarked.

By the end of this article, you'll have a clear understanding of how to implement this
bookmark feature on your own website. If you can only get through some parts now, keep
practicing and come back when you’re ready.

I'll provide plenty of code snippets to guide you in the right direction. And if you need more
help, don't hesitate to reach out to the developer community or consult a partner for
expert advice.

Resources Blog Listing
First, we need some content to bookmark. In this case, I’m going to use a blog, but please
note that this could also work with some slight modification for a HubDB based resource
center.

When it comes to HubSpot blogs, there are two primary components: the blog listing pages
and the individual blog posts. But that's not all - the blog listing template actually serves
multiple purposes! While it's primarily used to display your individual blog posts, it also
plays a key role in rendering your author and tag listing pages.

But first, you’ll need to know how to create a blog, and then set one up in your desired
portal on the appropriate domain with a few published articles for testing purposes.

Listing Template
With just one template, you can create a cohesive look and feel across all of your
blog-related pages. Whether you're showcasing a particular author's work or highlighting
content related to a specific topic or tag, the blog listing template can help you do it all.

You can learn more about blog templates here, and find some specific code examples in
the boilerplate templates.

Custom Module
The custom module contained within the template is arguably the most important part of
our build for several reasons.

First, this is what the marketer will see when they are using the template. Furthermore, the
most functionally significant parts of our code are contained here.

https://knowledge.hubspot.com/blog/create-a-new-blog?
https://developers.hubspot.com/docs/cms/building-blocks/templates/blog
https://developers.hubspot.com/docs/cms/building-blocks/themes/hubspot-cms-boilerplate

Creating custom modules is one of my favorite things to do in HubSpot.

Learn how to configure a module

Dynamic Bookmarked Blog Listing
Once users can bookmark content, we’ll want to give them quick and easy access to the
content they have saved. We can do this by creating a dynamic page that uses a custom
module to bring in bookmark data based on the contact viewing the page.

Bookmark Custom Object
As always in data-driven design, step one of this process is to set up the data infrastructure
that will enable us to build and test the rest of our assets as we go. In this case, it’s our
custom CRM object for Bookmarks.

Private App

Private apps allow you to use HubSpot's APIs to access specific data from your HubSpot
account. You can authorize what each private app can request or change in your account,
which will generate an access token that's unique to your app. We are going to use this app
to create the new object schema.

Custom Object

When it comes to your business needs, sometimes the standard CRM objects just don't cut
it. That's where custom objects come in - they're an excellent option if you need to manage
a specific relationship or process that goes beyond what the standard objects can handle.
In fact, custom objects can be a powerful tool for streamlining your operations and
improving efficiency.

Users with super admin permissions in Enterprise accounts can define a custom object
in the custom object settings or via API.

Once we have our custom object defined, you can create properties, manage pipelines, and
customize the associations between these objects and other objects. You can also use
custom objects in other HubSpot tools, such as marketing emails, workflows, and reports.

Later in this guide, we will create a frontend trigger to initiate our bookmarking function.
Once the user clicks on our bookmark trigger, we'll create a custom object that's associated

https://knowledge.hubspot.com/design-manager/create-and-edit-modules
https://developers.hubspot.com/docs/cms/building-blocks/modules/configuration
https://developers.hubspot.com/docs/api/private-apps

with their contact profile. This object will capture key information about the content they
interacted with, including the blog ID and title.

Membership Page
Requiring membership on your website to access valuable features like bookmarking
content can have several benefits for your business. While it’s not necessary for this
particular bit of functionality, there are a few key advantages to consider.

By requiring users to sign up for membership to access valuable features, you can
incentivize them to engage more deeply with your website. This can lead to increased time
on site, more frequent visits, and ultimately, greater loyalty to your brand.

This also allows you to collect valuable data about your users, such as their email address
and demographic information. This data can help you personalize your content, create
targeted marketing campaigns, and better understand your audience.

Creating membership pages

Bookmarks Listing Module
Like blogs, dynamic pages consist of a listing page view and a unique details page for each
record. The listing page displays a list of all records in the object, and the details pages
display information about each record based on the record's property values. In this case
we will be using our Bookmark custom object to pull in the data that we need.

For custom object dynamic pages, you'll need a CMS Hub Enterprise subscription, or a
Marketing Hub Enterprise account with CMS Hub Professional.

For standard CRM object dynamic pages, you'll need a CMS Hub Professional or
Enterprise account.

Dynamic pages with CRM objects

Functions
This will be the most advanced part of our guide and will include a combination of
JavaScript, jQuery, and Node.js to achieve our bookmarking functionality.

https://developers.hubspot.com/docs/cms/data/memberships
https://developers.hubspot.com/docs/cms/guides/dynamic-pages/crm-objects

Serverless
We are going to be making changes to the backend of a HubSpot portal, which requires
some added security measures. APIs requiring authentication like HubSpot’s are not safe
for the front-end of a website, as your credentials would be exposed. Serverless functions
provide a way to write server-side code that interacts with HubSpot and third-party services
through API, acting as an intermediary and enabling you to keep credentials secret.

There’s no need here to spin up new servers, which means that serverless functions
require less overhead and as a result they are easier to scale as a business grows.

Overview of Serverless Functions

Portal Limits

Serverless functions are intended to be fast and have a narrow focus which enables them
to be perfect companions to the front-end of websites and apps. In order to enable a quick
call and response, developers must keep in mind specific limitations to maintain
performance.

HubSpot serverless functions are limited to:

●​ 50 secrets per account.
●​ 128MB of memory.
●​ no more than 100 endpoints per HubSpot account.
●​ the contentType application/json when calling a function.
●​ 6MB per invocation payload, which you might encounter when trying to upload a file

with a serverless function, for example.
●​ 4KB for the amount of data that can be logged. When hitting this limit, it's

recommended to log after individual actions, rather than the final output.

Execution limits

●​ Each function has a maximum of 10 seconds of execution time
●​ Each account is limited to 600 total execution seconds per minute.

This means either of these scenarios can happen within 1 minute:

●​ Up to 60 function executions that take 10 seconds each to complete.
●​ Up to 6,000 function executions that take 100 milliseconds to complete.

https://developers.hubspot.com/docs/cms/data/serverless-functions

●​ Functions that exceed those limits will throw an error. Execution count and time
limits will return a 429 response. The execution time of each function is included in
the serverless function logs.

JavaScript

HubSpot APIs

All HubSpot APIs are built using REST conventions and designed to have a predictable URL
structure. They use many standard HTTP features, including methods (POST, GET, PUT,
DELETE) and error response codes. All HubSpot API calls are made under
https://api.hubapi.com and all responses return standard JSON.

One of the best features of the HubSpot API documentation is that it simplifies the testing
process and reduces the time and effort required to test APIs. By clicking on the dropdown
in the sidebar, developers can quickly and easily test API endpoints, perform load testing,
and simulate different scenarios without having to write any scripts or code.

Getting started with the HubSpot API
For our purposes, we will use Node.js and Axios to call the API and handle the JSON data
that is returned.

How To Build Custom Bookmarks
Now that we’ve covered the basics of what we are trying to accomplish, let’s dive into the
nitty gritty with a step-by-step guide to creating this functionality.

1.​ Configuring the Bookmark Object
Every time a user clicks to add a bookmark, we will create a Bookmark object, give it a
property that indicates the blog post ID of the selected bookmark, and associate it to the
contact. First, we need to build out the backend assets that will make that possible.

Create a Private App to Access the HubSpot API
Go to Settings > Integrations > Private Apps
Click Create a private app

https://developers.hubspot.com/docs/api/overview

When creating a custom app for an API integration, it's important to only choose the scopes
that you will use in the configuration for several reasons.

Give your app the following scopes:

Scopes define the level of access your app has to the API. If you choose more scopes than
your app actually needs, it could potentially expose sensitive data to your app that you
didn't intend to have access to. Limiting the scopes to only what your app needs can reduce
the risk of a data breach.

Furthermore, in limiting the scope you can ensure that your app only accesses the data
that it requires. This can help to reduce the amount of data transfer and processing
needed, leading to faster and more efficient app performance.

By choosing only the scopes that your app needs, you can make it easier for other
developers to understand what your app is doing and what level of access it requires. This
can be important for maintaining transparency and trust with users and other
stakeholders.

Create a Custom Object
To create a custom object, you'll first need to define the object schema. The schema
includes the object name, properties, and associations to other CRM objects. You can find
the full schema request details in the Object schema tab at the top of this article. You can
also view a sample request in the example walkthrough below.

To create the custom object schema, make a POST request to crm/v3/schemas. In the
request body, include definitions for your object schema, including its name, properties,
and associations.

https://developers.hubspot.com/docs/api/crm/crm-custom-objects

When naming your custom object, keep the following in mind:

●​ Once you create an object, the object's name and label cannot be changed.
●​ The name can only contain letters, numbers, underscores, and hyphens.
●​ The first character of the name must be a letter.
●​ Long labels may be cut off in certain parts of the product.

These days it is very easy to do this in the UI (thank you Product Team!), so if this next
section gets too technical, just skip down here to keep moving through this guide.

Using Postman

Postman is a popular API testing tool that simplifies the process of building, testing, and
documenting APIs. It offers a user-friendly interface that allows developers to send HTTP
requests, inspect responses, and test API endpoints without writing complex scripts or
code.

One of the biggest advantages of using Postman is that it simplifies the testing process and
reduces the time and effort required to test APIs. With Postman, developers can quickly
and easily test API endpoints, perform load testing, and simulate different scenarios
without having to write complex scripts or code.

Learn more about Postman for working with APIs.

You can access the HubSpot Postman collection from any API documentation page via the
button at the top.

https://learning.postman.com/docs/getting-started/introduction/

Using the UI
Thanks to the magical people on the HubSpot Product team, creating custom objects can
actually be much easier! You can now build and deploy your custom objects directly from
your portal.

Navigate to Settings > Objects > Custom Objects and click Create Custom Object

Viewing the Object in the UI
Navigate to your new custom object by clicking on Contacts in the top menu and then
selecting the label you created from the dropdown.

Create an association to contacts
Associations are a crucial part of understanding the relationships between objects and
activities in the HubSpot CRM. With the associations endpoints, you can easily create,
retrieve, or remove associations in bulk, streamlining your workflows and improving your
efficiency.

It's important to note that associations are defined by both object and direction. This
means that association types are unidirectional and require different definitions depending
on the starting object type. This might sound a bit confusing at first, and cause some issues
when hitting the right API endpoint. But once you get the hang of it, it can be a powerful
tool for managing your data and processes in HubSpot.

Create and use association labels.

https://knowledge.hubspot.com/crm-setup/create-and-use-association-labels

We're tailoring the association's display in the Contact UI. Keeping UI components
adequately detailed but not overwhelming is key for good user experience (UX) and
application usability. Here's why:

Appropriate detailing allows users to easily understand and interact, boosting user
experience, engagement, and conversions. Overloading users with information can lead to
overwhelm and frustration, causing decision paralysis or site abandonment, negatively
affecting business objectives.

Balancing detail and simplicity in UI design fosters a usable, engaging experience that
supports business goals. A mindful approach to interface design can deliver a delightful
user experience.

Modify associations cards

In HubSpot, when a record is associated with another record, the association is displayed in
the right sidebar of the record with certain properties. You can customize the association
cards of each object to include specific properties, which will be shown across all
associated records.

Select properties to show on record association cards.

https://knowledge.hubspot.com/crm-setup/select-properties-to-show-on-record-association-cards

The result is a much more useful insight into the associated object.

2.​ Building a Resources Blog Listing
Blog templates now support drag-and-drop areas (thank you Product Team)!

Drag and drop areas enable you to create areas of pages and global partials where content
creators can place modules, change layout, and add styling within the content editor. Using
drag and drop areas, you can create fewer templates, as content creators are able to create
layouts on their own.

Template Setup
Let’s take a look at a standard drag-and-drop template for a blog listing. This will typically
go in the templates folder of your theme file structure.

<!--​
 templateType: blog_listing​
 isAvailableForNewContent: true​
 label: Blog listing​
-->​
​
{% extends "./layouts/base.html" %}​
​
{% block body %}​
​
{% dnd_area "dnd_area" label="Main section", class="body-container body-container--blog" %}​
​
 {# HERO SECTION #}​
 {% dnd_section full_width=true, padding={ 'default': { 'top': 0, 'right': 0, 'bottom':

0, 'left': 0 }} %}​
 {% dnd_column padding={'default': { 'top': 0, 'right': 0, 'bottom': 0, 'left': 0 }} %}​
 {% dnd_row padding={'default': { 'top': 0, 'right': 0, 'bottom': 0, 'left': 0 }} %}​
 {% dnd_module path='../modules/folio-section.module', width=12 %}​
 {% end_dnd_module %}​
 {% end_dnd_row %}​
 {% end_dnd_column %}​
 {% end_dnd_section %}​
 {# End HERO SECTION #}​
​
 {# BLOG POSTS SECTION #}​
 {% dnd_section full_width=true, padding={ 'default': { 'top': 0, 'right': 0, 'bottom':

0, 'left': 0 }} %}​
 {% dnd_column padding={'default': { 'top': 0, 'right': 0, 'bottom': 0, 'left': 0 }} %}​
 {% dnd_row padding={'default': { 'top': 0, 'right': 0, 'bottom': 0, 'left': 0 }} %}​
 {% dnd_module path='../modules/resources.module', width=12 %}​
 {% end_dnd_module %}​
 {% end_dnd_row %}​
 {% end_dnd_column %}​
 {% end_dnd_section %}​

https://developers.hubspot.com/docs/cms/building-blocks/templates/blog

 {# End BLOG POSTS SECTION #}​
​
{% end_dnd_area %}​
​
{% endblock body %}

As you can see, this template extends the base template for our theme, and contains the
modules that we want to include on the page wrapped in a DND_AREA tag.

When a content creator uses a template with drag and drop areas to create a page, they
will initially see the page populated with predefined modules arranged according to the
layout you, the developer, have defined.

Using drag and drop areas, the content creator can then build the page, including:

●​ Adding modules, sections, rows, and columns.
●​ Resizing modules and updating their content and styling, such as adjusting

alignment and adding backgrounds.

This gives content creators enough flexibility to make simple page changes without needing
a developer for every item that comes up.

Drag-and-drop areas

Building the Resources Module

Basic Setup

Let’s now focus on the primary module within our template which will render our listing
content. First, we’ll need to set up the module with a few theme fields to make it
marketer-friendly.

Module

By adding a field for selecting blog in the module gives the marketer the ability to use this
module across multiple blog instances in the same portal.

https://developers.hubspot.com/docs/cms/building-blocks/templates/drag-and-drop-areas
https://developers.hubspot.com/docs/cms/building-blocks/module-theme-fields

You may also want to add options for post limit, pagination, or even style variations. This is
where your creativity and long-term, scalable thinking comes in!

Recent Posts Function

The blog_recent_posts function returns a sequence of blog post objects for the specified
blog, sorted by most recent first. This sequence of posts can be saved into a variable and
iterated through with a for loop, creating a custom post listing of your most popular posts.

The function takes two parameters. The first parameter specifies which blog to collect
popular posts from. The value should be "default" or the blog ID of a particular blog
(available in the URL of the Blog dashboard). The second parameter specifies how many
posts are retrieved.

The first line of the example below demonstrates how the function returns a sequence. The
sequence is saved in a variable and looped through. Any blog post variables should use the
name of the individual loop item rather than content.. In the example, rec_post.name is
used. This technique can be used, not only on blog templates, but also regular pages.

{% set resources = blog_recent_posts(module.blog, 100) %}

Please note: this function has a limit of 200 posts and 10 calls per page.

Blog Listing HTML

With the blog_listing template type you can make the template available for selection under
blog settings specifically for the listing view and content creators can also edit the listing
page within the page editor. You can also include drag and drop areas in the template so
that modules can be added and removed in the page editor.

https://developers.hubspot.com/docs/cms/hubl/functions#blog-recent-posts
https://developers.hubspot.com/docs/cms/building-blocks/templates/blog#create-a-shared-template-for-the-listing-and-post-pages

The listing of posts is generated by a for loop that iterates through your blog posts.
contents is a predefined sequence of content that contains all the posts contained in that
blog.

<div id="{{ name }}" class="blog-posts">​
 <div class="blog-posts__container">​
 <div class="blog-posts__row">​
 {% for resource in resources %}​
 {{ format_post(resource) }}​
 {% endfor %}​
 </div>​
 </div>​
</div>

Name Variable

The name variable represents a unique value for the instance of that module which is
useful when you want to target a single module on a page where that module is repeated.

Full list of variables

For Loop

For loops can be used in HubL to iterate through sequences of objects. They will most
commonly be used with rendering blog content in a listing format, but they can also be
used to sort through other sequence variables.

More about for loops
Blog listing modules

Resource Card
In UI/UX design, a card is an element that usually consists of a combination of image, text,
and link/button, all bundled into one interactive component. The purpose of a card is to
provide a preview or digest of the content (like a blog post), while also serving as a doorway
to the full content.

Because this is a fairly standard UI component, you will very likely find yourself using a
similar HTML structure for multiple instances and variations. In that case, you’ll want to be
strategic about how you set up that code structure.

https://developers.hubspot.com/docs/cms/hubl/variables
https://developers.hubspot.com/docs/cms/hubl/for-loops
https://developers.hubspot.com/docs/cms/building-blocks/templates/blog#create-a-blog-listing-module

The DRY principle states that a piece of code should be written once and reused wherever
necessary, rather than being duplicated throughout the codebase. This reduces
redundancy, minimizes the chance of errors, and makes the code more maintainable.

To follow the DRY principle (Don’t Repeat Yourself!), look for opportunities to modularize
code and abstract away common functionality. This could involve creating reusable
functions, classes, or modules that can be used in multiple parts of the codebase.

One of the best ways to modularize your code in HubSpot is by using HubL macros. HubL
macros allow you to print multiple statements with a dynamic value. For example, if there
is a block of code that you find yourself writing over and over again, a macro may be a good
solution, because it will print the code block while swapping out certain arguments that you
pass it.

The macro is defined, named, and given arguments within a HubL statement. The macro is
then called in a statement that passes its dynamic values, which prints the final code block
with the dynamic arguments.

Post Macro

We can make a modular card component using HubL and HTML by passing the resource
object to a formatter macro. You can either include this macro at the top of your module
HTML file or place it in a separate macros.html file that you then import at the top of your
module or template.

 If you are only utilizing a few macros, then including them in the HTML file itself is the
easiest option. However, if you are using more than a handful or so and your module code
starts to get too long to be manageable, then switching to an include statement is a great
way to simplify your setup.

{% macro format_post(post) %}​
{% set is_bookmarked = true if post.id in bookmarked_ids else false %}​
<div class="blog__post blog-post" data-content-id="{{ post.id }}">​
 <div class="blog-post__image">​
 <img src="{{ post.featured_image }}" alt="{{ post.featured_image_alt_text }}"

width="100" height="100">​
 <div class="blog-post__bookmark{% if is_bookmarked %} active{% endif %}">​
 {{ icon("bookmark") }}​

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://developers.hubspot.com/docs/cms/hubl/variables-macros-syntax#macros

 {% if logged_in %}​
 <div class="blog-post__bookmark-help">​
 Add To Your Bookmarks​
 Remove From Your Bookmarks​
 </div>​
 {% endif %}​
 </div>​
 </div>​
 <div class="blog-post__wrap">​
 <div class="blog-post__title"><h3>{{ post.name }}</h3></div>​
 {% if post.topic_list %}​
 <div class="blog-post__topics"><i class="fas fa-tag"></i>​
 {% for topic in post.topic_list %}​
 {{ topic }}{% unless loop.last %},{% endunless %}​
 {% endfor %}​
 </div>​
 {% endif %}​
 <div class="blog-post__content">{{ post.post_list_content|truncatehtml(250)

}}</div>​
 <div class="blog-post__cta">​
 <div class="button-wrap">​
 <a href="{{ post.absolute_url }}" class="hs-button button

button--primary_outline">Read More​
 </div>​
 </div>​
 </div>​
</div>​
{% endmacro %}

Resource Object

The resource object refers to the array of data returned from a HubL function like
crm_objects() or recent_blog_posts(). This should include the variables for the post image,
title, content, and link.

Bookmark Tag

If the user is logged in, they will see the options to add or remove bookmarks on hover.
Otherwise, they will be prompted to register for an account.

Optimized Images

Alot of developers struggle with responsive design at first. One consistent issue I’ve seen is
with making varying sized images responsive without any distortion.

HTML

<div class="blog-post__image">​
 <img src="{{ post.featured_image }}" alt="{{

post.featured_image_alt_text }}" width="100" height="100">

Alt Tag

This is crucial for accessibility purposes! Always include this tag and the most relevant text
possible.

Width & Height

Images that do not have a set width and height will cause Cumulative Layout Shift errors.

CSS

The aspect ratio is the key here! That’s what makes it look the same across screen sizes.
The next big piece is the object-fit property which controls the image similar to the
background-size property.

.blog-posts .blog-post .blog-post__image {​
 position: relative;​
 aspect-ratio: 5 / 3;​
}​
​
.blog-posts .blog-post .blog-post__image img {​
 width: 100%;​
 height: 100%;​
 object-fit: cover;​
}

3.​ Building the Dynamic Listing Page
The dynamic listing page for Bookmarks is where users will be able to view all of their
bookmarks at once, giving them quick access to all their favorite content.

Dynamic pages are CMS pages that get their content from a structured data source, such as
HubDB or CRM objects. Based on how you configure your dynamic page template or
modules, HubSpot will then use that data to automatically create and populate a set of
pages. This includes a listing page that displays summaries of the data, and individual
pages for each data source entry (HubDB row or CRM object record).

Require member registration to access private content.

Create a List to Grant Access to Restricted Pages
The lists tool in HubSpot allows you to create a list of contacts or companies based on
property values and other characteristics.

Create and use lists

https://knowledge.hubspot.com/website-pages/require-member-registration-to-access-private-content
https://knowledge.hubspot.com/lists/create-active-or-static-lists

Configure an active list for your implementation and setup parameters for allowing
membership to that list.

In this case, I’m using a custom boolean property called Resource Access which when set to
“Yes” will add the contact to this active list.

Configure Page Advanced Options to Restrict Access
Now, let’s make sure only contacts who are on that list can view the bookmarks page.

In the Page Editor of the Blog Listing that you just created, click to the Settings tab and
scroll down to Advanced Options.

Building the Bookmarks Module
Next, we need a module to display only the bookmarks associated with the contact on a
page.

First, define your variables at the top of the template.

{% set association_id = “19” %}

{% set bookmarked_resources = crm_associations(request.contact.contact_vid,

"USER_DEFINED", association_id, "limit=100", "resource_id").results %}​
{% set bookmarked_ids = [] %}​
{% for bookmark in bookmarked_resources %}​
 {% do bookmarked_ids.append(bookmark.resource_id) %}​
{% endfor %}

CRM Associations Function

Gets a list of associated objects from the HubSpot CRM based on the given object id,
association category, and association definition id. Supported object types that can be
retrieved are HubSpot built-in objects, portal specific objects, and integrator objects.
Objects are returned as a dict of properties and values.

For security, only portal specific objects and product can be retrieved on any public page.
Any other built-in object types (except product) or integrator object types must be hosted
on a page which is either password protected or requires a CMS Membership login.

Use CRM object data in CMS Hub
HubL Functions

Request Contact ID

Get the ID of the contact requesting the page.

Full list of variables

Append Method

I use this alot. Very handy especially with various filters or combinations thereof later in the
template.

HubL Functions
HubL Filters

https://developers.hubspot.com/docs/cms/data/crm-objects
https://developers.hubspot.com/docs/cms/hubl/functions
https://developers.hubspot.com/docs/cms/hubl/variables
https://developers.hubspot.com/docs/cms/hubl/functions

Here’s what the main part of the module looks like:

<div id="{{ name }}" class="blog-posts">​
 <div class="blog-posts__container">​
 <div class="blog-posts__row">​
 {% for resource in content_by_ids(bookmarked_ids) %}​
 {{ format_post(resource) }}​
 {% endfor %}​
 </div>​
 </div>​
</div>

Content By IDs Loop

Given a list of content ids, returns a dict of landing page, website page or blog posts
matching those ids.

Format Post Macro

Reusing the one from the Resources module

More about Macros

4.​ Building the Bookmark Toggle Function

Front-end JavaScript
Now, let’s discuss the frontend code that will send data to our serverless function. You will
want to place this code in the HTML portion of your module wrapped in a {% require_js %}
statement so that you can access variables such as whether or not the user is logged in and
the domain for the custom API call.

{% if logged_in %}​
 {% require_js position="footer" %}​
 <script>​
 $(document).ready(function() {​
 var bookmarks = $(".blog-post__bookmark"),​
 build_add_bookmark_payload = function(contact_id, post_id, post_title,

action) {​

https://developers.hubspot.com/docs/cms/hubl/variables-macros-syntax

 var payload = {​
 contact_id: contact_id,​
 post_id: post_id,​
 post_title: post_title,​
 action: action​
 };​
 return payload​
 },​
 build_delete_bookmark_payload = function(bookmark_id, action) {​
 var payload = {​
 bookmark_id: bookmark_id,​
 action: action​
 };​
 return payload​
 },​
 submit_to_api = function(url, method, object) {​
 var body = JSON.stringify(object);​
 fetch(url, {​
 method: 'POST',​
 body: body,​
 headers: {​
 "Content-Type": "application/json"​
 }​
 }).then(function() {​
 console.log("success");​
 }).catch(error => console.error(error));​
 };​
 bookmarks.click(function() {​
 var blog_post = $(this).closest(".blog-post").addClass("adding"),​
 post_id = blog_post.attr("data-content-id"),​
 bookmark_id = blog_post.attr("data-bookmark-id"),​
 post_title = blog_post.find("h3").text(),​
 contact_id = `{{ request.contact.contact_vid }}`,​
 action = $(this).is(".active") ? "remove" : "add",​
 url = `https://{{ request.domain }}/_hcms/api/bookmarks`;​
 $(this).toggleClass("active");​
 if (action == "add") {​
 var bookmark_payload = build_add_bookmark_payload(contact_id, post_id,

post_title, action);​
 submit_to_api(url, bookmark_payload);​
 } else {​
 var bookmark_payload = build_delete_bookmark_payload(bookmark_id,

action);​
 submit_to_api(url, bookmark_payload);​
 }​
 });​

 });​
</script>​
{% end_require_js %}​
{% endif %}

On-click Functions

Build Payload

This function above, build_add_bookmark_payload creates a JavaScript object with four
properties based on the given arguments. The resulting object can be sent as data to our
serverless function.

API Submission

The submit_to_api function submits data to an API endpoint through an HTTP POST
request. It takes three arguments: URL, method, and object. The object argument is
converted to a JSON string using JSON.stringify and set as the request body. The fetch
method is then used to request with the POST method, using the URL, request body, and
headers that specify the content type as 'application/JSON. A console log message is
printed if the request is successful or an error message if it fails.

UI Handling

Toggling classes in a website's user interface can indicate to the user that an action is being
performed. This provides feedback to reduce uncertainty and anxiety and improves the
user experience by showing progress. It also helps prevent user errors by indicating that an
action has already been completed and can improve the perceived performance of a
website by creating the impression of responsiveness.

Back-end Node.js
Node.js is a powerful and versatile runtime environment that can be used for a wide range
of server-side applications. Its lightweight and scalable architecture, combined with its
extensive package ecosystem and developer community, make it an excellent choice for
building modern, high-performance web applications.

Serverless Function JSON

{​
 "runtime": "nodejs18.x",​
 "version": "1.0",​
 "environment": {},​
 "secrets": [​
 "API_KEY"​
],​
 "endpoints": {​
 "bookmarks": {​
 "method": [​
 "POST"​
],​
 "file": "bookmarks.js"​
 }​
 }​
}

Adding a Secret

You can add your API key to your project securely using the following HubSpot CLI
command.

hs secrets add API_KEY

You will then be prompted to enter your Private App key.

Configuring the Endpoint

Name

Goes at the end of the api endpoint URL.

Method

Must match what you send from the frontend.

File

Relative path of the JS file for this endpoint.

Serverless Function JavaScript

This is a Node.js module that exports a single asynchronous function named main. The
function takes two parameters: context and sendResponse. Inside the main function, the

https://developers.hubspot.com/docs/cms/developer-reference/local-development-cli

headers object is created, which contains an Authorization header with the authToken as a
bearer token.

Next, the module extracts several properties from the context.body object. These
properties include action, contact_id, bookmarked_resource, bookmark_name, and
existing_bookmark.

The main function then defines two nested asynchronous functions named
create_bookmark and remove_bookmark. These functions use the axios library to make API
requests to HubSpot, a popular CRM platform.

Finally, the main function checks the action property from the context.body object to
determine whether to call the create_bookmark or remove_bookmark function. Once the
appropriate function has been called, the sendResponse function is called with the
resulting data from the HubSpot API response.

const axios = require('axios');​
const authToken = process.env.API_KEY;​
​
exports.main = async (context, sendResponse) => {​
 ​
 const headers = {​
 'Authorization': `Bearer ${authToken}`​
 };​
 ​
 const action = context.body.action;​
 const contact_id = context.body.contact_id;​
 const bookmarked_resource = context.body.post_id;​
 const bookmark_name = context.body.post_title;​
 const existing_bookmark = context.body.bookmark_id;​
 ​
 async function create_bookmark() {​
 const url = 'https://api.hubapi.com/crm/v3/objects/bookmark';​
 const properties = {​
 "resource": bookmark_name,​
 "resource_id": bookmarked_resource​
 };​
 const SimplePublicObjectInputForCreate = { properties, associations:

[{"to":{"id":contact_id},"types":[{"associationCategory":"USER_DEFINED","associatio

nTypeId":20}]}] };​
 async function createBookmark() {​
 const {data} = await axios.post(url, SimplePublicObjectInputForCreate, {

headers });​
 sendResponse(data);​
 }​
 createBookmark()​
 }​
 async function remove_bookmark() {​
 const url =

`https://api.hubapi.com/crm/v3/objects/bookmark/${existing_bookmark}`;​
 async function removeBookmark() {​
 const {data} = await axios.delete(url, { headers });​
 sendResponse(data);​
 }​
 removeBookmark()​
 }​
 if (action == "add") { create_bookmark() } else { remove_bookmark() }​
}

Required Libraries

The module first requires the Axios library, which is a popular HTTP client for Node.js, and
sets the authToken constant using an environment variable named API_KEY.

Authorization

Header that includes your Private App key as a bearer token.

Exports Parameters

Context

The body and parameters sent from the frontend.

sendResponse

Sends data from the serverless back to the frontend.

Create Bookmark with Association

The create_bookmark function sends a POST request to create a new bookmark in
HubSpot's CRM. It uses the axios.post method to make the request to the url endpoint with
the SimplePublicObjectInputForCreate payload and the headers object.

The payload contains the bookmark's resource (bookmark_name) and resource_id
(bookmarked_resource) properties, as well as an association to the contact_id specified in
the context.body.

https://developers.hubspot.com/docs/api/private-apps#make-api-calls-with-your-app-s-access-token

Async Functions

Asynchronous programming lets code run "in the background," without halting the main
thread. It's achieved in JavaScript using async functions, defined with the 'async' keyword,
signaling they handle asynchronous operations differently than standard functions.

In our case, we'll use the fetch function to obtain server data. The 'await' keyword, usable
only within an async function, ensures each asynchronous operation completes before
progressing.

Async functions can prevent "callback hell," a scenario in nested asynchronous
programming which complicates code readability and maintenance. While there's more to
learn about asynchronous programming and async functions, this serves as a basic
introduction.

Properties

Include everything needed for the Association Card (at least) so that the data displayed to
the user in the portal is consistent and helpful to their goals.

Delete Bookmark

Use ID from context with the remove_bookmark function which sends a DELETE request to
remove an existing bookmark in HubSpot's CRM. It uses the axios.delete method to make
the request to the url endpoint with the headers object.

Conclusion
Throughout this guide, we've gone deep into the weeds on how to integrate a bookmark
feature on your HubSpot portal. This fantastic feature doesn't only improve your website's
user experience but also encourages repeat visits, fostering higher retention rates.

We delved into building a dynamic bookmarking system for your HubSpot blog, utilizing a
membership portal and custom object. Whether you're a novice or experienced HubSpot
developer, the instructions and code snippets provided should enable you to implement
this feature at your own pace.

Remember, there's always room for growth. Even if you can't get through all sections now,
persist and revisit them when ready. The developer community and partners are also
invaluable resources for additional guidance.

This is just the beginning, and I look forward to guiding you on many more exciting
HubSpot adventures. Stay tuned, keep exploring, and most importantly, continue building
dope stuff!

Thank you for reading! If you made it this far, I would love to hear from you! Did you try
this out? Is there anything you would add or change?

	Bookmarking Blog Content with Memberships and Custom Objects
	Why You Should Try It
	●​Increase User Engagement
	●​Improve the User Experience
	●​Encourage Repeat Visits

	What We’re Building
	Resources Blog Listing
	Listing Template
	Custom Module

	Dynamic Bookmarked Blog Listing
	Bookmark Custom Object
	Private App
	Custom Object

	Membership Page
	Bookmarks Listing Module

	Functions
	Serverless
	Portal Limits
	Execution limits

	JavaScript
	HubSpot APIs

	How To Build Custom Bookmarks
	1.​Configuring the Bookmark Object
	Create a Private App to Access the HubSpot API
	Create a Custom Object
	Using Postman
	

	Using the UI

	Viewing the Object in the UI
	Create an association to contacts
	Modify associations cards

	2.​Building a Resources Blog Listing
	Template Setup
	Building the Resources Module
	Basic Setup
	Module
	Recent Posts Function
	Blog Listing HTML
	Name Variable
	For Loop

	Resource Card
	Post Macro
	Resource Object
	Bookmark Tag
	Optimized Images
	HTML
	Alt Tag
	Width & Height

	CSS

	3.​Building the Dynamic Listing Page
	Create a List to Grant Access to Restricted Pages
	Configure Page Advanced Options to Restrict Access
	Building the Bookmarks Module
	CRM Associations Function
	Request Contact ID
	Append Method
	Content By IDs Loop
	Format Post Macro

	4.​Building the Bookmark Toggle Function
	Front-end JavaScript
	
	On-click Functions
	Build Payload
	API Submission
	UI Handling

	Back-end Node.js
	Serverless Function JSON
	Adding a Secret
	Configuring the Endpoint
	Name
	Method
	File

	Serverless Function JavaScript
	Required Libraries
	Authorization
	Exports Parameters
	Context
	sendResponse

	Create Bookmark with Association
	Async Functions
	Properties

	Delete Bookmark

	Conclusion

