
Automated Governance Blueprint
Modernizing risk and compliance to accommodate the rapid
evolution and complexity of software

Security Technical Advisory Group



Automated Governance Reference Architecture
Andrés Vega in collaboration with David Langhorst, Matthew Flannery, Brandt Keller, Chris
Hughes, and Jon Zeolla

Status: Draft
Control Rev 2022120-2

Table of Contents
Table of Contents
Introduction
Summary
The Forcing Function of Mandates: The Executive Order 14028, NIST SSDF (SP800-218), and
CISA Self-Attestation
Target audience: Platform Engineers and DevSecOps Teams

Platform Engineers
DevSecOps Teams
Common Benefits for All Parties:

Benefits and Outcomes of Automated Governance
Why Automated Governance Matters even for Smaller Organizations, Regardless of Lack of
Current Regulatory Pressures
Differentiation between Automated Governance and Traditional Compliance Software
Use Case Examples
Integration with Existing Systems

Strategies for Seamless Integration and Transition
Enhancing DevOps Practices for Compliance and Audit Readiness

Risk Management Details
Strategies for Security and Compliance in Dynamic Environments
Approach to Risk Identification, Assessment, and Mitigation
Methodologies for Continuous Risk Assessment and Real-Time Monitoring

Fostering Technological Advancement in Software Development
Advancement of Pipeline Design: Control Points for Decentralized Decision-Making
Reference Architecture Technical Specifications

Evidence: Constructing Attestations
Infrastructure auditing

Development infrastructure
Deployment infrastructure
Deployment State

Software delivery pipeline auditing
Source Code Repository and Code Quality
Build and Dependencies
Artifacts



Deployment
System Architecture
Leveraging Emerging Standards: Secure Controls Framework and OSCAL
Future Directions

Automated Reasoning and Formal Proofs
AI and LLMs
Quantizing of Risk(?) [TO DO]
Embracing Automated Software Governance
Call to Action: Transforming Compliance into a Strategic Advantage
Moving Forward with Automated Governance

Common Terminology and Definitions
References:



[Read This] Notes to contributors on collaboration:

We have established the initial content and framework for the document.

The document is divided into two major sections. The first two-thirds primarily consist of
prose, presenting and advocating for a standards-based reference architecture built on
open-source components. The final third, which I anticipate will expand to surpass the other
sections by getting more into details, is currently dedicated to proposed patterns. It's this latter
section where I'd like to direct most of your attention to help in producing the actual design of
the architecture. All sections contain seed text at this stage, but again I expect the technical
specification section to be more elaborated at a low level and have new components added to
it.

For those of you contributing extensive viewpoints and perspectives to the initial sections, the
necessary structure is in place. Following the model set in Open and Secure, if you wish to
express your thoughts in your unique voice, please do so in commentary boxes located at
appropriate points throughout the document. We are seeking politely opinionated insights
from experts in our community who have relevant expertise. Depending on their length, we
might also consider an appendix of ‘biographical stories' section to further explore each
contributor's journey/stance on the subject.

I anticipate a commitment of about 6-12 hours of writing from each contributor to draft their
respective parts they take on. As a group, we will then review what we have, identify any
gaps, and decide on the next steps, including what to add, revise, or refine.

While we might propose minor edits to others' contributions for the sake of brevity, clarity, or
tone, our goal is to let the diverse voices of our community shine through. So, please share
your insights and expertise in the relevant sections to help enhance the document.

Specific areas where key contributions are sought include:

● Patterns
● Object model (tentative)
● API specifications
● Normalization of data from various sources
● Formatting of exported data for reporting processes
● Defining all the above constructs as proposed standards (tentative)

https://github.com/cncf/tag-security/blob/main/assessments/Open_and_Secure.pdf


Introduction

Welcome to the Cloud Native Computing Foundation “Automated Governance Reference
Architecture”, a transformative framework designed to empower organizations to confidently and
easily navigate the complex landscape of compliance and risk management. In today's business
environment, characterized by rapid technological advancements and stringent regulatory
demands, the integration of compliance with software development is more critical than ever.
Though security is traditionally thought of as a blocker, the automation of compliance can in fact
be an enabler to innovation rather than a barrier.

Managing the tools your organization uses to implement governance, risk, and compliance
(GRC) policies can be a burdensome, cross-organizational task. By consolidating management
into a unified interface—providing a "single pane of glass" perspective—we streamline the
application of your GRC policies across the board. This centralization liberates your developers,
security engineers, and operations personnel to concentrate on tasks critical to business
success. This approach not only makes it easier to capture and implement strategic intentions
but also guarantees consistent policy enforcement across diverse environments and platforms.
Managing these tools collectively, yet distributing enforcement, reveals advantageous features
otherwise unattainable with siloed management.

A wide variety of tools are available to ensure software meets certain standards before
deployment to production environments. These tools each focus on particular areas of
governance, such as change control, automated testing suites, warning flags, adherence to
fundamental cryptographic best practices (including appropriate key lengths and avoidance of
weak algorithms), code analysis, utilization of approved libraries, and the remediation of known
public vulnerabilities. However, these individual tools often operate in isolation, lacking context
and integration.

Managing a given set of tools–each designed for specific tasks such as testing, scanning,
signing software– is a significant challenge. Ensuring security and compliance controls of those
same tools are configured and applied correctly, and reliably recording and reporting their
successful application has become an insurmountable operational burden. Ensuring that
problems requiring remediation are dealt with correctly and promptly adds an additional,
ongoing process burden.

Many organizations have attempted to build a coordination layer for these tools and processes.
The required expertise spans several departments – engineering, operations, compliance, legal
– and rallying these resources towards a functional system often leads to incomplete solutions
or outright failures.

Our mission is to bridge this gap, providing innovative solutions that enable collaboration
between compliance and software engineers. This architecture goes beyond being merely an
additional compliance tool; it serves as a platform service designed to augment internal



development platforms. Our aim is to accelerate software delivery while upholding the highest
standards of governance and compliance.

We envision a future in which regulatory challenges are addressed through efficient, precise,
and innovative, thereby improving the approach to governance in software engineering.
Through this document, we detail the specifics of our architecture, illustrating how it achieves
improvement of the current practices and processes, and sets a new standard for modern
governance practices.

Summary
Technology organizations are increasingly challenged to maintain compliance and manage risks
within their software development processes. The emergence of rigorous regulatory standards
and the potential for severe consequences, including criminal conviction, substantial fines and
reputational damage, necessitate a strategic approach to governance in software engineering.
The promise of operational efficiency and agility in software development, championed by
platform engineering and cloud native technologies, is often hampered by the challenges of
meeting governance, regulatory, and compliance requirements.

Traditionally, organizations have relied on written plans, questionnaires, and the Institute of
Internal Auditors’s Three Lines of Defense model to address governance, compliance, and risk
management. While this approach may have sufficed for static systems, it falls short in the face
of modern, complex, and distributed software environments.

Acknowledging these challenges, the need arises for a transformative solution that aligns
compliance with business innovation, ensuring that regulatory mandates become an
accelerating force that raises the bar in software rather than an impedance.

In response to this need, we seek to facilitate where business governance, regulatory
compliance, and innovation collaborate through a shared platform. Our vision is to bring
compliance and risk management closer to architecture, making it an integral and seamless part
of the software development journey. We envisage compliance engineering as a conduit to
accelerate software delivery by shortening the loop to build secure, reliable, and thoroughly
tested software. This approach not only safeguards against regulatory pitfalls but also
empowers organizations to leverage compliance as an advantage..

This document presents a comprehensive reference architecture designed to automate
engineering software governance, addressing the pressing needs of organizations to navigate
and conform to raised organizational standards and evolving regulatory landscapes. Our
architecture offers a solution that not only ensures compliance with current frameworks and US
standards such as SOX, FedRAMP, PMA, and Australian standards such as ISM and PSPF, but
also provides the agility to adapt to future regulatory changes.

https://www.theiia.org/en/content/position-papers/2020/the-iias-three-lines-model-an-update-of-the-three-lines-of-defense/


Background and Motivation
In today's era, where software systems are crucial to organizational operations, the importance
of efficient governance in software engineering cannot be overstated. Companies, especially
those experiencing rapid growth and operating in the cloud, face unique challenges when going
public or interacting with regulated industries. Despite their innovative capabilities, they
encounter the tension of needing to innovate while also facing stringent scrutiny from regulators,
shareholders, and the public to avoid missteps and meet compliance and security standards.
This situation highlights the complexities of scaling, maintaining software quality, and adhering
to compliance, emphasizing the critical need for effective software governance.

This blueprint aims to encapsulate the essence of “well-governed” software development
platforms, translating its theoretical underpinnings into a practical, automated framework for
software governance. Recognizing the repetitive history of project failures and the often
overlooked issues with organizational structure at the interface between business and software
development, our architecture seeks to bridge these gaps through automation. Key themes
such as alignment of interests and incentives, shared understanding of business value, and risk
mitigation are integrated into a cohesive, automated governance model and methodology.

The core objective of this architecture is to provide organizations with a blueprint for
implementing automated governance processes. These processes are designed not only to be
compliant with regulatory standards like the Sarbanes-Oxley Act (SOX), oversight from the
Office of the Comptroller of the Currency (OCC), Federal Information Security Modernization Act
(FISMA) accreditations, Food and Drug Administration (FDA) Premarket Approval (PMA), and
the Executive Order 14028 on “Improving the Nation's Cybersecurity”, but also to be agile
enough to adapt to evolving landscapes of enterprise architectures, software development
methodologies, and organizational structures. By automating governance processes, we aim
to enhance transparency, accountability, and efficiency. Automation helps streamline
compliance, reduce manual oversight, accelerate decision-making processes, and
thereby reduce the risks associated with software development and deployment. This
ensures that these processes contribute optimally to the organization's overall
performance and value creation.

Effective governance significantly eases the burden of demonstrating standards adherence.
This domain uniquely unites stakeholders from diverse functions, including developers,
executive management, trust & safety departments, and legal teams. When misalignments
occur, the responsibility often falls on developers to address the deviations. Our architecture
empowers these developers with clear context and crisp requirements, enabling them to correct
necessary deviations and achieve alignment with overarching business goals.

In the following sections, we will delve into the specifics of the proposed blueprint, detailing its
components, processes, and the mechanisms through which it aligns recommended software
engineering practices with overarching business goals. This approach is designed to actualize



the vision of modern governance, where automated processes facilitate seamless collaboration,
ensure compliance, and enable swift adaptation to regulatory changes and business needs.

The Forcing Function of Mandates: The Executive
Order 14028, NIST SSDF (SP800-218), and CISA
Self-Attestation
On May 12, 2021, the Biden Administration issued Executive Order 14028, aiming to bolster the
cybersecurity framework of the United States. A key focus of this order, outlined in Section 4, is
the enhancement of software supply chain security. In response, particularly to Section 4. (e) of
the EO, NIST developed the "Secure Software Development Framework" (SSDF) (SP800-218).
This framework is designed to assist government entities in countering software supply chain
threats. Detailed in this special publication are a series of practices intended for integration
within the Software Development Lifecycle (SDLC). The NIST SSDF categorizes these secure
software development practices into four distinct groups.

● Prepare the organization (PO)
● Protect the Software (PS)
● Produce Well-Secured Software (PW)
● Respond to Vulnerabilities (RV)

There are 42 specific requirements needed to achieve compliance with the NIST framework.
Each of these practices is underpinned by specific tasks that need to be demonstrably managed
by all organizations governed by federal regulations, including but not limited to banks regulated
by the SEC and the Federal Reserve, as well as entities in various other industries.

A more immediate and pressing priority arises from the Cybersecurity & Infrastructure Agency
(CISA)'s recent call for feedback on their proposed Secure Software Self-Attestation Form. This
form outlines a foundational set of requirements for government agencies, derived as a subset
from the 42 items listed in the SSDF.

As the CISA attestation transitions from its draft phase to enforcement, which could occur
imminently, organizations will face a tight timeline to prepare their attestations. Regardless of
the approach Chief Information Security Officers (CISOs) choose for their organization’s
attestation, parties must begin collecting these for critical software within three months after the
official finalization of CISA’s self-attestation form.

When the secure software self-attestation form is finalized, organizations aiming to sell or
continue selling software for governmental use will be obligated to certify their adherence to the
SSDF principles. As stated in the form: “This self-attestation form identifies the minimum secure
software development requirements a software producer must meet, and attest to meeting,
before their software subject to the requirements of M-22-18 may be used by Federal agencies.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.cisa.gov/secure-software-attestation-form


This form is used by software producers to attest that the software they produce was developed
in conformity with specified secure software development practices.”

● Secure development and build environments are utilized for the software.
● The software producer diligently ensures the integrity of source code supply chains.
● In a committed effort, the software producer uses automated tools or equivalent

processes to safeguard source code supply chains.
● Provenance data is meticulously maintained for both internal and external code

integrated into the software.
● Security vulnerabilities are proactively checked using automated tools or similar

methodologies.

These represent the overarching categories of requirements, firmly rooted in the NIST SP
800-218, Secure Software Development Framework. Consequently, adherence to the
self-attestation's objectives necessitates compliance with the SSDF's stipulations.

The responsibility for software security is shifting from users to providers. It explicitly places the
responsibility on software suppliers to the federal government to implement the appropriate
security measures as outlined in the NIST’s SSDF framework.

The self-attestation form emphasizes the necessity of "reasonable" actions, especially in the
realms of documenting and minimizing the use of risky software products in development and
build environments, and establishing a comprehensive process. This process involves taking
reasonable steps to ensure the security of third-party components and to effectively manage
any vulnerabilities associated with them.

Regulations and liability are increasingly dictating how software is developed and shipped. It’s
no longer enough to simply test code thoroughly, quickly address vulnerabilities, and maintain a
log of changes to production environments. These actions, along with others, must now be
extensively documented, creating an abundance of evidence to reduce liability and meet
regulatory demands. Compliance has become a pivotal point where engineering, security,
quality, and risk management intersect in virtually all sizable organizations engaged in software
creation.

Understanding regulatory rules is one aspect; comprehending which ones hold the potential to
impact not only one's professional standing but also the financial and operational viability of a
business is a far more complex issue. The consequences of these decisions can profoundly
influence an organization's financial health and continuity, with ramifications extending to both
personal careers and the existential stability of the business.

In the past, suppliers often routinely consented to a Software Development Lifecycle (SDL)
policy. These policies represent more than mere words; they constitute an unspoken pact
between the company's leadership and the end-users of the software. Commonly, within these
documents, there is a statement implying that the development process is safeguarded through



a series of checks and balances. Yet, in many cases, this tends to be a broad statement of
governance principles rather than an accurate depiction of the everyday practices and actual
controls in place.

An opportunity lies in the perception and validation of self-attestation forms. This presents a
significant opportunity to establish a framework, supported by verifiable proofs, which validates
that all necessary requirements have been effectively implemented.

Organizational Structures Typically in Place
The effective implementation of governance, particularly in the context of software development,
typically involves a hierarchy of organizational structures, each playing a distinct role in the
process:

1. Board Level: Strategic Investment Management

At the highest tier, the board focuses on strategic investment management. This involves
overseeing the broader strategic implications of software development initiatives and ensuring
alignment with the organization's long-term goals.

2. Executive Level: Business Case Scrutiny and Requirements Management

The executive level is responsible for scrutinizing business cases and managing requirements.
This includes evaluating the viability of software projects and ensuring that they meet the
business objectives and operational needs of the organization.

3. Group Level: Technical Authority

At the group level, technical authority is exercised. This involves making decisions on the
technical aspects of software development, such as choosing the right technologies and
methodologies to meet project goals effectively.

4. Operational Level 1: Monitoring Execution, Risk, and Compliance

The operational level has a dual role. Firstly, it involves monitoring the execution of key
decisions, ensuring that projects are progressing as planned and are measured. Secondly, it
focuses on managing risk and compliance, ensuring that all activities adhere to regulatory
standards and organizational policies.

5. Operational Level 2: Design Review and Architecture Compliance

Another critical function at the operational level is to conduct design reviews and ensure
architecture compliance. This entails assessing software designs for their effectiveness and
efficiency and ensuring they comply with established architectural standards and best practices.



Each of these levels plays a vital role in creating a cohesive and effective governance structure,
ensuring that software development aligns with both strategic and operational objectives.

Target audience: Platform Engineers and
DevSecOps Teams

Within the domain of software engineering governance, a diverse array of teams and roles
converge to forge a path toward effective governance, compliance, and risk management. At the
strategic level, management sets the overarching direction, while specialized teams like Change
Management Boards, Legal, and Trust & Safety focus on their respective areas of expertise -
from controlling change implementations to oversight of policy controls. Despite these varied
roles, a common thread binds these teams: the collective aim to accelerate time-to-market,
steer clear of adverse publicity, and align closely with business objectives. Yet, amidst this
collaborative effort, the brunt of the responsibility often rests with those directly involved in
crafting the software - where the tangible actions meet the strategic intentions.

In this dynamic, a significant transformation is taking shape in the domain of compliance and
risk management. The rising discipline of "compliance engineering" emerges as a vital and
distinct practice, catalyzed by the recognition that traditional approaches to governance are
increasingly insufficient to tackle the complexities and rapid pace of modern software
development.

This paradigm shift has led organizations to recalibrate their focus, increasingly tasking software
engineers for embedding and automating compliance controls within their development
processes. Compliance engineers at the convergence of platform engineering and DevSecOps,
therefore, become key players in this new arena, transforming regulatory mandates into
practical, code-based solutions that integrate seamlessly with the software delivery pipeline.
Their role transcends the conventional boundaries of merely generating compliance reports; it
involves actively ensuring that every facet of software development resonates with the stringent
regulatory standards and requirements.

Platform Engineers

Role and Challenges: Platform Engineers are pivotal in developing and maintaining the
technical infrastructure that supports software development. They often grapple with integrating
compliance and governance requirements into a dynamic and scalable infrastructure.

Inspired by SRE principles, Platform Engineers can leverage governance automation to
transform traditional governance processes. This approach involves automating manual,



repetitive governance tasks, focusing on strategic, high-value outcomes, and easing the
process by which operators maintain a compliant environment.

Benefits for Platform Engineering: This reference architecture offers Platform Engineers a
structured framework to embed compliance and governance seamlessly into the infrastructure.
It provides tools and methodologies to automate governance processes, ensuring infrastructure
scalability and reliability while adhering to regulatory standards. Through improved efficiency in
governance-oriented tasks, reduced direct and indirect costs of manual governance, and
enhanced ability to scale governance processes with organizational growth.

DevSecOps Teams

Role and Challenges: DevSecOps Teams are at the forefront of integrating security,
development, and operations. Their challenge lies in balancing rapid development cycles with
stringent security and compliance requirements.

DevSecOps teams can integrate governance automation principles to make governance an
enabler of DevOps, rather than an obstacle. This includes automating compliance checks and
risk controls, allowing for faster and more secure software delivery.

Benefits: Through reduced toil in governance processes, clear definition of governance roles
and responsibilities, and enhanced security and compliance posture through automated control
verification, integrating security and governance throughout the software development life cycle.
It enables these teams to maintain a high pace of innovation and deployment without
compromising on security or compliance. The architecture facilitates real-time risk assessment
and compliance monitoring, making governance a part of the continuous integration/continuous
deployment (CI/CD) pipeline.

Common Benefits for All Parties:

Streamlined Compliance: Automated tools and processes reduce the manual burden of
compliance, allowing both Platform Engineers and DevSecOps teams to focus on innovation
and development.

Enhanced Collaboration: The architecture fosters improved collaboration between
cross-functional teams to accelerate change approval that often hinders delivery, ensuring that
compliance and governance are integrated into every aspect of the software development and
deployment process.

Adaptive Framework: Given the ever-evolving nature of technology and regulations, the
architecture is designed to be flexible and adaptable, enabling Platform Engineers and
DevSecOps teams to swiftly respond to new challenges and changes in the regulatory
landscape.



Adopting an Engineering Mindset for Governance: Both groups can benefit from
approaching governance with an engineering mindset, identifying and implementing solutions
that address the root causes of governance and delivery toil.

Real-Time Governance Measurement: Utilizing concepts like Governance Level Indicators
(GLIs) and Governance Level Objectives (GLOs) for real-time governance measurement, similar
to SLIs and SLOs in SRE.

Commentary Box: Comparing Compliance Engineering to the Transition from Infosec to
Security Engineering

The emergence of compliance engineering bears striking similarities to the transformation
witnessed in the field of information security (infosec) in recent years. Much like
traditional roles evolving into specialized security engineering positions, the compliance
engineering domain represents a parallel evolution within compliance and risk management.

While traditional GRC tools have primarily focused on helping organizations prepare
retrospective reports and document compliance activities, they often fall short in equipping
compliance engineers with the tools and capabilities required for proactive control
implementation. In contrast, compliance engineering is forward-looking, emphasizing the
embedding of compliance controls directly into the software development lifecycle. This shift
not only enhances efficiency and accuracy but also ensures that compliance is not a mere
checkbox exercise but an integral part of the software delivery process.

As organizations continue to grapple with the need for both speed and compliance,
compliance engineering bridges the gap between these seemingly conflicting objectives. It
empowers software engineers to embrace compliance as a design principle rather than an
afterthought, ultimately leading to more secure and compliant software systems.

Benefits and Outcomes of Automated Governance

Comprehensive Compliance Assessment: Automated Governance empowers organizations
to collect and assess the configuration and state of their systems and infrastructure against the
most stringent control frameworks, regulatory standards. This comprehensive evaluation
ensures that every aspect of your technology ecosystem aligns with the highest compliance
requirements, reducing the risk of non-compliance.

Real-Time Alerting for Remediation: The proposed reference architecture provides real-time
alerting capabilities, instantly notifying your teams of any discrepancies or deviations from
compliance standards. This proactive approach allows you to identify and address potential
compliance issues before they escalate, minimizing the associated risks and penalties.



Out-of-Compliance Remediation: Automated Governance goes beyond mere detection by
offering automated remediation workflows. When discrepancies are identified, the proposed
system can automatically initiate corrective actions such as patching in the event of identified
vulnerabilities and roll back to last known state, ensuring rapid and consistent remediation. This
automation not only reduces the burden on your teams but also accelerates the process of
returning to compliance.

Attainment of Safe Harbor: In the unfortunate event of a material breach or compliance
incident, Automated Governance is crucial in helping your organization attain safe harbor status.
By consistently monitoring and demonstrating a commitment to compliance, you can leverage
this evidence to mitigate the impact of breaches, potentially reducing regulatory fines and legal
liabilities.

Enhanced Regulatory Confidence: The ability to collect, evaluate, and remediate compliance
issues in real time instills confidence in regulatory bodies. Regulators are more likely to view
your organization favorably when they see proactive, automated compliance measures in place.
This can lead to smoother regulatory audits and interactions.

Operational Efficiency: By automating compliance checks and remediation, Automated
Governance significantly improves operational efficiency. Your teams can focus on strategic
tasks rather than manual compliance, leading to cost savings and streamlined operations.

Reduced Compliance Costs: The proactive, automated nature of our solution reduces the
overall cost of compliance. Organizations can allocate fewer resources to manual compliance
tasks, resulting in lower operational expenses and more predictable compliance budgets.

Faster Time-to-Market: Accelerating compliance and remediation processes means faster
time-to-market for your products and services. You can deploy new software releases, features,
and updates with confidence, knowing that governance is being actively managed and
maintained.

Commentary Box: Organizational-Wide Benefits

While many of these benefits may appear to benefit only a subset of roles at an organization,
the reduction of friction throughout an organization has superlinear returns. By reducing
misunderstandings and confusion, projects see fewer delays, and processes are able to
become more independent, improving their efficiency and improving the ability for smaller
teams to maintain complete ownership and control over their responsible systems. This
reduction allows team members to improve their recall of project context alongside the status
of initiatives from inception and completion.

Additionally, institutional observability becomes attainable, improving the ability for Executives
and Boards to make well-informed decisions regarding strategic investment and requirements
management.



Finally, by automating policy and governance, companies can reduce or remove the need for
certain recurring meetings such as change approval boards and architecture committees
replacing them with as-needed collaborations and asynchronous information sharing.

All of this allows for the expedited adoption and experimentation with new processes and
products by technical and non-technical users alike.

Why Automated Governance Matters to Smaller or
Less Regulated Organizations

Reducing Development and Maintenance Burdens

Automated Governance abstracts system interfaces into well-defined APIs based on open
standards, significantly easing the definition, development, and maintenance of proofs from both
the compliance and software development views.

Its platform-agnostic nature allows deployment across various environments, offering flexibility
and potential cost savings in platform technology changes.

Enhancing Developer Efficiency

Automated evidence creation and consistent policy evaluation streamline processes, freeing
developers from manual tasks and trial/error approaches, allows for focus on their primary goal:
delivering high-quality software efficiently.

Expertise Pool

Addressing the scarcity of expertise in regulated system management is a major challenge.
Automated Governance enables organizations to tap into specialized security, compliance, and
development knowledge without incurring high costs.

Automated Governance not only streamlines the process of integrating compliance into
development but also significantly decreases the onboarding time for new developers. By
providing a clear and automated framework for governance, it reduces the learning curve
associated with understanding and implementing regulatory requirements. This efficiency
directly translates into faster time-to-market, as developers can prioritize core software
development over navigating complex compliance procedures. Additionally, this approach
inherently reduces risk by ensuring consistent and accurate adherence to compliance
standards, making it easier to maintain regulatory integrity in a fast-paced development
environment.



Interoperability in Cross-Organizational Tech Environments

Automated Governance establishes a standards-based framework for exchanging governance
evidence, and facilitating technology integration, especially in scenarios like organizational
mergers or third-party risk assessments.

Moreover, it fosters a common comprehension of what defines appropriate evidence, thereby
empowering organizations to confidently select and integrate new technology systems, assured
by the minimized need for manual oversight.

Commentary Box: The Misconception of One-Size-Fits-All in Governance

Many organizations fall into the trap of a one-size-fits-all approach to governance. Automated
Governance challenges this notion, offering a flexible framework that can be tailored to
diverse organizational needs, emphasizing that effective governance is not uniform but
adaptable.

Commentary Box: The Challenge of Custom Solutions

In automated governance, numerous highly regulated organizations have pursued their own
custom solutions, encountering substantial obstacles. The primary issue is the lack of
alignment with established standards, causing significant onboarding and scalability
challenges.

Custom solutions often fall short due to their detachment from industry standards, making
them hard to integrate with existing systems and adjust to organizational growth or changes in
regulations.

The outcome is clear: many of these bespoke systems are inadequate, failing to efficiently
onboard users or scale, leading to inefficiencies and potential compliance risks.

Differentiation between Automated Governance and
Traditional Compliance Software
In distinguishing Automated Governance from traditional compliance software, our solution is
particularly adept at handling software that undergoes frequent changes. This adaptability is
crucial in environments characterized by rapid development and deployment cycles, such as
those involving Kubernetes clusters, serverless functions, and AI/ML systems. Our Automated



Governance framework is designed to ensure compliance and governance continuity amidst
these high development velocity and delivery scenarios, where traditional compliance tools,
often tailored for less fluid environments and workflows, may struggle to keep pace.

Additionally, our solution goes beyond the traditional scope of compliance frameworks or policy
engines. It is a comprehensive platform that integrates compliance requirements with the
software delivery lifecycle. This integration enables teams to assert and attest their compliance
status in real time, thereby saving time and reducing manual effort. It enhances the efficacy of
audits while significantly reducing the associated manual toil. By removing governance, risk,
and compliance (GRC) as a bottleneck, it accelerates software delivery. Moreover, this platform
provides a holistic approach to achieving common protection goals, offering a more
comprehensive solution to governance and compliance challenges.

The US Department of Defense in a recent publication titled ‘DevSecOps Continuous Authority
to Operate Evaluation Criteria’ outlines some of the capabilities and areas of assessment
needed to work towards cATO (Continuous Authority to Operate) in a heavily regulated
environment. For readers unfamiliar with the US Department of Defense DevSecOps Reference
Design, cATO is a modern approach to how current compliance aligns to a RMF (Risk
Management Framework) by introducing an authorization process that supports the
development and delivery of software in an Agile, DevSecOps enabled ICT (Information and
Communication Technology) environment. From a Defense perspective, the reasons why such
a modern approach to Governance, Risk and Compliance become obvious - In order to meet
the immediate needs of the warfighter, the ability to provide software that is secure, delivered
rapidly, and is continuously improved is crucial.

Use Case Examples

Example 1: Frequent Deployments and Compliance Readiness

A fintech startup, facing the challenge of deploying new features multiple times a day, integrates
Automated Governance into their CI/CD pipeline. This architecture ensures that with each
deployment, compliance checks are automatically performed, aligning with industry-specific
regulatory standards. For instance, when a new payment feature is pushed, the system instantly
verifies its compliance with PCI DSS standards. This seamless integration allows the
organization to maintain a rapid deployment schedule without compromising on compliance,
addressing the challenges described by teams deploying software frequently. Finally, from the
perspective of a PCI QSA the audit process is by consequence streamlined.

Example 2: Scaling Compliance in a High Growth Tech Company

A rapidly growing SaaS provider implements Automated Governance to handle the expanding
scope of its compliance needs. As the company enters new markets and faces diverse

https://dodcio.defense.gov/Portals/0/Documents/Library/cATO-EvaluationCriteria.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/cATO-EvaluationCriteria.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf


regulatory environments, the architecture scales its compliance checks and controls accordingly.
This scalability ensures that as the company grows, its software remains compliant with varying
international data protection laws, such as GDPR in Europe and CCPA in California, thereby
supporting its global expansion.

Example 3: Transition from Manual to Semi-Automated Compliance

An e-commerce company, historically reliant on manual compliance processes, adopts
Automated Governance to transition towards a semi-automated system. The new architecture
automates routine compliance tasks, like data privacy checks and audit trail management, while
allowing for manual oversight in complex decision-making scenarios. This hybrid approach
streamlines their compliance operations, reducing the time and resources spent on manual
checks, and marks a significant step in their digital transformation journey.

Example 4: Addressing Specific Compliance Challenges

An online healthcare platform faces stringent HIPAA compliance requirements. Automated
Governance is employed to meticulously manage patient data handling, ensuring encryption
and access controls are in place and auditable. Each data transaction is logged and checked
against HIPAA standards automatically. This system not only helps the company avoid potential
violations but also builds trust with its users, ensuring their sensitive health information is
handled with the utmost care and compliance.



Maturity measurement and enabling Automated
Governance
Readers familiar with papers such as the CNCF Secure Software Factory Reference
Architecture, US DoD Enterprise DevSecOps Reference Architecture and similar may be asking
the question: “How do I get from a foundational DevOps or DevSecOps capability to Secure
Software Factory and/or Automated Governance”

Whilst frameworks such as SLSA exist, we have prepared a maturity scale that can assist an
organization in determining the types of controls and processes to have in place..

Software Supply Chain Security - Signing

Maturity Description

Level 0 Software artifacts are not digitally signed and/or no auditability exists.

Level 1 Basic code signing with self managed keys and manual processes?

Level 2 Decentralized code signing and enhanced key sec?

Level 3 Automated signing of software artifacts within CI/CD processes, automated
verification of digital signatures, a policy engine provides automated decision
making on deployments of artifacts, keyless signing, attestations are created and
contained alongside deployment artifacts in secure artifact repositories (including
for example signed SBOM, signed Vulnerability Analysis results i.e. trivy)

Evidence & Attestations

Maturity Description

Level 0 No evidence is captured.

Level 1 Evidence is captured on an ad-hoc or manual basis (i.e. as part of an audit or
assessment)

Level 2 Evidence is automatically captured and attestations are created yet with little
action performed on evidence or attestations

Level 3 Evidence is captured for all relevant security controls and is clearly mapped to a
policy document. Captured evidence has attestations which are well formed and
include all listed attributes within Reference Architecture Technical Specifications



(i.e. Event Declaration, Asset Identification, etc). Documentation exists for
attestation creation and verification process, automated processes exist for
capturing evidence and creating attestations, automated cryptographic verification
of attestations where possible (i.e. a Quality Gate) as well as ad hoc verification
processes available.

Control Validation

Maturity Description

Level 0 No validation or attestation of security controls

Level 1

Level 2

Level 3 Test coverage is measured and continuously validated through automated
processes, control validation is entirely automated.

Policies are validated autonomously and automatically, and security controls are
evaluated continuously for policy compliance.

GRC & Policy Enforcement (Maybe just ‘GRC Engineering’ ? )

Maturity Description

Level 0 Policies are outdated, not accounting for modern application delivery or security
practices and are enforced through manual or ad-hoc processes (i.e audits /
assessments)

Level 1 Reporting on compliance is partially automated

Level 2

Level 3 Policies and System Security Plans (SSPs) are well formed, continuously
optimized, account for modern application security and application delivery and
compliance of policies is automated. Policies can be automatically created (i.e.
OSCAL) and testing of security controls for compliance is automated. Reporting
on compliance fully automated.



Integration with Existing Systems

The Automated Governance architecture is designed to integrate seamlessly with a range of
existing software development tools, ensuring a smooth transition and minimal disruption to
current operations. This integration is critical for organizations seeking to enhance their
compliance and audit readiness, particularly in fast-paced DevOps environments.

Strategies for Seamless Integration and Transition

Compatibility with Common Tools: The architecture is compatible with widely-used
development and monitoring tools, allowing for easy integration into existing workflows.

Modular Design: Its modular design facilitates incremental adoption, where organizations can
start small and scale up, integrating more components as needed.

Enhancing DevOps Practices for Compliance and Audit Readiness

Frequent Deployments: The architecture supports frequent deployments by automating
compliance checks, ensuring that every release meets the required standards without slowing
down the development process.

Managing Short-lived Services: It provides tools to track and audit short-lived services,
ensuring compliance even in ephemeral environments.

Blurred Lines Between Development and Operations: Automated Governance bridges the
gap between development and operations, providing clear visibility and control over the entire
software lifecycle, from code development to deployment and operations.

By aligning with current DevOps practices, Automated Governance ensures that compliance
and audit processes are embedded within the development pipeline, rather than being external
checkpoints. This integration not only maintains the agility and speed of DevOps but also
enhances the overall security and compliance posture of the organization.

Commentary Box: The Unseen Cost of Manual Compliance



The hidden costs of manual compliance – from slowed innovation to increased human error –
can significantly impact an organization's agility and growth. Automated Governance not only
mitigates these costs but also turns compliance into a strategic asset.

[TO DO] Add metrics

Risk Management Details

Automated Governance plays a crucial role in enhancing risk management strategies,
particularly in environments characterized by frequent deployments and dynamic services. The
architecture is tailored to address the unique challenges posed by such fast-paced development
cycles while ensuring ongoing security and compliance.

Strategies for Security and Compliance in Dynamic Environments

Automated Compliance Checks: During frequent deployments, the architecture automatically
performs compliance and security checks, ensuring that each release adheres to the latest
standards.

Per Commit: The architecture incorporates real-time monitoring tools that actively assess the
security posture with every commit and pull request. This ensures continuous evaluation and
rapid identification of potential vulnerabilities, allowing for immediate notification and maintaining
robust security throughout the development lifecycle.

Approach to Risk Identification, Assessment, and Mitigation

Comprehensive Risk Identification: The architecture includes integration advanced scanning
and analysis tools to identify a wide range of risks, from data breaches to compliance violations.

Continuous Risk Assessment: It employs continuous risk assessment techniques, providing
ongoing insights into the security and compliance status of the software.

Proactive Risk Mitigation: Upon identifying risks, the architecture initiates automated
mitigation processes, such as patching vulnerabilities or updating configurations, to address
issues promptly.

Methodologies for Continuous Risk Assessment and Real-Time Monitoring



Real-Time Alerts and Reporting: It offers real-time alerts and detailed reports, enabling quick
response to emerging threats and comprehensive risk management oversight.

Adopting these strategies and methodologies, Automated Governance ensures that risk
management becomes an integral, efficient element of the development cycle, enhancing
security across all operations.

Fostering Technological Advancement in Software
Development
Automated Governance is not just about ensuring compliance and security; it's also a catalyst
for innovation in software development. By integrating cutting-edge technologies and
methodologies, this architecture reshapes how organizations attain high standards in the
dynamic context of progressive delivery environments.

Incorporating Advanced Technologies for Streamlined Compliance

The architecture streamlines compliance checks, shifting away from traditional manual
processes. This transformation is key in fast-paced development settings where agility is
paramount.

Transparency logs and digital signing are employed to ensure the integrity and traceability of
compliance records.

Seamless Integration of Compliance into Continuous Delivery

Embedding audit readiness directly into the continuous delivery process, the architecture allows
development teams to focus on innovation without being bogged down by compliance concerns.

The CI/CD pipeline integrates real-time compliance monitoring and automated audit trails,
balancing swift deployment and regulatory compliance.

Encouraging Innovation While Maintaining Compliance

Emphasizing the use of containerization and microservices, the architecture empowers teams to
explore new features and technologies while safeguarding the system's overall compliance.

With features like automated rollback and feature toggling, the architecture enables rapid testing
and deployment, fostering an environment of agile development and innovation

Promoting Creative Solutions and Rapid Development



The architecture's adaptable nature allows for quick responses to changes, enabling the
deployment of new features with automated compliance management running in parallel.

By minimizing the compliance workload for developers, the architecture nurtures a culture of
innovation, giving them the freedom to focus on developing groundbreaking software solutions.

Automated Governance redefines the balance between compliance and development,
facilitating innovative software development within the framework of stringent regulatory
standards.

Advancement of Pipeline Design: Control Points for
Decentralized Decision-Making

In May 2018, Capital One shared insights in a blog post titled "Focusing on the DevOps
Pipeline," where they outlined their approach to software delivery. Their philosophy emphasized
the delivery of software that is not only high in quality, with minimal defects and full compliance,
but also thoroughly tested to ensure functionality across all aspects. They stressed the
importance of swift delivery, but not at the expense of quality.

The post also introduced the concept of "gates" or "control points" in the development pipeline,
essential in maintaining standards throughout the software development lifecycle. Capital One's
specific implementation included 16 guiding principles for their pipelines, covering aspects from
source code version control and code coverage to vulnerability scans and automated rollbacks.

These control points, serving as both metadata and evidence, document crucial actions taken
throughout the software's development, production, and promotion stages. This ensures that
each software iteration meets rigorous standards at every stage of the pipeline, with each
control point serving as both a checkpoint and a record of compliance and quality assurance
action. They are strategically performed at every step of the continuous integration process and
are meticulously recorded in build logs or artifact creation logs. This methodical capture of
pipeline activities or tasks through control points paves the way for a shift towards decentralized
decision-making, moving away from the centralized inspection models predominant in many
organizations.

Reference Architecture Technical Specifications

The system aims to provide an automated governance framework focusing on ensuring the
integrity of assets and the security of running applications. It does by ascertaining trust within an
organization's infrastructure and delivery pipeline.

https://medium.com/capital-one-tech/focusing-on-the-devops-pipeline-topo-pal-833d15edf0bd
https://medium.com/capital-one-tech/focusing-on-the-devops-pipeline-topo-pal-833d15edf0bd


Functional Requirements:

1. Automated Governance: The system should automatically track governance metrics and
compliance data throughout the software delivery pipeline and its underlying
Infrastructure.

2. Integrity Checks: The system should validate the integrity of code, configurations, and
data at each control point of the pipeline and all aspects of the underlying infrastructure.

3. Traceability: Must record all changes and actions in the software delivery process.
4. Security Measures: The system should integrate security checks and monitoring features

to ensure the security of deployed applications and infrastructure.

Non-Functional Requirements:

1. Scalability: The system should be scalable to accommodate a growing number of
projects and applications.

2. Usability: The system should have a user-friendly interface for easy navigation and data
interpretation.

3. Compliance: The system itself should comply with relevant industry standards and
regulations.

The system will be designed based on a modular, microservices-based architecture, in a
memory-safe language, leveraging cloud native solutions for scalability and resilience.

Integrations with third-party event and data sources will be implemented with a plug-in (also
referred to as adaptors) architecture of data-source specific agents for both collection and
analysis.

Collected data will be normalized and stored in immutable datastores for integrity and
non-repudiation.

For each control point the model identifies a set of inputs, outputs, actors, and the actions that
can occur at that point.

Next, the model identifies a set of risks that can be attributed to the control point. Finally,
based on the identified risks, a set of controls are chosen to mitigate the risks and attest to the
input, output, actors, and actions involved.

Constructing and Storing Evidence in the form Attestations

What is an Attestation?



Attestations play a pivotal role in Automated Governance. They serve as critical records that
detail the occurrences within the chain, offering transparency and accountability. The following
attributes that well formed attestations should exhibit:

1. Event Declaration: Attestations clearly state the specific event that occurred, outlining
the action or series of actions that took place.

2. Asset Identification: They identify the asset(s) involved, providing clarity to what the
event pertained to, be it software components, tools, or processes.

3. Timestamp and Context: Attestations include precise timestamps, offering a contextual
timeframe of when the event occurred. This temporal metadata is crucial for tracking and
auditing purposes.

4. Condition Description: The conditions or circumstances that led to the event are
described, offering insights into how the event transpired.

5. Event Outcome: Details on the result or output of the event are provided, giving a clear
picture of the event's consequences or end state.

6. Policy Compliance Check: The role of attestations in assessing policy compliance can
vary. Generally, an attestation itself does not directly indicate whether an event has met
predefined policy criteria. Instead, it provides the necessary data that can be used to
determine compliance. In specific instances, such as with a verification summary as
outlined in the SLSA framework, the attestation may directly reflect the outcome of a
policy verification process. In these cases, the attestation can signify a pass or fail
status. However, in most scenarios, attestations serve as a record of events or
conditions, which are then evaluated against the set policy criteria to determine
compliance.

7. Verifiability: They furnish essential information necessary to reproduce the event's
outcome, ensuring that the data can be independently verified for accuracy and
authenticity.

8. Identity of attestor: Any individual or entity can create an attestation. In order to enable
consumers to extend trust to the attestations, the attestation’s creator needs to be
strongly (i.e. cryptographically) linked to the content.

Event Driven Streaming Architecture
Building on tthe 2019 “DevOps Automated Governance Reference Architecture”, the
event-driven streaming architecture within the Automated Governance Reference Architecture
utilizes a message queue (for instance Kafka) to establish a robust and responsive system for
managing and processing governance-related events. This architecture is designed to capture,



store, and analyze data in real-time, ensuring the integrity of assets and the security of running
applications through the proposed automated governance framework..

In this architecture, events are organized into streams using keys that create logical groupings.
These keys are pivotal in correlating related events, facilitating efficient data management and
retrieval. For example, build identifiers and various event types, such as pull request identifiers,
vulnerability findings, and test results, serve as keys. This method allows for the precise tracking
of changes and incidents, enhancing the governance and compliance processes.

A stream processor plays a critical role in this setup by orchestrating the flow of data from
multiple streams. It constructs an attestation model by aggregating and correlating events,
enabling comprehensive monitoring and evaluation of compliance with policies and controls.
This approach not only supports the enforcement of policy as code using OPA (Open Policy
Agent) and Rego but also ensures that digital attestations of compliance are accurately
generated and signed, leveraging tools like Sigstore for digital signing.

Infrastructure auditing
Infrastructure risks are both periodically audited for compliance as well as audited when certain
automated events occur (GitOps, for example)

- Data protection
- Confidential computing
- Infrastructure access controls for enforcement of least privilege

Development infrastructure
Integration examples: GitHub, GitLab, GCP, Azure, Kubernetes, physical hardware

Risks Controls

1. Unauthorized access to source
2. Unauthorized access to development
environments and data

1. Source control permissions are correct
2. IAM/RBAC configuration

Deployment infrastructure
Integration examples: AWS, GCP, Azure, Kubernetes, physical hardware



Risks Controls

1. Unauthorized account access
2. Unintended account authorization
3. Unauthorized network access
4. Ephemeral credential expiration
5. PKI configuration

1. IAM/RBAC configuration
2. IAM/RBAC configuration
3. Networking rules applied correctly
4. Confirm that expired credentials are
invalid
5. Validate certificates are being properly
issued

Deployment State
Integration examples: AWS, GCP, Azure, Kubernetes, physical hardware

Risks Controls

1. Software improperly deployed
2. Old versions of software deployed
3. Malicious activity on deployed system

1. Check state of running systems
2. Check signatures of running applications
3. Monitor activity at the host level

Software delivery pipeline auditing

Source Code Repository and Code Quality
Integration examples: GitHub, GitLab, Clang, Coverity, SonarQube

Risks Controls

1. Unapproved changes
2. Untested changes
3. Unapproved dependency
4. Information (secrets) leakage
5. Low quality code

1. Peer review
2. Test coverage
3. Approved dependencies
4. Scan for information leaks
5. Code analysis / linting

Build and Dependencies
Integration examples: GitHub, GitLab, Chainguard, Snyk, Blackduck, Sonatype



Risks Controls

1. Inaccurate, unapproved build
configuration
2. Build information is missing, modified, or
inconsistent
3. Unapproved dependency or version
4. Improper licensing of dependencies
5. Dependencies may have known security
issues
6. Build output is untested
7. Unapproved versions of dependencies
being used

1. Build configuration in source control
and peered review

2. Immutable build configuration
3. Linting
4. Upstream approved dependency store
5. Approved dependencies
6. License check
7. Unit test succeeded
8. Linting
9. Static analysis
10. Vulnerability check
11. Reachability analysis

Artifacts
Integration examples: Artifactory, Docker Trusted Registry, AWS CodeArtifact

Risks Controls

1. Unknown and potentially dangerous
artifacts
2. Artifacts may not have proper licensing
3. Artifacts may have known security issues
4. Unapproved versions of artifacts being
used
5. Unsigned artifacts

1. Download only from approved internal or
external sources
2. License check
3. Vulnerability check
4. Version check
5. Signature check

Deployment
Integration examples:

Risks Controls

1. Deployment of software from untrusted
source
2. Unsigned artifacts

1. Only from trusted source
2. Signature check
3. Prod/dev environment check



3. Improper configuration or data for
environment

System Architecture

Symbols and Icons
● Checkmark (✓): To indicate a passing state.
● Exclamation Mark (!): To signal a warning or needs attention.
● Cross (✗): For a failing state.



Leveraging Emerging Standards: Secure Controls
Framework and OSCAL
The Secure Controls Framework (SCF) is a comprehensive cybersecurity framework that
provides a collection of cybersecurity best practices, controls, and guidelines aimed at helping
organizations design, implement, and manage a robust cybersecurity program. Developed to be
technology-agnostic and industry-neutral, SCF covers a broad range of cybersecurity topics and
is designed to align with existing standards, regulations, and best practices, making it a versatile
tool for compliance and risk management. The framework offers a structured methodology for
identifying and prioritizing control requirements, thereby simplifying the complex landscape of
regulatory mandates and industry standards.

The Open Security Controls Assessment Language (OSCAL) is an initiative by the National
Institute of Standards and Technology (NIST) aimed at standardizing the documentation,
assessment, and continuous monitoring of security controls in information systems. OSCAL
provides a standardized set of XML, JSON, and YAML formats that enable the clear and
consistent expression of security controls, their implementation, and assessment procedures.
The goal of OSCAL is to facilitate more efficient and automated security assessments, reduce
errors and inconsistencies, and improve the speed at which new regulations can be
implemented into an organization's cybersecurity framework.

While both SCF and OSCAL aim to improve cybersecurity postures, they serve slightly different
purposes and can actually complement each other. SCF is more focused on providing a
comprehensive set of cybersecurity controls and best practices that organizations can adopt,
whereas OSCAL is designed to standardize the way these controls are documented, assessed,
and continuously monitored. SCF provides the "what" — the controls that should be considered
— and OSCAL provides the "how" — a standardized format for describing, implementing, and
assessing these controls. Organizations could potentially use SCF to identify which controls are
most relevant to their operations and then use OSCAL to document and assess the
implementation of those controls in a standardized manner.

Future Directions

Automated Reasoning and Formal Proofs
Semantic-based automated reasoning and formal verification methods offer powerful tools for
evaluating the compliance controls in development platforms and application environments. By
leveraging formal languages to describe both the regulatory requirements and the system
configurations, semantic-based reasoning can systematically analyze if the rules and settings
within a system aligned with specification..

Automated reasoning algorithms can then compare this formal representation against the



system's actual configurations to identify any discrepancies or gaps in compliance.
Formal verification methods take this a step further by not just identifying if the system is
compliant at a given moment, but also by ensuring that it will remain compliant under various
conditions and scenarios. Using mathematical models to represent the system's behavior,
formal verification provides exhaustive proof that the system will or will not meet certain criteria.

For instance, it can prove that data will always be encrypted when transferred externally,
thereby satisfying a specific regulatory requirement. These methods offer a high degree of
assurance that the regulatory intent not only matches the current system configuration but will
continue to do so in the future, thereby minimizing the risk of non-compliance.

AI and LLMs
AI and Large Language Models (LLMs) like GPT-4 have a range of potential applications in
Automated Governance by interrogating the system in natural language:

Generating Control Mappings: One of the most labor-intensive aspects of governance is
mapping controls to specific regulatory requirements. LLMs could assist by automatically
generating these mappings based on the text of the regulation and the available controls within
the system. With continual updates and training, the model can adapt to changes in regulations,
ensuring that the control mappings remain accurate over time.

Expression of Logical Object Models: LLMs can be trained to understand the intricacies of a
system's logical object model. This means they could assist in automatically generating or
updating these models, ensuring they are both complete and compliant with any relevant
regulations. This would be particularly valuable in complex systems where manual modeling is
prone to errors or omissions.

Writing TLA+ Policies: Temporal Logic of Actions (TLA+) is a formal specification language
used to describe systems. LLMs could potentially be trained to write TLA+ policies based on
simpler, natural language requirements. This would make it easier to create formal
specifications for complex governance systems, thereby facilitating formal verification methods.

Reasoning about Threat Models and Data Flows: LLMs can analyze text-based threat
models or data flow diagrams and then reason about their impact on compliance. For example,
if a new data flow introduces a potential for non-compliance with a particular regulatory
standard, the model could flag this for further review.

Automated Explanation and Justification: Formal reasoning often involves intricate logical
proofs that are hard for non-experts to understand. LLMs can act as a bridge between the
formal methods and human operators, offering natural language explanations and justifications
for the reasoning process.



Code Reviews for Compliance: Given a sufficiently detailed understanding of regulatory intent
and coding best practices, LLMs can be used to review code and configuration files, highlighting
areas that may be non-compliant.

Automated Queries and Checks: LLMs could be integrated into the system to perform
ongoing compliance checks, querying the system's status and comparing it to the formal
requirements to ensure ongoing compliance.

Technical to Legal Translation: Translation of data exports evidencing low level procedures
and implemented requirements mapped back into compliance parlance for ease of interpretation
by non-technical individuals.

Quantizing of Risk(?) [TO DO]

Conclusion and Call to Action
As we reach the culmination of our exploration of the Automated Governance Reference
Architecture, it is clear that this innovative framework is not just a compliance solution, but a
strategic enabler for organizations navigating the complex landscape of modern software
development.

Embracing Automated Software Governance

The architecture we have presented is a testament to the potential of integrating compliance
seamlessly into the software development lifecycle. It embodies a forward-thinking approach
that aligns with the rapid pace of technological advancement and ever-evolving regulatory
demands.

Call to Action: Transforming Compliance into a Strategic
Advantage

We urge organizations, especially those in high-growth and dynamic sectors, to consider the
adoption of this architecture. It's an opportunity to transform compliance from a cumbersome
necessity into a strategic advantage.

For developers, project managers, auditors, and IT leaders, this architecture offers a pathway to
enhance efficiency, security, and innovation within your software development processes.



Moving Forward with Automated Governance

We invite you to explore the possibilities that Automated Governance opens for your
organization. Whether it's reducing the burden of compliance, accelerating time-to-market, or
simply building more secure and reliable software, this architecture is a key to unlocking these
benefits.

Take the first step in this journey by reviewing your current compliance processes and
considering how Automated Governance can integrate into and enhance these systems.

Appendixes

Common Terminology and Definitions

Automated Governance: The use of automation to manage and enforce governance policies
in software development processes.

cATO: continuous Authority to Operate integrates with an organization's Risk Management
Framework (RMF). cATO is a modernized approach that facilitates continuous compliance and
automated security checks within the RMF structure. This continuous process ensures that
software meets security standards more efficiently, streamlining the RMF steps for quicker
deployment and updates in IT environments, while maintaining the rigorous security
assessment required by the RMF.

DevOps: A set of practices that combines software development (Dev) and IT operations (Ops),
aimed at shortening the systems development life cycle and providing continuous delivery with
high software quality.

Continuous Integration (CI): The practice of automating the integration of code changes from
multiple contributors into a single software project.

Continuous Deployment (CD): A software engineering approach in which software
functionalities are delivered frequently through automated deployments.

Control Points: Specific checkpoints in a software development pipeline where compliance and
quality standards are assessed.

Compliance Engineering: The discipline of embedding compliance requirements directly into
the software development lifecycle.



Gates: In a software development pipeline, points of evaluation or decision-making where
certain criteria must be met before the process continues.

Attestations: Records or evidence in a software development process that certain criteria or
standards have been met.

Metadata: Data that provides information about other data, often used for management and
control in software environments.

References:

Ross, J. W., & Weill, P. (2002). Six IT decisions your IT people shouldn't make. Harvard
Business Review. https://hbr.org/2002/11/six-it-decisions-your-it-people-shouldnt-make

Finkelstein, A. (2009). Software Engineering Governance. University of Oregon.
https://www.cs.uoregon.edu/events/icse2009/images/postConf/TB-Governance-ICSE09.pdf

Pal, T. (2018). Focusing on the DevOps Pipeline. Medium.
https://medium.com/capital-one-tech/focusing-on-the-devops-pipeline-topo-pal-833d15edf0bd

Nygard, M., Magill, S., Guckenheimer, S., & Willis, J. (2019). DevOps Automated Governance
Reference Architecture. IT Revolution.
https://itrevolution.com/product/devops-automated-governance-reference-architecture/

Fred, A. M. (2018). Compliance and Audit Readiness: The DevOps Killer?. IT Revolution.
https://itrevolution.com/articles/compliance-audit-readiness/

Magill, S., Edenzon, M., Bantu, R., & Betz, C. (2023). Reinventing Software Asset Inventory. IT
Revolution. https://itrevolution.com/product/reinventing-software-asset-inventory/

Bensing, B. (2022). Governance Engineering. IT Revolution.
https://itrevolution.com/articles/governance-engineering/

Platt, M. (2022). Why GRC needs SRE: Integrating Security Where Reliability is Managed
[Video] https://www.youtube.com/watch?v=jVPIBwdoZMs

Thomson, J., & Laing, D. (2019). Extending the Error Budget Model to Security and Feature
Freshness [Video] https://www.youtube.com/watch?v=lXPmh9Ap114

https://hbr.org/2002/11/six-it-decisions-your-it-people-shouldnt-make
https://www.cs.uoregon.edu/events/icse2009/images/postConf/TB-Governance-ICSE09.pdf
https://medium.com/capital-one-tech/focusing-on-the-devops-pipeline-topo-pal-833d15edf0bd
https://itrevolution.com/product/devops-automated-governance-reference-architecture/
https://itrevolution.com/articles/compliance-audit-readiness/
https://itrevolution.com/product/reinventing-software-asset-inventory/
https://www.youtube.com/watch?v=jVPIBwdoZMs
https://www.youtube.com/watch?v=lXPmh9Ap114

