
Fixing the scope chain for the
implementation of private methods

Author: joyee@igalia.com
Last updated: March 4, 2020
Bug: https://bugs.chromium.org/p/v8/issues/detail?id=10098
CL: https://chromium-review.googlesource.com/c/v8/v8/+/2056889

The issue

Given a snippet like this

class Outer {
 #method() {}
 factory() {
 class Inner {
 constructor() { }
 }
 return Inner;
 }
 run(obj) {
 obj.#method();
 }
}

const instance = new Outer();
const Inner = instance.factory();
instance.run(new Inner());

Since V8 only threads scopes that need Context (and ScopeInfo) at runtime, and
here the DeclarationScope of factory and the ClassScope of Inner do not need that,
the serialization and deserialization of the scope chain would result in an information
loss. We have a deserialized scope chain like this when generating the code for the
constructor of Inner:

global { // (0x10b001248) (-1, -1)
 // 2 heap slots

mailto:joyee@igalia.com
https://bugs.chromium.org/p/v8/issues/detail?id=10098
https://chromium-review.googlesource.com/c/v8/v8/+/2056889

 class { // (0x10b001440) (-1, -1)
 // strict mode scope
 // 2 heap slots
 // local vars:
 CONST .brand; // (0x10b0015a8) context[3]
 // brand var:
 CONST .brand; // (0x10b0015a8) context[3]

 function Inner () { // (0x10b0016f0) (93, 100)
 // strict mode scope
 // will be compiled
 }
 }
}

Where the ScopeInfo of the DeclarationScope for the Inner constructor is supposed
to be “optimized away”. Then effectively the scope chain we can restore at code
generation time is equivalent to

class Outer {
 #method() {}
 constructor() { } // Inner’s constructor
 run(obj) {
 obj.#method();
 }
}

With this, the instances constructed out of the Inner constructor would erroneously
have access to Outer's private methods, as if it is Outer’s constructor. Therefore,
when generating bytecode for the Inner constructor, we need to find another way to
know that we cannot rely on the immediate outer scope of Inner to check whether
the brand initialization is necessary - or, more generally, that there are intermediate
scopes omitted during scope chain, serialization and deserialization.

Similarly, the scope chain is also unreliable at debug time/runtime either, so we
cannot tell whether a class constructor contains static methods/accessors or not
from its scope chain. For context, this issue was discovered in
https://chromium-review.googlesource.com/c/v8/v8/+/1955664

https://chromium-review.googlesource.com/c/v8/v8/+/1955664

This issue does not apply to the private fields, however, because those are guarded
by a requires_instance_members_initializer field on the SharedFunctionInfo,
which are always allocated(?) and do not suffer from information loss this way,
therefore the bytecode generator knows not to emit private field initialization code
for constructors of classes without private fields.

Solutions

Idea 1: Use the ScopeInfo of the constructor's
DeclarationScope

The issues comes from the fact that the scopes of the constructors are not threaded
in the way they appear in the source code. And in the example above, the
DeclarationScope of Inner does not have ScopeInfo allocated either, so this would
not work. The JSFunctions do always have their own ScopeInfo allocated, no matter
the scope is empty or not, but the empty scopes are not threaded into the ScopeInfo
chain (that is, at code generation time, they cannot be accessed as outer_scope()
through the scopes pointed by AST nodes). Nonetheless, they are still accessible if
the corresponding SFI(SharedFunctionInfo)s can be located.

One plausible solution would be, instead of saving the information in the
ClassScopes, which are only accessible as outer_scope() of the constructors (and
we know this link is broken), try pushing the information into the DeclarationScopes
of the constructors, and use it directly at code generation time. A possible medium to
store this information is the ScopeInfo of the constructor’s DeclarationScope.
However we realized that the ScopeInfos are only created themselves after code
generation, so this would not be viable.

Idea 2: Use the preparse data to pass the information
Since the ScopeInfos are created too late, then another possible medium would be
the preparse data, since they are created before the bytecode generation. This might
be done by locating and updating the scopes of the class constructors in
RewriteClassLiteral() with information regarding whether the class contains any
private methods.

However, we realized that this still would not work, since the preparse data is created
too early - right after the corresponding function is parsed, and before
RewriteClassLiteral() is called. This means if the declaration of the first private

method appears after the declaration of the constructor, then we would not be able to
set the bit in the preparse data for the constructor correctly since cannot anticipate
the existence of the private method at that point.

Idea 3: Reuse the private_name_lookup_skips_outer_class bit
on SFI.

As described earlier, the bits on SFI do not suffer from information loss. The
private_name_lookup_skips_outer_class on SFI is used to annotate classes like
Inner in the following snippet:

class Outer extends class Inner {
 constructor() { this.#method; }
} {
 #method
}

Here in the scope chain we have at code-generation time, Outer's ClassScope is the
outer scope of Inner's ClassScope. Although this bit is only used up until scope
analysis time, and after that it is not used at code-generation time as the failures
would be emitted as early errors.

See v8:9177 and the implementation doc for details.

This bit is similar to the bit that we need to fix the issue at hand, in that it also
denotes "the outer class scope on the scope chain is not trust-worthy" - for private
name resolution.

But looking closer, this bit essentially carries different information from what we
need here. When the outer class scope on the scope chain is not trust-worthy for
private name resolution, it can be inferred that the class is not trust-worthy for
private brand initialization either:

class Outer extends class Inner {
 constructor() { this.#method; }
} {
 #method() {}
}

https://bugs.chromium.org/p/v8/issues/detail?id=9177
https://docs.google.com/document/d/1d3o_SQqcICxfjLMw53OOaiIQux0ppNHQJnjZHtCQLwA/edit?usp=sharing

It is not the other way around, however - even when the outer class scope on the
scope chain is not trust-worthy for private brand initialization, it can still be
trust-worthy for private name resolution:

class Outer {
 #method() {}
 factory() {
 class Inner {
 constructor() { this.#method() }
 }
 return Inner;
 }
}

Therefore, a new bit seems necessary. However we have already used up all the bits
in SFI's 32-bit field and adding one more bit would lead to additional memory
overhead to all SFI and thus undesirable. If we do want to use SFI to solve this issue,
we need to squeeze a bit out of SFI’s bitfield.

Idea 4: Using UncompiledData to avoid using bits on SFI

CL: https://chromium-review.googlesource.com/c/v8/v8/+/2032626

This was explored since the available bits on the SFI are scarce and extending the
size of the bitfields on the SFI would be costly, as SFI themselves are allocated a lot.

To reduce the memory impact, a possible solution would be to put the bits into the
UncompiledData pointed to by the SFIs. As its name implies, UncompiledData are only
kept before code generation and are discarded after that, so increasing the size of
them would be less costly than increasing the size of SFIs.

This bit can be maintained with the following modifications:

1.​ Take a bit on the FunctionLiteral AST nodes to store the information about
whether its a class constructor that needs private brand initialization.

2.​ Add a bitfield to UncompiledData to store similar information - note that due to
the alignment requirement, this means we actually have to increase the size
of UncompiledData by 64 bits in the worst case

3.​ In RewriteClassLiteral of both the preparse and the full parser, if we detect
that the class needs a private brand, mark the bit in the AST node of the
constructor

https://chromium-review.googlesource.com/c/v8/v8/+/2032626

4.​ In SharedFunctionInfo::InitFromFunctionLiteral(), where we create the
UncompiledData and the AST is still accessible, pass the information from the
AST to the the UncompiledData

5.​ When reparsing the constructor in Parser::ParseFunction() to generate
bytecode, update the AST with the UncompiledData pointed by the SFI
available there. We have to fixup the inner AST like this since the class scope
surrounding the constructor is not reparsed along with it, so we need to get
this information from the previously saved UncompiledData.

6.​ When generating ScopeInfo for the constructors after bytecode generation,
we also need to save an additional bit on the ScopeInfo, because in the
current pipeline, if an error is thrown at runtime and the source positions need
to be allocated for the stack trace, the bytecode needs to be regenerated with
an AST with ScopeInfo and a SFI whose UncompiledData is already flushed,
and the regenerated bytecode has to match the code previously generated
with UncompiledData. So for consistency ScopeInfo need to maintain this
information as well.

This is still not very ideal, as there needs to be a 31-bit or 63-bit padding for reasons
mentioned in 2, and it is tricky to maintain side-channel information this way.

Idea 5: Squeezing some bits out from SFI

CL: https://chromium-review.googlesource.com/c/v8/v8/+/2056889

To go back using bits on SFI, one possible approach is to free up the
IsClassConstructor bit on SFI using the information available in FunctionKind,
similar to what’s done in
https://chromium-review.googlesource.com/c/v8/v8/+/1482915. However, this could
lead to performance regressions since then in the machine code generated to detect
whether a function is a class constructor, we would have to do a range check instead
of simply masking bits off.

Eventually we found that expected_nof_properties on SFI currently takes 16 bits,
which is unnecessary since the value of it is capped at
JSObject::kMaxInObjectProperties which is 256 at the moment. So it should be
safe to shrink this field to 8 bits, freeing up 8 more bits for us to pass the information
about private brands around.

With a bit on the SFI, the information can be maintained as follows:

https://chromium-review.googlesource.com/c/v8/v8/+/2056889
https://chromium-review.googlesource.com/c/v8/v8/+/1482915

1.​ We add a second 8-bit bit field to the SFI with one bit used to maintain the
information we need

2.​ After the entire class is parsed in the full parser, if it contains any private
instance methods, we mark a bit in the FunctionLiteral AST node for the
class constructor

3.​ In SharedFunctionInfo::InitFromFunctionLiteral() this bit is passed from
the AST to the SFI

4.​ In ParseInfo::ParseInfo this bit is passed from SFI to ParseInfo
5.​ When reparsing the constructor for code generation in

Parser::DoParseFunction() we pass the bit from the ParseInfo to the AST
(we have to obtain this information this way here since only the constructor is
reparsed, and the surrounding class is not)

6.​ To update the SFI created in lazy compilation that is kept at runtime, we also
pass this bit from the AST to SFI again in
SetSharedFunctionFlagsFromLiteral()

With approach we could also fix the issue for inspecting static private methods at
runtime using another bit from the freed bits.

	Fixing the scope chain for the implementation of private methods
	The issue
	Solutions
	Idea 1: Use the ScopeInfo of the constructor's DeclarationScope
	Idea 2: Use the preparse data to pass the information
	Idea 3: Reuse the private_name_lookup_skips_outer_class bit on SFI.
	Idea 4: Using UncompiledData to avoid using bits on SFI
	Idea 5: Squeezing some bits out from SFI

