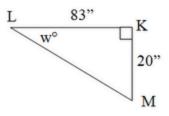
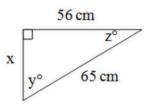

Review/Quiz Practice


#1.

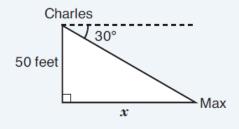
Find the length of side AC in the 45° - 45° - 90° triangle below.



#2-4

. Determine the measure of angle w to the nearest degree.

10. Use the Pythagorean Theorem, SOHCAHTOA, and the fact that the sum of the three interior angles of a triangle sum to 180° to determine all unknown sides and angles of the triangle pictured at right. Round all quantities, when necessary, to the nearest hundredth. (Note: you could also use an online Right Triangle Calculator.)



15. The following equations specify a specific right triangle: $\tan C = \frac{38}{40}$; $\cos B = \frac{38}{x}$; $\sin A = 1$

- a) Make a labeled sketch of this triangle.
- b) Determine the measure of angle B to the nearest tenth.
- c) Determine the measure of angle C to the nearest tenth.
- d) Determine the length of side x to the nearest hundredth.

5.

Charles is looking out a window from a point 50 feet above the ground. When Charles looks down at an angle of depression of 30°, he sees his dog Max. To the nearest foot, how far is Max from the base of the building?

6.

Which equation represents the missing step in the solution process?

Step 1:
$$2(s+4)-4=10$$

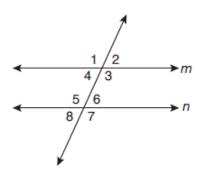
Step 2:

Step 3:
$$2s + 4 = 10$$

Step 4:
$$2s = 6$$

Step 5:
$$s = 3$$

A
$$2s + 8 - 4 = 10$$

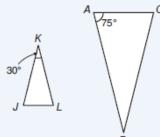

B
$$2s + 4 - 4 = 10$$

C
$$4s + 8 - 4 = 10$$

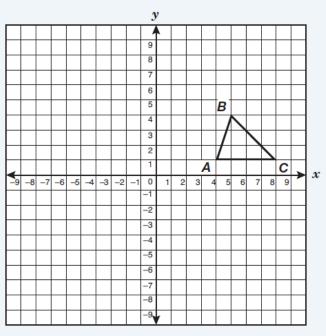
D
$$2s + 24 - 4 = 10$$

7.

In the diagram below, lines m and n are parallel.

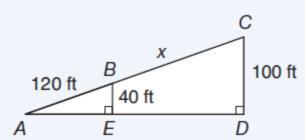


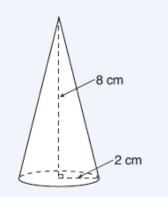
Which of the following can you correctly conclude from the diagram?


- A ∠1 and ∠2 are complementary because their sum is 90°.
- $\begin{tabular}{ll} \bf B & \ \ \, \angle 1 \ \ is congruent \ to \ \ \, \angle 7 \ \ because \ \ corresponding \\ and \ vertical \ \ angles \ \ are \ \ congruent. \\ \end{tabular}$
- C ∠2 and ∠8 are supplementary because their sum is 180°.

8.

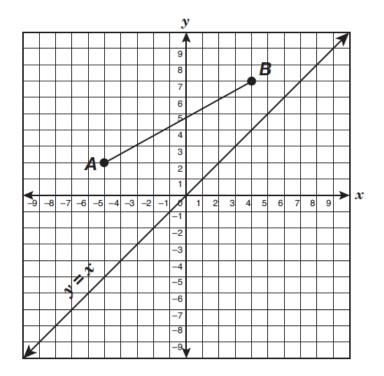
 $\triangle JKL$ and $\triangle ABC$ are both isosceles triangles. Is $\triangle JKL$ similar to $\triangle ABC$?


The graph of $\triangle ABC$ is shown below.


Find the coordinates of $\triangle A'B'C'$, the image of $\triangle ABC$ reflected across the *y*-axis and translated 2 units up.

10.

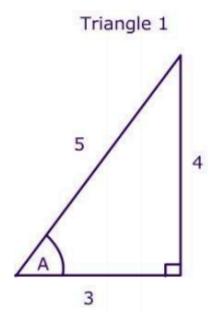
The diagram below shows a portion of a bridge support. What is the distance from point *B* to point *C*?

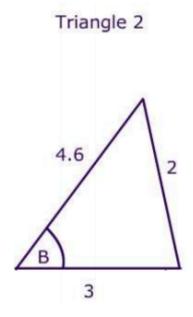


11. What is the measure of the diagonal (or slant) of the cone?

12.

The graph below shows the line y = x and \overline{AB} with endpoints at (-5, 2) and (4, 7). What are the coordinates of the endpoints of $\overline{A'B'}$ after \overline{AB} is reflected across y = x?

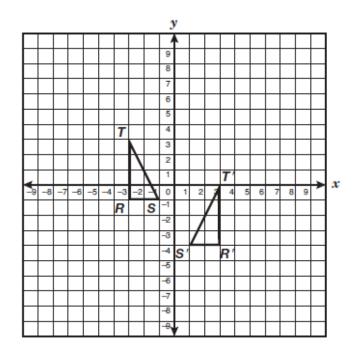

- 14. If a figure with coordinates (m, n-2) is dilated by 4 what will the new coordinates be?
- 15. If a figure with coordinates (2m, 3n) is reflected across the y axis (QI \rightarrow QII) what will the new coordinates be?
- 16. If a figure with coordinates (m, n-2) is translated 4 units down & 2 units left what will the new coordinates be?


A teacher asks the class if they can express the $\sin(A)$ in Triangle 1 and the $\sin(b)$ in triangle 2.

Jose says $sin(A) = \frac{4}{5}$ and sin(b) does not exist.

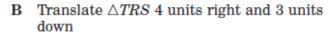
Jenny says
$$\sin(A) = \frac{4}{5}$$
 and $\sin(B) = \frac{2}{4.6}$

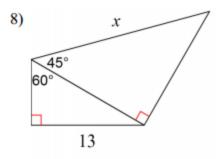
Who is correct? (explain your reasoning)



15.

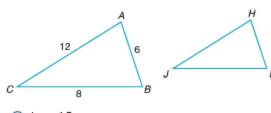
- 3. Calculate the value of z to the nearest hundredth: $\tan 24^\circ = \frac{z}{34.627}$
- 16. Find sinB when cosB = 2/7


Which transformation of $\triangle TRS$ creates $\triangle T'R'S'$ shown below?


7) In triangle XYZ, $\angle y = 90^\circ \text{ XY} = 7$, YZ = 24, and XZ = 25, which ratio represents cosine of $\angle x$?

- $(1)\frac{7}{24}$ $(3)\frac{7}{25}$
- $(2)\frac{24}{25}$ $(4)\frac{24}{7}$

A Reflect $\triangle TRS$ across the y-axis and then translate it 3 units down



- C Reflect △TRS across the x-axis and then translate it 6 units down
- D Translate △TRS 6 units right and 3 units down

17.

1. The perimeter of $\triangle HII$ is 13 units, and $\triangle ABC \sim \triangle HII$. Fnd HI.

OA. 13

○B. 3

OC. 6

OD. 4