

Command line replacements for
GNU Binutils

 Proposal for GSOC 2018
 Paul Semel

Name: Paul Semel​
Email: semelpaul@gmail.com​
Phone: +33 6 65 31 53 44​
Programming languages: C / C++​
Past open source contributions: Xen hypervisor, Xen testing framework
Pending open source contributions: LLVM (https://reviews.llvm.org/D44093)​
Sample source code, hobby projects, etc (GitHub): https://github.com/paulsemel​
(LDSO - a simple dynamic linker for linux)

mailto:semelpaul@gmail.com
https://reviews.llvm.org/D44093
https://github.com/paulsemel

Summary

Overview​ 3

Who am I ?​ 4

Why applying ?​ 5

What did I learn so far ?​ 5
General assessments​ 5

The option parsing​ 5
The tools​ 6

llvm-objcopy​ 7
The Elf part​ 7
The COFF/PE part​ 7

The other tools​ 8

Timeline​ 8

Overview

The “LLVM Binutils” is a suite of powerful tools that permits user to do some operations on
binaries. Despite the fact that it might sometimes have more features than its sister, the
“GNU Binutils”, this last one remains more used than the LLVM one. This might probably be
explainable by the ancientness of the GNU one.
However, the fact is that, people are just accustomed to the GNU Binutils, and almost every
build toolchains are using those ones. To make those toolchains switch to LLVM Binutils, we
definitely need to provide tools that are behaving the same as the GNU Binutils ones, so that
people don’t have to change the whole code behind the toolchain to make it work.
To sum it up, we can distinguish two parts of refactoring : the command line and the output
compliance.
Indeed, a lot of toolchains/bash scripts are relying on the output of those binaries. For
example, I used in the past a runtime binary patching toolchain that was relying on the
output of the GNU readelf, which is in fact totally different from the llvm-readelf one.
All of this led me to think that it is a really bad thing that people aren’t using LLVM tools, that
are in my opinion more extendable (see below my thoughts about llvm-objcopy).
As a first shot, it would thus be needed to add the missing features in the different LLVM
Binutils so that we won’t lack those ones anymore, and we would at least be able to use the
toolchain without having any technical impossibilities.
Then, the second objective will be to make the command lines compliant with the GNU one.
This will basically consist of linking the correct options with the correct features.
Last but not least, if there is some time remaining for this GSOC, it would be great to adjust
the output format of the suite. This last one might not be a hard task to complete, but might
somehow be time consuming depending on how far the LLVM Binutils formating is from the
GNU Binutils.
Thus, the main objective of the project would be that people/organisations are able to switch
from GNU Binutils to LLVM Binutils with the less efforts as possible.

Who am I ?

Before exposing my motivation, I thought it would be great that I present myself.
I am a 4th year student currently studying at EPITA. Aside from my school, I am also part of
the system and security laboratory of EPITA, where we are working on various system
related projects.
At first, I would consider myself as a kernel developer student, but my recent works made
me think that it’s probably not the thing I really like to do.
I enrolled the laboratory last year, where I first worked on Valgrind; my goal was to detect
security vulnerabilities by playing with the Valgrind Core IR.

Then, I started working on the development of a 64 bits kernel, on which I worked for about 5
months.
I am kind of used to the ELF internal structure, as I have done multiple projects that were
implying parsing an ELF binary. First, as you can see on my github, I have implemented a
dynamic linker, which was actually the project I did to enter in my laboratory. Then, I
implemented a readelf like tool, but my goal was to be able to dump the pretty printed
content of the ELF in absolutely any format (like JSON, XML etc..). I created an interface so
that I could add new output formats really easily (this project is also present on my github).
After that, I worked on the Xen hypervisor, and more precisely on the Xen Testing
Framework (http://xenbits.xen.org/docs/xtf/), where I worked on implementing some new
features in the micro-kernel. This work was done in the context of my mandatory internship
for my school, which I did at Amazon AWS, in Germany.
This is during this time that I started working on the LLVM/CLang projects.

Why applying ?

It’s been now a few months that I’m working on the LLVM project. I actually started to work
on this project because of my needs.
I first wanted to be able to detect unsequenced modifications in a code base. Indeed, I
remarked that there was no good open source tools that were doing this, and the clang
warning was not efficient enough for my needs.
The first step was to learn the LLVM code base, which was not that easy, even if I have to
admit that working on the IR of Valgrind the past year helped me. My goal for this project
was just to have a PoC, to ensure that, yes, it was possible to detect this undefined behavior.
(https://reviews.llvm.org/D44154)
After that, I started working on a structure pretty printer CLang built-in. Indeed, as I am
originally doing kernel development, it’s been at least a year that I am thinking of this kind of
feature (I think a lot of kernel developer have needed this feature at a moment or an other).
This gave me the will to get involved in the LLVM/CLang projects.
(https://reviews.llvm.org/D44093).
This feature has been a real opportunity for me, because it has permitted me to learn a lot,
both while implementing it and while being reviewed on Phabricator.
Then, I took a look at the LLVM subjects for this GSOC 2018, and I got really interested by
this subject. Indeed I find really bad that people are not using LLVM tools for their projects,
and I actually had the bad experience of someone telling me that “No one is using the clang
toolchain for doing kernel development” while talking about the built-in I wanted to
implement.
As I really think that the LLVM toolchain must be used, I am really interested in making those
tools more GNU Binutils compliant so that it pushes people to use the toolchain.

http://xenbits.xen.org/docs/xtf/
https://reviews.llvm.org/D44154
https://reviews.llvm.org/D44093

What did I learn so far ?

General assessments

Although the tools are doing really different things, we can still draw a general picture of how
those tools are working.

The option parsing

This step is actually the first step a tool need to do. To make it more unified and reliable, the
tools are using the same “library” for their command line parsing (it will for example permit to
“easily” add the feature of using shortened options like “llvm-objdump -ldS”).
To do so, those are using the “/llvm/Support/CommandLine.h” headers, that is defining this
command line parsing library.
It basically work in two steps : the registration and the parsing.
So first, the tools will have to registered their options as static variables, so that we can user
them everywhere else after this.
As you can see in the Figure 1, the way we can declare the options is very smart. Indeed,
we are basically constructing the command line type templated over a “usable” type like
bool or a string list. This is very handy to use because once the command line is parsed,
we can just access the variables to the variables values without having to care about the
command line parsing library.
The second thing is aliases. This is also very useful when we have short options, because
we are able to alias the short option on the long one, so that we can only care about one
option, even if this one can be setted by multiple ways.

static cl::opt<bool> StripDebug("strip-debug",
cl::desc("Removes all debug information"));

static cl::alias OnlyKeepA("j", cl::desc("Alias for only-keep"),

cl::aliasopt(OnlyKeep));

static cl::list<std::string> ToRemove("remove-section",
cl::desc("Remove <section>"), cl::value_desc("section"));

Figure 1: Example of declaring options using the LLVM Command Line parser.

After declaring our variables, we can just call the parsing function in our main function (see
Fig. 2). After this call, our static variables are setted correctly, and we can use them to
execute correctly the requested options.

cl::ParseCommandLineOptions(argc, argv, "llvm objcopy utility\n");

Figure 2: Example of calling the ParsCommandLineOptions for objcopy.

The tools

During my researches though the different LLVM tools, I’ve learned much about how
they are working. As you will see, some of those are really far from being compliant with the
GNU Binutils, but other are needing a really few changes to be subtracted to its GNU
equivalent in a real life toolchains.

llvm-objcopy

After having a talk with Jake Ehrlich, this “How llvm-objcopy works” part might change in the
future, as this is actively discussed at the time I am writing those lines.

This is the binary that needs the more changes to be GNU compliant.
But first, let’s expose quickly how it works. First, after parsing the options, a Reader is
created. What it does is finding the type of the input file (for the moment, it only handles
ELF), and create an object with the correct reader.
Then, the Writer is created (this one will of course write to the output file) by passing a
reference on the object file (which is of type Object) that was previously generated by the
reader. This is, in my opinion, the important thing to understand.
De facto, as the objcopy options are basically removing sections/symbols/etc.. from the input
object, we we can directly do those operations on the Object, and then, as the writer already
have a reference on it, we will only need to write its content to the output file.
Anyway, there is a lot of missing features/options compared to the GNU Binutils objcopy. To
better present those, let’s divide it into two parts : the ELF part, and the COFF/PE part.

The Elf part

First, for the ELF part, I basically noticed two problems. First one, llvm-objcopy is not able
to copy the binary from ELF file of different formats (even if it is not supposed to run, this is
actually working on GNU objcopy). However, even if this works, I am pretty sure this feature
is almost never used.
Secondly, there is also some missing options. Here is a few of those (non exhaustive list):

-​ -L --localize-symbol - make a symbol local
-​ -W --weaken-symbol - make a symbol weak
-​ -K --keep-symbol - keep the symbol

-​ -M --merge-notes - remove redundant entries in note sections
Some short options are also missing, but this part might not be that complicated, as it only
consists of adding aliases.
This is on this second part I will focus at first.

The COFF/PE part

After having a discussion with Jake Ehrlich on this subject, it appears that the existing code
is too much “ELF design oriented”, and trying to make it more generically usable would be
too difficult and painful. The idea exposed by Jake is to develop a whole new backend
system for the COFF/PE binary files, so that we won’t have problem on this part.
Then, we would need to find a way to call the correct subset depending on which binary
format we are processing. For this part, I was actually thinking about only detecting the
binary format with the help of the LLVM Binary class, and then call the correct subset of
functions/backend. Of course, this way of doing things wouldn’t be acceptable if we wanted
to handle the cross format translations (ELF to COFF), but it appears that this task was
decided not to be done because this feature was mainly not used by people.

The other tools

Then, I took a look at the llvm-objdump binary and I noticed that a lot of objdump features
were missing. Indeed, some of those (like -archive-headers) are arch specifics, which is not
the case for the GNU objdump. Same, some short options are not available, which can be
problematic for inserting this tool in a real toolchain. Finally, some are just not present, like
the “-R”, which displays the dynamic relocations.
About the llvm-readelf tool, which is actually a symlink to llvm-readobj, it appears that
there is a few work to do, especially for “-R”, “-p”, “-x” and options that are shortcuts for
multiple options.
There is also some other binaries that are not needed that much changes compared to those
previous ones, like llvm-strings. For this one, it seems that the options are present but are
not binded to the right keys as for the GNU strings.

Timeline

Mid March - Mid April
Doing some command lines comparisons of the different LLVM tools and their GNU Binutils
equivalents.

Mid April - Mid May
Start working on the llvm-objcopy tool.
The ELF part will be done. I will focus on the command line missing options.

Mid May - Mid July
Working on the COFF/PE part of llvm-objcopy.
I think we can make the assumption that the actual small subset of options currently present
in llvm-objcopy have to work. If it appears that the porting is faster than expected, it would
still be really great to have all the generic options to work for COFF/PE.

Mid July - Early August
Working on the llvm-objdump

Early August - End of GSOC
Working on multiple binaries that (I think) need less rework (I will try to do as much as
possible):

-​ llvm-strings
-​ llvm-ar has a few missing options
-​ llvm-nm (only -l option seems to be missing)
-​ Working on the llvm-readelf

	Command line replacements for GNU Binutils
	
	
	
	
	
	
	Overview
	Who am I ?
	Why applying ?
	What did I learn so far ?
	General assessments
	The option parsing

	The tools
	llvm-objcopy
	The Elf part
	The COFF/PE part

	The other tools

	Timeline

