
Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

FSE 2019: Demonstrator project
Basura
Basura is a smart trash system which reports how full each trash can in a network of trash
cans is. The system's goal is primarily to practice creating a system which spans across
multiple devices, thus providing students with experience in project planning, execution, and
verification. The idea was produced by students at the FSE 2017 Accra workshop, organized
by the Accra Institute of Technology's Robotics Club.

Basura is designed to make it easy to know whether a trash can needs to be emptied by
monitoring the trash can's contents and reporting using a variety of mechanisms, making it
easy for users to tell whether a trash can needs to be emptied.

The name "Basura" was chosen because this system is designed to demonstrate how to help
users manage a large amount of trash, and the word "Basura" is Spanish for "trash".

All Basura components can be pulled and deployed together by cloning the Basura
metarepository and its submodules.

Table of contents
Table of contents 1

Views and more 2

Use Cases 3

Behavioural views 3

Check Fill State of Trash Can 3

Request Trash Fill States 4

Record fill state 4

Synchronise fill state to server 5

Components 6

Trash Can 6

Reported Log 6

Logger daemon 6

Reporter 6

Server 7

Page 1 of 9

https://goo.gl/AqpBBp
https://github.com/FullStackEmbedded/basura
https://github.com/FullStackEmbedded/basura


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

Data 7

Trash Can 7

Trash Fill State 7

Raspberry Pi 8

Trash Can deployment 8

Django development server 8

Verification 9

Views and more
This section presents several architectural views of the Basura Trash System, as well as
ancillary text supporting the understanding of the view. Where possible, a view is explained
via a single figure. If necessary, additional text is provided below the figure in order to clarify
items which are not clearly explained by the UML.

Some elements appear in more than one view. In this case, the element names are kept
consistent across all views; if you encounter multiple elements with the same name, they are
indeed the same element.

Page 2 of 9

https://goo.gl/AqpBBp


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

Use Cases

Behavioural views

Check Fill State of Trash Can

Page 3 of 9

https://goo.gl/AqpBBp


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

Request Trash Fill States

Record fill state

If a Fill State is found in both the Fill State Log and the Reported Log, it is deleted from both
logs.

Page 4 of 9

https://goo.gl/AqpBBp


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

Fill States can be identified by their UUID field.

Synchronise fill state to server

INTERACTION MESSAGES

1.0 'GET Trash Can' from 'Trash Can Reporter' sent to 'Server'.

1.2 'POST Trash Fill State' from 'Trash Can Reporter' sent to 'Server'.

If Trash Can does not exist, it is created.

1.1 'Trash Can status' from 'Server' sent to 'Trash Can Reporter'.

If the Trash Can is already registered with the Server the next call POSTs the Trash Fill
State. Otherwise the Trash Can is POSTed first.

1.3 '201 CREATED Trash Fill State' from 'Server' sent to 'Trash Can Reporter'.

At this point the Trash Fill State is deleted from Server.

Page 5 of 9

https://goo.gl/AqpBBp


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

If 201 is not received, transaction is considered not to have taken place and it is repeated
at next opportunity.

Components

All components have a Fill State Log. These contain Trash Fill States which have not
successfully been reported to the next component down the line, i.e. Cell Phone or the
Server, yet.

Trash Can

Reported Log
Contains all newly reported Trash Fill States.

Logger daemon
Calls the Ultrasonic Driver at regular intervals and stores the result with a UUID in a text file.
At each update of the text file, it checks if a TrashEvent UUID is recorded in the file of
deletables; if this is the case, that UUID is removed from the file.

Owns Fill State Log.

Reporter
Reports all logged Trash Events. Records UUIDs of reported Trash Events in a file. Upon
updating that file, deletes any entries which have UUIDs which can no longer be found in
logger's file. The Trash Can's Reporter subcomponent communicates directly with the Server
using the same HTTP REST interface.

Page 6 of 9

https://goo.gl/AqpBBp


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

Owns Reported Log.

Server
The Server receives Trash Fill States via REST. It is proposed to use a Django web app which
represents Trash Fill States and Trash Cans using the Django native ORM. It is proposed to
use the Django REST Framework for processing the objects which are passed to the Server,
and for serializing those objects that the Server owns when requested.

Data

The Basura system serves primarily to move data from where it is observed to a sink where it
can be called up. The primary data type in question is the Trash Fill State. This is an
observation made by a smart Trash Can. The Trash Can entity is also represented and
exchanged within the Basura system.

Trash Can
Represents a Trash Can deployment (with sensor, etc.).

At install, each Trash Can deployment must generate and store its own Trash Can ID.

UUID is used rather than running number so that Trash Cans can be created without
communication with Server. UUID is generated at install time.

Trash Fill State
fill_state : cm measured from top of trash can

trash_Can: Foreign Key to Trash Can. Each Trash Fill State is associated with 1 Trash
CanDeployment

Page 7 of 9

https://goo.gl/AqpBBp


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

A given Basura system has 1 Server and m Trash Cans.

Raspberry Pi
One Raspberry Pi is used for the deployment of the Trash Can and another is used to deploy
the server. This is not technically necessary, but it makes it clearer that we are building a
distributed architecture.

Trash Can deployment
The ultrasonic driver is from the RpiAutonomousCar repository and is packaged with the
Basura Trash Can.

The entire package is implemented in Python 3 and is self-contained and installed as
described in its README.md file.

calibration.py generates the UUID for the specific Trash Can.

Logging intervals and the storage location of the logs is configurable, as described in the
package's README. The reference deployment of Basura writes its logs to /var/log/basura/,
e.g. /var/log/basura/fill-state.log.

Django development server
Normally, the Django development server would not be used; instead, the Server would be
deployed e.g. to a Tomcat. However, in this case, the Django development is used for the
sake of simplicity for the students.

The ORM communicates with the SQLite DB backend, also for the reason of simplicity. In a
future workshop we should link to a container instead, which can also be deployed very
easily, but for this workshop there are enough new concepts being introduced.

Page 8 of 9

https://goo.gl/AqpBBp
https://github.com/FullStackEmbedded/RpiAutonomousCar


Full Stack Embedded
Project 2019: Basura Trash System

https://goo.gl/AqpBBp
v0.2.0

Verification
At least the following tests were planned to verify this version of Basura:

Test Verification method

Trash Can can log Trash Fill States
successfully

Tested manually.

Trash Can deletes reported Trash Fill States Tested manually.

Trash Can clears Reported Log Tested manually.

Server reports Trash Fill States from two
separate Trash Cans via REST

Tested manually.

End-to-end server entity creation and
retrieval tests

Implemented in the Server unit tests.

Page 9 of 9

https://goo.gl/AqpBBp
https://github.com/FullStackEmbedded/basura-server/blob/master/api/tests.py

