Development status August 2022

Development is currently focused around the backend functionality, namely the smart
contracts. Websolution and front end components will follow when the first version of the
complete smart contract has been developed (step 3 in spec below).

Development of smart contracts easily gets impossible to debug if too much functionality is
implemented at once. Therefore, a commonly used technique is to develop in a step-stone
approach where the first simple contract is created and when it works, it is expanded upon.
Transitioning through increasingly complex contracts we end up with the final contract that
contains the desired functionality.

To end up with a final contract that supports specific swap of NFTs, we created a
specification of contracts needed for the transition.

Specific Swap contract

On chain code

Function / action High level functionality

Swap (Called for Datum = “Swap”) * Verify that the swap transaction consumes one NFT
and provides one NFT part of the correct policy id

Clean (Called for Datum = “Clean™) « Verify that all consumed UtxOs contain a NFT with
policy id not handled by the swap pool contracts

* Verify that the transaction has been signed by the
swap pool owner.

Off chain code

Function / action High level functionality
Send NFT to contract * Create transaction containing an NFT
* Submit the NFT to the contract
Swap NFT * Create transaction containing UTxO with an NFT_in to send to the
contract

* The transaction should also consume a contract UTxO with a
NFT _out that is wanted in return for NFT_in

* Datum must be set to be the action “Swap”

* Submit the transaction to the contract

Remove NFT * Create transaction that consumes all UtxOs containing “garbage”
NFTs not part of the policy id handled by the swap pool contract

* Datum must be set to be the action “Cleanup”

* Submit the transaction to the contract

Contracts to develop

Version name Functionality

NFT.SwapActions |Contract that calls different code depending on type of Datum received.

NFT.SwapCleanup |Implement “clean” action

NFT.Swap Implement “swap” action

Currently we have successfully developed and verified the first contract, NFT.SwapActions.
The contract was verified by publishing it to the Cardano testnet and running transactions
with it. Currently we are working on the next contract NFT.SwapCleanup where we are
increasing the functionality further.

The contract NFT.SwapActions

High level functionality of this first contract is to simply enable our platform to run different
actions towards the contract and repelling actions not supported by the contract. In our
contract we currently have two actions; Swap and Cleanup. Transactions trying to consume
the contract funds must do this using one of these actions. If trying to consume using other
actions, the contract will repel this.

Here is an image of our development environment and the core part of the NFT.SwapActions
smart contract code

alice@pppdev: ~/smart-contracts/BasicContracts

»: OncChain.hs -
GNU nano 4.8 src/NFT/SwapActions.hs

| Swap.hs

mkNFTSwapValidator Integer ScriptContext Bool
mkNFTSwapValidator action

action [} tracelf doSwapAction
»:| SwapCleanup.hs action 1 traceIf f B up act failed doCleanupAction
otherwise tracekrror

»=| SwapActions.hs

doSwapAction

doCleanupAction

SwapData
Scripts.validatorTypes SwapData
instance DatumType SwapData
instance RedeemerType SwapData Integer

typedvalidator Scripts.Typedvalidator SwapData

typedvalidator Scripts. mkTypedvalidator @SwapData
(PlutusTx.compile mkNFTSwapValidator
(PlutusTx.compile wrap)

wrap Scripts.wrapvalidator Integer
validator Validator

validator Scripts.validatorScript typedvalidator

valHash Ledger .ValidatorHash
valHash Scripts.validatorHash typedvalidator

scrAddress Ledger .Address

gl Get Help g write out dY wWhere Is @y Cut Text @8 Justify
& Exit il Read File M Replace WY Paste Text Ml To Spell

The contract was published to the Cardano testnet and the address of the contract is
addr_test1wpg4hsycmapv69e6k8j9kygnvwm395j9qrts7uqcOl4icfckjzhut

We will now show some verification transactions done with the contract on the Cardano
testnet. All transactions can be viewed also in the Cardano testnet explorer:
https://explorer.cardano-testnet.iohkdev.io/en/address.html?address=addr_test1iwpg4hsycm

apv69e6k8j9kygnvwm395j9qrts7uqcOl4icfckjzhut

https://explorer.cardano-testnet.iohkdev.io/en/address.html?address=addr_test1wpg4hsycmapv69e6k8j9kygnvwm395j9qrts7uqc0l4lcfckjzhut
https://explorer.cardano-testnet.iohkdev.io/en/address.html?address=addr_test1wpg4hsycmapv69e6k8j9kygnvwm395j9qrts7uqc0l4lcfckjzhut

Swap and cleanup actions (successful spending of contract funds)

Before trying to spend, we have transferred some tADA to the contract. Thereafter we try to
spend these funds using different actions.
The following is spending using the Swap action

search@l -/testpet : cardano-cli transaction build --babbage-era --testnet-magic 1097911863 --tx-in
b19a58de6fBof756688aacec 655b754bc9c50cal7dfbe3ffde7553311¢cfc5059#1 --tx-in-script-file smart-contracts/swap-
actions.plutus --tx-in-datum-file smart-contracts/unit.json --tx-in-redeemer-file smart-contracts/redeemer -action-
swap.json --tx-in-collateral bi9a58de6f89f756688aacec655b754bcoc50cal7df b83ffde7553311c fc5050#0 - -tx-out $(cat
wallets/swapactions-payment .addr)+9696269 --change-address $(cat wallets/swapactions-payment.addr) --protocol-params-file
protocol-parameters-babbage.json --out-file tx.body

Estimated transaction fee: Lovelace 383731

search@l -/testnet cardano-cli transaction sign --tx-body-file tx.body --signing-key-file wallets/swapactions-
payment. skey --testnet-magic 1097911063 --out-file tx.signed

search@l -/testnet cardano-cli transaction submit --tx-file tx.signed --testnet-magic 1097911863

Transaction successfully submitted.

searchBl -/testnet

https://explorer.cardano-testnet.iohkdev.io/en/transaction?id=028d9bdf0b854f4ce467894b02
edc152e3407dfee1d97a66ca457264084b3767

...and this is using the Cleanup action

search@l -/testnet : cardano-cli transaction build --babbage-era --testnet-magic 1097911063 --tx-in

06d4abdcd fdedfc1389b5091e522d87 4d5dae 11d 187 b2d 3f3d99ddB877545be37f#1 --tx-in-script-file smart-contracts/swap-
actions.plutus --tx-in-datum-file smart-contracts/unit.json --tx-in-redeemer-file smart-contracts/redeemer -action-
cleanup. json - -tx-in-collateral ©28d9bdfeb854f4aced67894bo2edc152e3407dfeeldd7a66cad57264084b3767#6 - -tx-out $(cat
wallets/swapactions-payment .addr) +9695970 --change-address $(cat wallets/swapactions-payment.addr) --protocol-params-file
protocol-parameters-babbage.json --out-file tx.body

Estimated transaction fee: Lovelace 384838

searchel -/testnet cardano-cli transaction sign --tx-body-file tx.body --signing-key-file wallets/swapactions-
payment.skey --testnet-magic 1897911863 --out-file tx.signed

searchel -/testnet : cardano-cli transaction submit --tx-file tx.signed --testnet-magic 1097911063

Transaction successfully submitted.

searchel -/testnet

https://explorer.cardano-testnet.iohkdev.io/en/transaction?id=8111381667614bca790ef06421
9ac411f9c8450dbc2407e9b6de5bc148b2168f

As can be seen, both these transactions are successful (allowed by the contract) and
requested funds are transferred from the contract back to the wallet requesting the funds.

Unsupported action (prohibited by the contract)

In the following transaction we try spending the contract funds using an unsupported action.
The contract repels this transaction and returns the error message to the user that this action
is unsupported.

search@l -/testnet : cardano-cli transaction build --babbage-era --testnet-magic 1097911063 --tx-in

06dabdc4 fdedfc1389b56091e522d874d5dae11d187b2d3f3d99ddB 77545be37f#1 --tx-in-script-file smart-contracts/swap-
actions.plutus --tx-in-datum-file smart-contracts/unit.json --tx-in-redeemer-value 42 - -tx-in-collateral
028d9bdf eb854f 4ced 67894b02edc152e 340 7df ee1d97 a66Ccad57264084b3767#0 --tx-out $(cat wallets/swapactions-payment .addr)
+10000000 --change-address $(cat wallets/swapactions-payment.addr) --protocol-params-file protocol-parameters-
babbage. json --out-file tx.body

Command failed: transaction build Error: The following scripts have execution failures:

the script for transaction input @ (in the order of the TxIds) failed with:

The Plutus script evaluation failed: An error has occurred: User error:

The machine terminated because of an error, either from a built-in function or from an explicit use of “error .
Script debugging logs: Unsupported action

searchel -/testnet

https://explorer.cardano-testnet.iohkdev.io/en/transaction?id=028d9bdf0b854f4ce467894b02edc152e3407dfee1d97a66ca457264084b3767
https://explorer.cardano-testnet.iohkdev.io/en/transaction?id=028d9bdf0b854f4ce467894b02edc152e3407dfee1d97a66ca457264084b3767
https://explorer.cardano-testnet.iohkdev.io/en/transaction?id=8111381667614bca790ef064219ac411f9c8450dbc2407e9b6de5bc148b2168f
https://explorer.cardano-testnet.iohkdev.io/en/transaction?id=8111381667614bca790ef064219ac411f9c8450dbc2407e9b6de5bc148b2168f

Next steps...

As stated above, we are currently developing the next contract, NFT.SwapCleanup. This
contract will advance our functionality to only allow the cleanup action to be done by one
particular wallet, namely the wallet used when creating the contract. It will also return all
NFTs sitting in the contract that are not a member of the NFT token policy supported by the
contract. We will also enhance the Action from a simple number into an object that can
contain more parameters to the contract than just which action to perform.

	Development status August 2022

