Essential Apps Script livecoding 1 walkthrough:
My First Apps Script

This walkthrough guide accompanies the Essential Apps Script 1: My First Apps Script
video and the Essential Apps Script guide. You can use the video, this document, or both,
to help you do this livecoding exercise.

We're going to have a go at writing our first bit of Apps Script code. All you're going to
need is a Google account that you can access Google Drive with (if you're a member of
the University of York, use your UoY Google account).

For this exercise, we're going to have a go at using Apps Script to get some data out of a
spreadsheet and tell us what that data is.

Livecoding instructions

1.

Firstly, you're going to need to make sure you're logged into your Google account
and have opened Google Drive. Make sure you're not logged into multiple Google
accounts at the same time as this can affect things later on.

a. Create a folder in Google Drive for the Essential Apps Script course so you can
keep all your files relating to the course in the same place.

We're going to create a spreadsheet as we are going to create an Apps Script
project that is bound to a Google Sheets file and use our code to access data in the
spreadsheet. In your Google Drive folder, use the New button and choose Google
Sheets to create a new file.

When your new file opens, rename it something sensible, like 'My First Apps Script. It
doesn't matter what you call it, as long as it makes sense to you.

In your Sheets file, write something in cell B2 (If you're not sure what to write, you
could write 'Hello', or 'Hello World which is typically used for a first coding project).

Now we're going to open the Apps Script editor. At the menu at the top of Sheets,
Extensions > Apps Script. It will open in a new window, but leave the spreadsheet
open - if you close that spreadsheet, the Apps Script window will also close.

Click on the project name (‘Untitled project by default) to rename it - typically it is
helpful to give it the same name as the spreadsheet.

Next, we're going to rename the code file (code.gs) on the side. Click on the three
dots and choose Rename. Call it firstScript’ - you'll notice there's no spaces and it
uses camel case, which means the first letter of any subsequent words are
capitalised, like a hashtag, to make it easier to read. Click elsewhere in the script
editor to save that change.


https://www.youtube.com/watch?v=_6ipPJoP-Ao
https://www.youtube.com/watch?v=_6ipPJoP-Ao
https://subjectguides.york.ac.uk/apps-script

8.

10.

1.

12.

The final bit of renaming is to rename the function in the area where you can write
Apps Script code. By default it is called ‘myFunction’, but change that to firstScript,
making sure that you leave the word function’ at the start and the round brackets
() at the end (as those are an important part of the syntax). Now hit the Save icon
(you have to save Apps Script files). Your code should now look something like:

function firstScript(){
}

Put your cursor at the end of line 1, after the brace (the curly looking bracket), and
hit Enter a couple of times to get some space (you can use blank lines in Apps
Script to space out your code and the computer will ignore them).

Now we're going to write a comment, which is information that the computer
ignores, but humans can read. Do two forward slashes || and then write the
comment ‘'get the sheet), so we know what the code that comes afterwards will do.

Hit Enter and then we're going to create our first variable, saving something in the
computer's memory.

a. Write var then a space and then give it a name. As we're going to be storing
the spreadsheet in this variable, we are going to call it ss as that is the
convention. Then do another space and an equals sign, to assign to variable
avalue

b. We are to use the SpreadsheetApp, so write SpreadsheetApp making sure to
capitalise the S and the A (the autosuggest will suggest this once you start
typing it). Next, do a period . and immediately write getActiveSpreadsheet().
If you use the autosuggest feature to complete this it will not put the open
and closed brackets at the end, so make sure you add that.

c. Finally, finish your line with a semicolon ;

function firstScript(){

// get the sheet
var ss = SpreadsheetApp.getActiveSpreadsheet();

}

Now, we're going to get the specific sheet of the spreadsheet (the tabs along the
bottom of a Sheets file). Create another variable using var and give it the name
sheet this time. Put an equals sign as before, and then write ss to access the
spreadsheet and all the things we can do with it. Next, write a period . and then
getActiveSheet() and then end the line with a semicolon ;

function firstScript(){

// get the sheet



var ss = SpreadsheetApp.getActiveSpreadsheet();
var sheet = ss.getActiveSheet();

}

13. Next, hit Enter twice more to leave another blank line if you'd like some space, then
do another comment using two forward slashes /[ and write something like 'get the
cell value and log it

14. Hit Enter again and now we're going to get the value from the cell that we wrote a
message in.

a. Write var to create a variable to store the value in, then give it the name
cellvalue (using camel case with the capital V to make it easier to read the
two words without a space). Then, as before, a space, an equals sign = and
another space.

b. We're going to work with the sheet to access the range of cells within it, so
write sheet then .getRange() (make sure you include the period at the start
and the brackets at the end).

c. To get the range, we need to put numbers inside the brackets, which are
basically coordinates in the spreadsheet for the range we want. As we only
want one cell, we just need to give it a row number and a column number.
Cell B2 is on row 2 and column B, but it has to be a numerical column not a
letter, so that is 2 as well. So inside the brackets write 2, 2 (the comma
separating them is important).

d. Now we have the range, but that isn't the value in the cell, just the cell itself,
which can have other properties too, like the font or background colour. So do
another period . and then write getValue() and end the line with a semicolon

.
I

15. Finally, we want to log the value we now have stored in cellValue so we can check it
got the right cell and did the right thing. Logging means showing a value on screen
in the Execution Log. Hit Enter and then write Logger.log() - we're going to put our
value to log inside the brackets, so write cellValue inside the brackets and then end
the line with a semicolon. Your final code should look something like:

function firstScript(){

// get the sheet
var ss = SpreadsheetApp.getActiveSpreadsheet();
var sheet = ss.getActiveSheet();

// get the cell value and log it
var cellValue = sheet.getRange(2, 2).getValue();
Logger.log(cellvValue);



16. Now hit save and run the code. The Run button at the top will run whichever
function you have selected from the drop down list. As this is the first time you've
run this Apps Script project, you will get an authorisation prompt, which is Google
checking the permissions that your script might need to run. It should say that it
can view, edit and delete your spreadsheets, but that doesn't mean the code you've
written will - just that commmands using the SpreadsheetApp could do that. Hit
Allow and then your script will run.

17. When the script runs, you should see the execution log appear at the bottom of the
screen. It will tell you the time the script starts and finishes running and it should
also show you the logged value. If you see the correct value in there, then celebrate
because your code worked! If not, double check your code against what we're got
in this document and also check you've written a message in cell B2!

You're now ready to move on to the next part of section 1!
Reference: full code from exercise
function firstScript(){
// get the sheet
var ss = SpreadsheetApp.getActiveSpreadsheet();
var sheet = ss.getActiveSheet();
// get the cell value and log it

var cellValue = sheet.getRange(2, 2).getValue();
Logger.log(cellvValue);


https://subjectguides.york.ac.uk/apps-script/basics

