
ALU Verification Project

 Jason Linus Rodrigues

 Emp id: 6078

CHAPTER 1:

PROJECT OVERVIEW AND SPECIFICATIONS.

1.1 Project Overview:

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic
operations. It represents the fundamental building block of the central processing unit
(CPU) of a computer.

The purpose of the ALU is to perform mathematical operations such as addition,
subtraction, multiplication etc. Additionally, the ALU processes basic logical operations
like AND/OR calculations etc. It serves as the computational hub of the Central
Processing Unit (CPU) for a computer system. The performance and efficiency of the
ALU directly impact the overall speed and capability of a computer system.

Figure 1: General ALU Design Block

1.2 Verification Objectives:

●​ To construct a verification planar that includes test plan, functional coverage
plan and assertion plan.

●​ To Design and built a ALU Testbench architecture along with a structured
code plan for testbench components.

●​ To implement functional coverage and assertions in the ALU testbench and
validate the ALU’s functional correctness along with its timings and find its
design flaws.

1.3​ DUT Interfaces:

Signals Direction Width-Size Description

Clock Input 1 Generates a Positive edge triggering
signal

Reset Input 1 Active high synchronous reset signal
that sets all the output signals to 0

Clock Enable Input 1 Active high clock enable signal that
perform all ALU operation

Mode Input 1 A 1bit select signal that perform
arithmetic operation if mode signal is
1, else Logical operation if mode
signal is 0

Command Input Parameterized
Command
Width Size

Parameterized (4-bit default)
Arithmetic Commands (CMD):
0: ADD
1: SUB
2: ADD_CIN
3: SUB_CIN
4: INC_A
5: DEC_A
6: INC_B
7: DEC_B
8: CMP
9: Operand A and B both
incremented by 1, then multiplication
performed.
10: Operand A left-shifted by 1, then
multiplied by B.

Logical Commands (CMD):
0: AND
1: NAND
2: OR
3: NOR
4: XOR
5: XNOR

6: NOT_A
7: NOT_B
8: SHR1_A
9: SHL1_A
10: SHR1_B
11: SHL1_B
12: ROL_A_B
13: ROR_A_B

Input Valid Input 2 A 2 bit select signals that chooses the
input operands.
00: no operand is selected
01: operand A is selected
10: operand B is selected
11: both operand A and operand B is
selected

Operand A Input Parameterised
width size

Parameterized operand A input data

Operand B Input Parameterised
width size

Parameterized operand B input data

Carry in Input 1 1-bit active high carry input signal

Result Output Parameterised
width size

A Parameterized result when the
specific operation is evaluated

Overflow Output 1 A 1-bit signal indicates an output is
overflow, during addition or
subtraction or increment or
decrement operation.

Carry out Output 1 A 1-bit signal indicating a carry is
generated during Addition and
increment operation.

Equal Output 1 A 1-bit comparator output signal,
which indicates that the value of
operand A is equal to the value of
Operand B

Greater Output 1 A 1-bit comparator output signal,
which indicates that the value of
operand A is greater than the value of
Operand B

Lesser Output 1 A 1-bit comparator output signal,
which indicates that the value of

operand A is lesser than the value of
Operand B

Error Output 1 A 1-bit error output signal if
input_valid is 0, or if a logical
operation (mode = 0) is requested
with Command 12 or 13 and the
required range [0 : log2(operandB)] is
not provided or is invalid.

CHAPTER 2:

TESTBENCH ARCHITECTURE AND METHODOLOGY

2.1​Testbench Architecture:

General Testbench Architecture:

Figure 2: General Testbench Architecture

Proposed Testbench Architecture:

Figure 3: Proposed ALU Testbench Architecture

 2.2 Component Details and Flowchart

a)​ Transaction:

Figure 4: Transaction flowchart

The transaction consists of set of randomized and non - randomized signals shown in the
above flowchart. It also has a set of constraint conditions necessary for ALU verification
followed by the copy function and display function. Here the transaction creates a set of input
signal whenever a randomized function is called.

b)​ Generator:

 Figure 6: Working of Generator Class

The generator flowchart represents the process of generating and sending randomized
transactions in a testbench. It begins with object creation, where the required transaction
object is instantiated. A loop is executed for a specified number of transactions
(n_transaction). Inside each iteration, randomization of transaction fields is performed. The
randomized transaction is then sent through a mailbox for further processing by other
components like a driver. This loop continues until all iterations are completed, after which
the process stops.

c)​ Driver:

Figure 8: Working of Driver Class

The Driver flowchart illustrates the driving operation in the testbench. The process begins
with object creation and enters a loop for the specified number of transactions
(n_transaction). For each iteration, a transaction is received from the generator via a mailbox.
The driver checks the reset condition (vif.reset); if reset is active, all inputs are set to zero and
driven to the DUT. If reset is inactive, the driver applies the transaction signals to the DUT.
Finally, the transaction is sent to reference model through the mailbox, and the loop continues
until all iterations are complete, after which the process stops

d)​ Monitor:

 ​ ​ ​ ​ ​ ​ ​ ​ Figure 10: Working of Monitor
Class

The Monitor flowchart describes the monitor operation in a testbench. The process starts with
object creation and enters a loop for the defined number of transactions (n_transaction). In
each iteration, the monitor extracts the output signals from the DUT (Design Under Test).
These captured signals are then packaged into a transaction and sent to the scoreboard
through a mailbox for result checking. The loop continues until all transactions have been
processed. Finally, the process ends when all iterations are complete.

e)​ Scoreboard:

The Scoreboard Flowchart illustrates the scoreboard operation in a testbench environment. It
starts with the creation of objects for communication with the reference model and monitor.
Two packets are generated to store the reference results and monitor results, along with

initializing pass and fail counters. For each
transaction, results from the reference model and the monitor are received through mailboxes
and stored in their respective packets. The scoreboard then performs a comparison between
the reference and monitor packets. If the results match, the pass count is incremented;
otherwise, the fail count is updated. The process repeats for all transactions and stops after all
comparisons are complete.

 Figure 12: Working of Scoreboard Class

f)​ Reference model:

Figure 14: Working of Reference Model Class

The Reference model flowchart represents the operation of the dummy ALU model in the
testbench. It begins with object creation and enters a loop for the specified number of
transactions (n_transaction). For each iteration, the reference model receives a transaction
from the driver via a mailbox. It then mimics the ALU functionality by computing the
expected result based on the input operation and operands. The computed result is sent to the
scoreboard through a mailbox for comparison with the DUT output. The process repeats until
all transactions are processed, after which the process stops.

g)​ Environment:

The Environment flowchart represents the initialization and execution of testbench
components. Here it Integrates all the test components and connects them using mailboxes.
The process begins by a build task that define the creation of mailbox objects for
communication between different components. Next, objects for all testbench components

(generator, driver, monitor, scoreboard, and
reference model) are created using a constructor. A start task is then defined to coordinate the
flow. The start task sequentially initiates the generator, driver, monitor, scoreboard, and
reference model tasks. These tasks run in parallel to perform the verification process. Finally,
the process stops after all components complete their respective operations.

 Figure 15: Working of Environment
Class

h)​ Test:

The Test flowchart represents the execution flow for running the testbench. Mainly used to
configure and coordinate all testbench components. It begins by creating the run task, which
serves as the entry point. Next, an environmental handle object (env) is created using a
constructor to manage all testbench components. The build task is initiated, which sets up and
constructs the testbench elements. After the build phase, the start task is executed to trigger
all verification components. Finally, the process ends with the completion of all tasks and the
simulation stops.

Figure 18: Working of Test Class

i)​ Top:

Figure 20: Working of Top
Module

The Top flowchart outlines the top-level simulation process. The sequence starts with the
generation of clock signals required for the testbench. Next, reset and clock enable signals are
asserted and de-asserted to initialize the design. The interface, design under verification
(DUV), and test components are instantiated. After this setup, the run task is initiated to
execute the verification process. Finally, the simulation is terminated once all tasks are
complete, leading to the stop state

j)​ Interface:

Figure 21: Interface Flowchart

The interface acts as a communication bridge between the testbench top module and the
Design Under Verification (DUV), bundling all related signals into a single structured block.
It includes the declaration of all input and output signals. Additionally, the interface defines
clocking blocks for components like the driver, monitor, and reference model to ensure
synchronized signal sampling and driving. Mod ports are also specified to control the
direction and access of signals for each testbench component.

k)​ DUV (Design Under Verification):

The Design Under Verification (DUV) refers to the ALU module whose functional
correctness is being tested against the design specifications. It is connected to the testbench
through an interface module that links the DUV ports with the testbench components, such as
the driver and monitor.

​

1.​ Test Plan

​ a) Test Scenarios:

 Link:

https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO
2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true

​ b) Functional Coverage Plan:

 Link:

https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO
2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true

​ c) Assertions:

 Link:

https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO
2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true

CHAPTER 3​

VERIFICATION RESULTS AND ANALYSIS

https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1yfM7D9r4y9-2dNhEo2Sbz9A-pepWO2nO/edit?usp=drive_link&ouid=113766502478178390742&rtpof=true&sd=true

3.1 Design Flaws:
During Normal Operation (without 16 clock cycle):

1)​ DUT Result width is not matching with the testbench result width.
2)​ DUT Functionality flaws:

Mode Commands Failure Reasons

Arithmetic Sub Overflow condition failed when both operands
are equal

Arithmetic Sub Cin Overflow condition failed when both operands
are equal

Arithmetic INC_A Increment A functionality failed

Arithmetic INC_A Failed to produce carry-out result on INC_A

Arithmetic DEC_A Failed to produce Overflow result on DEC_A

Arithmetic INC_B Increment B functionality failed

Arithmetic INC_B Failed to produce carry-out result on INC_B

Arithmetic DEC_B Decrement B functionality failed

Arithmetic DEC_B Failed to produce Overflow result on DEC_B

Arithmetic Shift and multiply Shift and multiply functionality failed

Logical Logical OR Failed to perform logical OR operation

Logical Shift Right A Shift right on A Operation failed

Logical Shift Right B Shift right on B Operation failed

Logical Rotate right A on B The error bit from [7:4] on operand B is failed

3)​ Input Valid Selection flaws:

When input valid is 0, it will not produce the expected error result during single
operand operation as well as two operand operation.

During 16 cycle Operation (with 16 clock cycle):

1)​ Whenever the 16-cycle operation is implemented on both arithmetic and logical
operation it will not produce error result when input valid is 0 or 1 or 2. It will only
pass when input valid is 3.

2)​ Whenever the count is greater than or equal to 16 and input valid is either 0, 1, or 2. It
will not produce error result. It will pass when input valid is 3.

3.2 COVERAGE REPORT:

●​ INPUT COVERAGE:

●​ OUTPUT COVERAGE:

●​ ASSERTION COVERAGE:

●​ OVERALL COVERAGE:

●​ Overall Waveform:

