
THIS DOCUMENT IS PUBLIC 

Hyphenation IPC on Android 
kojii@chromium.org, Aug 2016 

Overview 
To implement CSS Hyphens in Blink (launch bug, design doc), the renderer needs to read the 
hyphenation dictionaries. The renderer can mmap dictionary files to read but in the sandbox 
architecture, it needs to ask browser process to open them first. On Android, a discussion at 
platform-architecture-dev@ reached a consensus to measure the sync IPC at dev channel. 

UMA Results and Other Data 
One of M54 dev was changed to open hyphenation dictionaries in all pages, once per process, 
and measure how long it takes. Measuring only hyphenated pages was not possible, because it 
requires to expose the “hyphens” property to public. 
Mean: 5ms 
95 percentile: 10ms 
98 percentile: 20ms 
99 percentile: 40ms 
The histogram is “Hyphenation.Open”, the actual data is available only to Googlers (sorry.) 
This code path will kick in only for pages with “hyphens” property set. We do not have UMA for 
this property, only some data publicly available: 

●​ Crawler data for the “-ms-hyphens” property by Microsoft indicates 0.4% of pages. 
Note that UMA could be very different from crawler data, larger or smaller, by the factor 
of more than 10. 

●​ This property is available on Firefox/Safari/IE/Edge (with prefix other than Firefox, data in 
caniuse.com.) The usage might shift once Blink supports. 

Next Action Options 

1. Ship the current implementation 
Mean 5ms is expected. 99 percentile does not look great though. Shipping the property allows 
us to get the real data of the property usage and improve incrementally. 

mailto:kojii@chromium.org
http://crbug.com/605840
https://docs.google.com/document/d/1ZgMnNxYxvPJYMOeyxJs8MsfGMNFiDKrz64AySxlCzpk/edit?usp=sharing
https://groups.google.com/a/chromium.org/d/topic/platform-architecture-dev/tGdL_E8hQgM/discussion
https://groups.google.com/a/chromium.org/d/topic/platform-architecture-dev/tGdL_E8hQgM/discussion
https://groups.google.com/a/chromium.org/d/msg/platform-architecture-dev/tGdL_E8hQgM/BKCpEF-eAQAJ
https://codereview.chromium.org/2188043004/
https://developer.microsoft.com/en-us/microsoft-edge/platform/usage/css/-ms-hyphens/
http://caniuse.com/#search=hyphens


2. Improve the IPC in the worst cases 
●​ Probably the file thread is too busy to pick the IPC request. Would having more threads, 

or a dedicated thread help? If all cores are really busy, adding more threads may not 
help? 

●​ Other ideas? 

3. Issue requests earlier in style recalc 
Elliott suggested we could issue the request at style recalc to maximize the parallel time. 
We need a method to wait for async IPC to finish, which AFAIU we don’t have today? Can mojo 
add this capability? Or should we just spin loop to avoid yielding CPU to other threads? 
This might not be a great help for the worst case, as style recalc to first line break shouldn’t be 
that long? I’m not as familiar with style performance as to be confident on this comment. 

4. Open all dictionaries at startup 
The renderer then has all file handles when it needs, no IPC is needed. This option helps overall 
performance if opening files is fast but IPC is not on high load. 
Currently N preview has 33 hyb files. We’ll add cost to open them in every startup, including 
when hyphenation is not used at all. 
Android opens all dictionary files in java Hyphenator.init(). If future Android can give the list of 
file handles for all languages, it’ll be cheaper. It does not help existing Android though. 
We could rely on system languages to limit the number of dictionaries to open at startup, and 
use IPC for other languages. 
We don’t have data how much hyphenated pages are in different languages than the system 
language. We can identify hyphenated pages when we ship the property. 

5. Layout without hyphenation, then re-layout 
This does not cost to the first layout, but this doubles layout cost, wastes batteries, and flicker. 
Also changing layout after layout complete is not web compatible. Some developers already 
expressed concerns about changing layout after layout complete. 
We could add, for instance, ‘hyphens: async’ to make it asynchronous, but it does not solve 
existing pages. 

6. Interrupt layouts and yield when dictionaries are opened 
We don’t have capability to interrupt layout today. Maybe in future. 
This does not help first layout at all, even if we had the capability. UI being responsive on white 
screen does not look very helpful to me. 

https://groups.google.com/a/chromium.org/d/msg/platform-architecture-dev/tGdL_E8hQgM/mS36kmh9BQAJ
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/text/Hyphenator.java#165


7. Punch a hole to sandbox 
Mac sandbox has a feature to punch holes for specific files/directories. Blink for Mac uses this 
feature as Mac Core Foundation API opens and reads dictionary files. WebKit does the same. 
This option isn’t feasible since, as far as I understand, Linux/Win sandbox does not have this 
feature. 

Other options? 

Summary of Options 
Options Pros Cons 

1. Ship ●​ Makes users happy, launch 
bug starred by 176 users. 

●​ We get more real data on the 
property usage. 

●​ Catch up with other browsers. 

●​ Pages with the “hyphens” 
property can be 
unexpectedly slower. 

2. Improve IPC Currently not feasible. 

3. Request in style 
recalc 

●​ Maximize the parallel time. 
●​ Renderer is faster. 

●​ Adds small cost to style 
recalc? 

●​ Doesn’t make renderer 
faster if the task is fast 
but IPC is not on high 
load. 

●​ Not sure if this is feasible, 
see the discussion 
above. 

4. Open at startup ●​ Renderer is faster. 
●​ File open cost still exists, but 

IPC cost is gone. 

●​ Process starts slower 
even when hyphenation 
is not used at all. 

●​ It’s unlikely to use all 
dictionaries. 

5. Async Currently not feasible. 

6. Interrupt/yield Currently not feasible. 

7. Punch a hole to 
sandbox 

Currently not feasible. 

http://crbug.com/605840
http://crbug.com/605840


Recommendations 
●​ Add some more metrics: 

○​ Time to open files in addition to overall IPC time. This helps to investigate option 
2 and 3. 

○​ Count when the hyphenation language is not the system language. This helps to 
investigate option 4. 

●​ Ship. This will give us the real data only on pages with ‘hyphens’ property set. 
●​ Continue investigations on: 

○​ “3. Request in style recalc” can make the performance better if it’s done properly. 
○​ “4. Open at startup” can make the performance better if it’s done properly. 
○​ “7. Punch a hole to sandbox”. 


	Hyphenation IPC on Android 
	Overview 
	UMA Results and Other Data 
	Next Action Options 
	1. Ship the current implementation 
	2. Improve the IPC in the worst cases 
	3. Issue requests earlier in style recalc 
	4. Open all dictionaries at startup 
	5. Layout without hyphenation, then re-layout 
	6. Interrupt layouts and yield when dictionaries are opened 
	7. Punch a hole to sandbox 
	Other options? 

	Summary of Options 
	Recommendations 

