Title: Extracting Requirements Specification from Code (ReqEx)

Members:

Zachary Bruggen zbruggen2016@my.fit.edu
Nicholas Epler nepler2018@my.fit.edu

Ivan Hernandez ihernandez2018@my.fit.edu
Thomas Morrison tmorrison2017@my.fit.edu

Faculty advisor:

Dr. Slhoub kslhoub@fit.edu
Client:

Dr. Slhoub

Date(s) of Meeting(s) with the Client for Developing this Plan:

e Wednesday 1/19
e Formal meetings with advisor established on a biweekly basis

Goal and motivation:

In the Software Development Industry and in Academia, Developers don’t have an easy
way of understanding the requirements of a system without numerous hours testing and manually
evaluating the system. To make this process more efficient, our goal is to create a system that can
generate system requirements by analyzing each component of the software. This will allow
Developers to gain a much better understanding of any open-source software or code that was
not developed by them in a much quicker fashion.

Approach (key features of the system)

Easily comprehend code functionality

e Speed up time understanding code functions by not having to manually analyze code to
get close to the original requirements. The analysis will be displayed to the users in an
easy to understand format.

Display Key functionalities and properties of the source code

e Displays additional information besides the generated requirements that were used in the
making. This allows Developers to continue enhancing their understanding of the code
base by only focusing what was deemed necessary.

Text Analysis for source code files

e Generates lexicological analysis for each word in the source code file. This information
can be used by Developers to understand and identify text patterns in the source code
files.

Able to input one or multiple files of source code

e The system will be able to parse and manipulate basic language patterns from multiple
files at once. If comments are present in the files, they will be used for the analysis as
supplemental data. If only one file is detected, the system will proceed and develop its
own requirements using any information found in the source.

Algorithms and Tools:

Freeling text analyzer for Text Analysis

U++ for GUI development

Dijkstra's Algorithm for shortest path in the original code between sections.

API that calls from the code, in order to link to the database and send over the parsed
information as it comes out of the original code that is being parsed. This API is hosted
by Github and utilizes the key that Github provides.

Novel features/functionalities:

This code will be designed in a way that can help reverse engineer system requirements
that are within the code, understanding the syntax and returning an easily readable
comprehension for the code. This is helpful in industries as to identify previously completed
work and how it operates. Potentially saving clients money and time in the software development
cycle.

Technical Challenges:

A key discovery that we had during the first semester is that as we consider more
complex input cases, we need to implement more functionalities. A technical challenge for this
semester will come from adding these functionalities without compromising the speed or
accuracy of the system.

This system is going to be using some sort of GUI to present easier interaction for the
user. Not many of us have experience in GUI development, so this will be a challenge for us to
overcome.

A major technical challenge of the system is the organization and structure of the
database. All of the information that is being parsed from the code is being sent to the database,
in which it is being organized. As of now the database is able to organize the information, it just
needs now to be tested for accuracy in the system so it is able to operate as it should.

We talked earlier in the planning phases about how we wanted to extend this system to
multiple languages. Currently, we are only focusing on C++, so depending on how quickly we
can complete the system, a challenge will arise in applying this system to multiple programming
language conventions.

Design: System Architecture Diagram

O

A

User

Uploads File(s)

Save File()

File System

GUI

UploadSourceCode()
SaveReport()

Interacts

with

GenerateReqgs()
ChooseFileType()
SaveReport()

3

FrontEnd

Interacts with

Code Base

SetupFileObject()
Parselnput()
SendToDB()

ReturnResults(}

Back-End

Interfaces with

Azure
Database

FindRank()
DetermineTemplata()
FillTemplate()
ReturnResults(}

Evaluation: How to Measure Success?

Because our system is going to be generating requirements from an automatic analysis, a
good measure for the system’s success is the reliability and accuracy of the system. In particular,
we are going to generate requirements like that of a user would create, to see how reliable the
system is and scale the accuracy. As well, a correct measurement of the success of our system is
the efficiency, being able to have the code, parse the data, and return the information in a timely
manner is important to the overall system.

Progress Summary:

Module/feature | Completion % | To do

Storage 90% Add/Update functionality as it appears

Text Analysis | 90% Add/Update functionality as it appears
Database 75% Organize the information and test for accuracy
Research 50% Research is still in progress

Milestone 4 (Feb 14): Itemized Tasks:

e Establish communication with all of the components of the project
e (Generate a prototype requirement
e Begin developing the GUI and displaying key information

Milestone 5 (Mar 21): Itemized Tasks:

Finish GUI

Update requirement generator(Database) to produce more accurate results
Evaluation results

Create poster for Senior Design Showcase

Milestone 6 (Apr 18): Itemized Tasks:

e Update and test requirement generator(Database) for result accuracy

Test/demo of the entire system
Evaluation results

Create user/developer manual
Create demo video

Task matrix for Milestone 4 (teams with more than one person)

Task Zach | Nick |Ivan | Tom
1. Research 25% | 25% |25% |25%
2. GUI Development 40% | 20% |40% |0%

3. Update/Configure Code Base 50% | 0% 50% | 0%

4. Update/Configure Database 0% 0% 0% 100%
5. Software Testing 10% | 70% | 10% | 10%

Description (at least a few sentences) of each planned task for Milestone 4:

Task 1: Research

Our client requested that we perform research into similar projects, in order to determine
if our system is unique. We will be testing different projects we research, and determine their
similarities to our own project. If we develop a unique project, it is in our client’s interest to
create a paper detailing our system for possible publication.

Task 2: GUI Development

Our goal for Milestone 4 is to generate a simple requirement, so we want to have a basic
GUI to display that information. The plan is to have a basic GUI to allow for user input, and to
display the generated requirement. In the later Milestones we will then update the visuals of this
GUI to provide more functionalities, and an overall better user experience.

Task 3: Update/Configure Code Base

As we consider different inputs, we need to implement additional functionalities to reach
those cases. This task applies to adding these features into the code base, in order to handle
different complexities in the input

Task 4: Update/Configure Database

To match the code, the information that is being sent over to the database needs to be able
to parse lots of data at once, as well as structure and organize the data. As of now the information
is ranked but not tested for accuracy, the information now needs to be tested for accuracy and
create finite changes to match the accuracy.

Approval from Faculty Advisor
e "I have discussed with the team and approve this project plan. I will evaluate the progress

and assign a grade for each of the three milestones."
e Signature: - Date:

	Title: Extracting Requirements Specification from Code (ReqEx)
	Members:
	Faculty advisor:
	Client:
	Date(s) of Meeting(s) with the Client for Developing this Plan:
	Goal and motivation:

	Approach (key features of the system)
	Algorithms and Tools:
	Novel features/functionalities:
	Technical Challenges:
	Design: System Architecture Diagram
	Evaluation: How to Measure Success?

	Progress Summary:
	Milestone 4 (Feb 14): Itemized Tasks:
	Milestone 5 (Mar 21): Itemized Tasks:
	Milestone 6 (Apr 18): Itemized Tasks:
	Task matrix for Milestone 4 (teams with more than one person)
	Description (at least a few sentences) of each planned task for Milestone 4:

	Approval from Faculty Advisor

