
Алканы Вариант 1

же числом атомов углерода в молекуле. Укажите суммарное число атомов водорода

в молекулах алкена и алкана.

Алкены (профиль) Вариант 1

- 1. При дегидрировании пропена образуется углеводород, гомолог которого называется:
 - 1) пропен
- бутен
- 3) пропин
- 4) бутин-1
- 2. Вещество, формула которого

CH₂ $CH_2 = CH - CH - CH - CH_3$ CH₂ CH₃

по систематической номенклатуре называется:

- 1) 3,4-диметил-3-этилпентен-1
- 2) 2,3-диметил-3-этилпентен-1
- 3) 3-этил-4-метилпентен-2
- 4) 4-метил-3-этилпентен-1
- 3. Веществом, образующим алкен при присоединении равного объема водорода, является:
 - 1) пентен-1
- 2) бутан
- 3) этин
- 4) пропан
- 4. Продуктом превращения $CH_3 CH_2 CH_2 CH(Br) CH_{3 KOH/cпирт, t o ...}$ является соединение:
 - 1) $CH_3 CH_2 CH_2 CH_2 CH_2 CH_3$
 - 2) $CH_3 CH_2 CH_2 CH = CH CH_3$
 - 3) $CH_3 CH_2 CH = CH CH = CH_2$
 - 4) $CH_3 CH_2 CH_2 CH_2 CH(CH_3)_2$
- 5. Продуктом реакции присоединения является 2,3-дибром-2-метил-пентан. Исходное вещество имеет название:
 - 1) 2-метилпентен-1
 - 3-метилпентин-1
 - 3) 4-метилпентин-2
 - 4) 2-метилпентен-2
- 6. Мономером в реакции полимеризации может являться вещество, формула которого:

 - 1) C₂H₅OOCCH₃

- 2) $C_2H_3 O CH_3$
- 7. При неполном гидрировании гексина (в молекуле исходного вещества разрывается только одна π-связь) образуется углеводород, химическая формула которого:
 - 1) C_6H_{12}
- 2) C_5H_{10}
- 3) C_6H_{14}
- 4) C_4H_{10}
- 8. Схема реакции $nA \rightarrow (-A-)_n$ соответствует образованию полимера (указаны все продукты реакции и исходные вещества):
 - 1) полиизопрен
- 3) капрон
- 2) полипептид
- 4) крахмалл
- 9. Этен взаимодействует с веществами, названия которых:

- а) хлороводород в) оксид серебра (I), аммиачный раствор
- б) кислород г) бро
- 1) а,в 2) а,б,г 3) в,г 4) а,б,в
 - 10. В промышленности реакцию полимеризации используют для получения:
 - 1) ацетатного волокна 3) полибутадиена
 - 2) целлюлозы 4) лавсана

Часть Б

1. Установите соответствие между формулой УВ и числом структурных изомеров, в виде которых он может существовать (исключая межклассовую изомерию).

Формула	Число изомеров
$A) C_5 H_{12}$	1) 1
Б) C ₆ H ₁₄	(2) 2
$(B) C_2 H_6$	3)3
Γ) C_3H_4 (алкин)	4) 4
7 3 4	5) 5

- 2. Определите объем (дм³) этена, который потребуется для получения полиэтилена, массой 112 г, если выход продукта реакции 85%.
- 3. Смешали 3 м³ пропина и избыток кислорода. Смесь подожгли. После окончания реакции объем газовой смеси составил 17 м³. Какой объем (м³) кислорода был добавлен к пропину? (измерение объемов проводились при 250⁰ С и давлении 101,3кПа).
- 4. Алкин массой 104,00 г полностью сожгли в избытке кислорода. Образовавшийся углекислый газ смешали с гелием объемом 56 дм³. Молярная масса полученной при этом смеси газов составила 34,20 г/моль. Определите молярную массу (г/моль) алкина.

5. Установите соответствие между формулой вещества и общей формулой гомологического ряда, к которому данное вещество принадлежит.

Формула вещества	Общая формула гомологического ряда
A) Б)	1. C_nH_{2n+2} 2. C_nH_{2n} 3. C_nH_{2n-2} 4. C_nH_{2n-4} 5. C_nH_{2n-6} 6. C_nH_{2n-8}
B) = Γ	

6. Установите соответствие между схемами превращений и реагентами X и Y. Все реакции протекают в одну стадию.

Схема превращений	Реагент	
	X	Y
A) $C_2H_{2X\rightarrow}C_2H_{4Y\rightarrow}C_2H_5OH$	1)H ₂ \t,Ni	H_2O
	$2)Br_2\t$	NaOH\H ₂ O,t
	3)H ₂ \t,Ni	$H_2O\backslash H^+,t$
	4)HBr	NaOH\спирт,t

1. При дегидрировании этена образуется углеводород, гомологом которого является: 1) этан 2) бутен-1 3) пропин 4) этин
2. Вещество, формула которого СН ₃
$CH_2=CH-CH-CH_2-CH_2Br$
Cl
по систематической номенклатуре называется:
 1) 1-бром-3-хлор-4-метилгексен-1 2) 6-бром-3-метил-4-хлоргексен-1
3) 3-метил-6-бром-4-хлоргексен-1
4) 1-бром-3-хлор-4-метилгексен-2
3. Веществом, образующим алкан при присоединении равного объема водорода,
является:
1) бутен-2 2) пропан 3) пропин 4) бутин-1
4. Продуктом превращения $CH_3 - CH(Br) - CH_2 - CH_{3 KOH, cпирт, t o}$
является соединение:
1) $CH_2 = C(CH_3) - CH_2 - CH_3$
2) CH ₃ – CH ₂ – CH ₂ – CH ₃
3) CH ₃ – CH=CH – CH ₃ 4) CH ₃ – CH(CH ₃)-CH ₂ – CH ₃
5. Продуктом реакции присоединения является 1,2-дибром-2-метилпентан. Исходное
вещество имеет название:
1) 3-метилпентен-1
2) 2-метилпентен-1
3) 2-метилпентен-2
4) 3-метилпентин-1
6. Мономером в реакции полимеризации НЕ может являться вещество, формула
которого:
$\overset{NH_2}{\downarrow}$
1) C ₂ H ₃ – O – CH ₃ 2) C ₂ H ₃ OOCCH ₃ 4)
2) $C_2H_3OOCCH_3$ 4)
7. При неполном гидрировании пентина (в молекуле исходного вещества
разрывается только одна π -связь) образуется углеводород, химическая формула
которого:
1) C_5H_{10} 2) C_5H_8 3) C_3H_6 4) C_4H_{10} 8. Схема реакции $nA \rightarrow (-A-)_n$ соответствует образованию полимера (указаны все
продукты реакции и исходные вещества):
1) капрон 3) гликоген
2) фенолформальдегидная смола 4) полипропилен
9. Бутен-2 взаимодействует с веществами, названия которых:
а) хлороводород в) оксид серебра (I), аммиачный раствор
а) хлороводород в) оксид серебра (I), аммиачный раствор б) кислород г) бром 1) б,в 2) а,б,г 3) в,г 4) а,б,в
1) б,в 2) а,б,г 3) в,г 4) а,б,в

- 10. В промышленности реакцию полимеризации используют для получения:
- 1) целлюлозы

3) лавсана

2) капрона

4) полиизопрена

Часть Б

1. Установите соответствие между формулой УВ и числом структурных изомеров, в виде которых он может существовать (исключая межклассовую изомерию).

Формула	Число изомеров
A) C_4H_9OH	1) 1
Б) C ₃ H ₄ (алкин)	2) 2
B) C_2H_5OH	3) 3
Γ) C_5H_{12}	4) 4
	5) 5

- 2. Определите объем (дм³) этена, который потребуется для получения полиэтилена, массой 42 г, если выход продукта реакции 80%.
- 3. Смешали 10 см³ пропана и избыток кислорода. Смесь подожгли. После окончания реакции объем газовой смеси составил 90 см³. Какой объем (см³) кислорода был добавлен к пропану? (измерение объемов проводились при 200° С и давлении 101,3кПа).
- 4. Алкин массой 63,67 г полностью сожгли в избытке кислорода. Образовавшийся углекислый газ смешали с гелием объемом 56 дм³. Молярная масса полученной при этом смеси газов составила 30 г/моль. Определите молярную массу (г/моль) алкина.

5. Установите соответствие между формулой вещества и общей формулой гомологического ряда, к которому данное вещество принадлежит.

Формула вещества	Общая формула гомологического ряда
	1) C_nH_{2n+2}
A) =	2) C _n H _{2n}
Б)	3) C _n H _{2n-2}
	4) C _n H _{2n-4}
$ _{\mathrm{B})}$	
	5) C _n H _{2n-6}
Γ	6) C _n H _{2n-8}

6. Установите соответствие между схемами превращений и реагентами X и Y. Все

реакции протекают в олну сталию

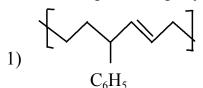
pounding appropriate a party oragine.		
Схема превращений	Реагент	
	X	Y
A) $C_2H_{6X\rightarrow}C_2H_5C1Y\rightarrow C_2H_5OH$	1)HCl	NaOH\спирт,t
	2) $H_2O\backslash H^+$, t	HBr
	$3)Cl_2\hv$	$NaOH\H_2O,t$
	$4)$ KOH\H ₂ O,t	NaBr(p-p)

Диены

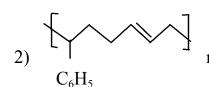
Вариант 1

- **1.** Схема реакции $nA \rightarrow (-A -)_n$ соответствует образованию полимера (указаны все продукты реакции и исходные вещества):
 - 1) полиизопрен;

3) капрон;


2) полипептид;

- 4) крахмал.
- 2. Для соединения, формула которого представлена на рисунке, верно:


- 1) имеет название полибутадиен;
- 2) получают полимеризацией пентена 1;
- 3) молекула мономера содержит две двойные углерод-углеродные связи;
- 4) превращается в резину при нагревании с водородом.
- **3.** В реакцию вступили гексадиен-1,3 химическим количеством 1 моль и хлор химическим количеством 1 моль. В результате реакции может образоваться (изомеризацию не учитывать):
 - 1) 1,2-дихлоргексен-3 и 1,3-дихлоргексен-2;
 - 2) 1,4-дихлоргексен-2 и 1,2-дихлоргексен-1;
 - 3) 1,2,3,4-тетрахлоргексан (1 моль);
 - 4) 3,4-дихлоргексен-1 и 1,4-дихлоргексен-2.

n

4. Укажите строение продукта совместной полимеризации стирола и бутадиена-1,3:

 C_6H_5 n

4) C_6H_5 n

5. Винилацетилен $H^e - C^a \equiv C^b - C^c = C^d - H^k$

взаимодействует с хлороводородом с образованием 2-хлорбутадиена-1,3. В молекуле продукта реакции по сравнению с молекулой исходного органического вещества наиболее сильно увеличивается длина связи и уменьшается валентный угол соответственно:

1) $C^c - C^d \text{ if } H^f - C^d - H^k$;

3) $C^a - C^b$ и $H^f - C^d - H^k$;

2) $C^{c} - C^{d}$ и $H^{e} - C^{a} - C^{b}$;

- 4) $C^a C^b$ и $H^e C^a C^b$.
- 6. Реакция полимеризации, но не поликонденсации лежит в основе получения:
 - 1) вискозы;

- 3) найлона;
- 2) полипептидов;
- 4) бутадиенового каучука.
- 7. Укажите название мономера и тип реакции синтеза поливинилхлорида:
 - 1) хлорэтен, полимеризация;
- 3) тетрафторэтен, полимеризация;
- 2) бутен-2, поликонденсация;
- 4) бутадиен-1,3, полимеризация.

8.

B схеме превращений A
$$t^0$$
, Al_2O_3 , $ZnO \rightarrow B$

полимеризация→

веществами А и В соответственно являются:

- 1) бутан и бутадиен-1,3;
- 3) этанол и бутадиен-1,3;

2) этанол и этилен;

- 4) этанол и полибутадиен.
- 9. Относительная макромолекулы молекулярная одной масса полибутадиена составляет 18900. Степень полимеризации равна:
 - 1) 350;
- 2) 650;
- 3) 1000;
- 4) 1050.
- **В1**. Укажите объем ацетилена (дм³, н.у.), содержащего 5% по объему негорючих примесей, для полного сжигания которого потребуется воздух объемом 60 дм³ (н.у.). Считайте, что воздух содержит 20% кислорода по объему.
- В2. Некоторый полимер получают совместной полимеризацией пропена и бутадиена -1,3. Макромолекулы полимера содержат звенья обоих мономеров. Полимер массой 32,40 г может обесцветить 128 г раствора брома в четыреххлористом углероде с массовой долей брома 5%. Рассчитайте, сколько мономерных звеньев пропена приходится на одно мономерное звено бутадиена в полимере.
- ВЗ. Установите соответствие между названием органического соединения и общей формулой гомологического ряда, к которому данное соединение относится.

виде сочетания букв и цифр, соблюдая Ответ запишите В алфавитную последовательность.

Название органического соединения	Общая формула гомологического	
	ряда	
А)пентаналь	1) C_nH_{2n+2}	
Б) гексадиен-1,4	$2) C_n H_{2n}$	
В)пропанол-2	$3) C_n H_{2n} o$	
Г)гексин-1	4) $C_n H_{2n-2}$	
,	$5) C_n H_{2n+2} O$	

- **1.** Схема реакции $nA \rightarrow (-A -)_n$ соответствует образованию полимера (указаны все продукты реакции и исходные вещества):
 - 1) капрон;

3) гликоген;

2) фенолформальдегидная смола; 4) полибутадиен.

- 2. Для соединения, формула которого представлена на рисунке, верно:

$$\begin{array}{c|c}
 & CH_2 \\
 & C \\
 & CH_3
\end{array}$$

- 1) образуется в природе и синтезируется в промышленности;
- 2) получают вулканизацией полибутадиена;
- 3) является полиэфирным волокном;
- 4) формула мономера $CH_3 CH = CH CH_3$.
- 3. При взаимодействии изопрена и хлора (избыток) образуется(-ются) в качестве основного(-ых) продукта(-ов):
 - 1) 3,4-дихлор-3-метилбутен-1 и 1,4-дихлор-2-метилбутен-2;
 - 2) 3,4-дихлор-3-метилбутен-1;
 - 3) 2-метил-1,2,3,4-тетрахлорбутан;
 - 4) 1,4-дихлор-2-метилбутен-2.
- 4. Укажите строение возможного продукта полимеризации 2-хлорбутадиена-1,3: Cl

1)
$$Cl$$
 n $3)$ Cl n Cl n $2)$ Cl n $4)$ n

5. Молекула бутадиена-1,3

$$H^{a}$$
 H $H^{b} - C^{c} = C^{d} - C^{e} = C^{f} - H$ H H

присоединяет одну молекулу брома. В молекуле продукта реакции по сравнению с молекулой исходного органического вещества (присоединение происходит по связи $C^{c}-C^{d}$): а) длина связи $C^{c}-C^{d}$ увеличивается; б) длина связи $C^{d}-C^{e}$ увеличивается; в) длина связи $C^e - C^f$ увеличивается; г) валентный угол $H^a - C^c - H^b$ уменьшается.

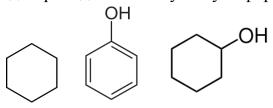
- 1) a, 6;
- 2) a, б, г;
- 3) б, в, г;
- 4) B, Γ.
- 6. Реакция полимеризации, но не поликонденсации лежит в основе получения:
 - кевлара;

3) плексигласа;

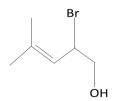
бумаги;

4) полиэтилентерефталата.

- 7. Укажите название мономера и тип реакции синтеза полиэтилена:
 1) бутен-2, полимеризация;
 3) бутадиен-1,3, полимеризация;
 - 2) дихлорэтен, поликонденсация; 4) этилен, полимеризация.
- **8.** В схеме превращений бутан t^0 , $kat \to A$ полимеризация $\to B$ вешествами A и B соответственно являются:
 - 1) бутадиен-1,3 и полиизопрен; 3) изопрен и полибутадиен;
 - 2) бутадиен-1,3 и полибутадиен; 4) этилен и полиизопрен.
- **9.** Относительная молекулярная масса одной макромолекулы полибутадиена составляет 32400. Степень полимеризации равна:
 - 1) 10; 2) 100; 3) 320; 4) 600.
- **В1.** После полного гидрирования смеси метана и ацетилена (водород прореагировал полностью) плотность полученной смеси по водороду составила 13,6. Укажите объем (дм³, н.у.) метана в 100 дм³ исходной смеси.
- **В2.** Некоторый полимер получают совместной полимеризацией этена и бутадиена -1,3. Макромолекулы полимера содержат звенья обоих мономеров. Полимер массой 9,48 г может обесцветить 64 г раствора брома в четыреххлористом углероде с массовой долей брома 5%. Рассчитайте, сколько мономерных звеньев этена приходится на одно мономерное звено бутадиена в полимере.
- **В3.** Установите соответствие между названием органического соединения и общей формулой гомологического ряда, к которому данное соединение относится.


Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность.

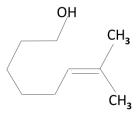
последовательность.		
Название органического соединения	Общая формула гомологического	
	ряда	
А)пентин-2	1) C_nH_{2n+2}	
Б) пропанол-1	$2) C_n H_{2n}$	
В) декан	$3) C_n H_{2n} o$	
Г) пентадиен-1,3	4) C_nH_{2n-2}	
	5) $C_n H_{2n+2} O$	


Спирты

Вариант 1

- 1. Укажите число первичных атомов углерода в органическом веществе Γ в цепочке превращений:
 - 2-метил-1-хлорпропан NaOH, $H2O\to$ А H2SO4, 180 $C\to$ Б $HCl\to$ В Na, изб. \to Γ
- 2. Среди приведенных отсутствует формула представителя класса:

- 1) фенолов
- 2) ароматических спиртов
- 3) циклоалканов
- 4) карбоциклических спиртов
- 3. Укажите название соединения, строение которого


по систематической номенклатуре:

- 1) цис-2-бром-4-метилпентен-3-ол-1
- 2) 2-бром-4,4-диметилбутен-3-ол-1
- 3) транс-2-бром-4-метилпентен-3-ол-1
- 4) 2-бром-4-метилпентен-3-ол-1
- 4. Укажите название соединения $C_4H_{10}O$, которое реагирует с металлическим натрием без нагревания, при окислении образует кетон, может существовать в виде стереоизомеров:
 - бутанол-1
 - 2) бутанол-2
 - 3) 2-метилпропанол-2
 - 4) диэтиловый эфир
- 5. Назовите по систематической номенклатуре соединение, формула которого:

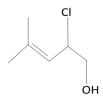
 CH_{3} | $H_{3}C - C - C_{2}H_{5}$ | OH

- 1) 3-метилбутанол-3
- 2) 2-этилпропанол-2
- 3) метилэтилкарбинол
- 4) 2-метилбутанол-2
- 6. Процесс дегидратации:

- 1) относится к реакциям присоединения
- 2) используют для получения алкенов из спиртов
- 3) идет с разрывом связей между атомами углерода
- 4) относится к реакциям изомеризации
- 7. Укажите название ненасыщенного спирта, формула которого:

- 1) 2-метилоктен-2-ол-8
- 2) 7-метилоктен-6-ол-1
- 3) 8-метилнонен-7-ол-1
- 4) 2-метилнонен-2-ол-9
- 8. В схеме превращений $C_3H_7Br + X$, $H20 \rightarrow C_3H_7OH + Y \rightarrow C_3H_7OK$

Х и У являются соответственно веществами, формулы которых:


- 1) Na,KOH
- 2) NaOH,KCl
- 3) NaOH,K
- 4) Na₂SO₄,K
- 9. Натрий массой 345 мг полностью растворили в смеси воды метанола и бутанола-1. Укажите массу газа (мг), который выделился при этом.
- 10. Укажите относительную молекулярную массу основного органического продукта X в цепочке превращений:

 $C_2H_6(1 \text{ моль}) \ 1 \text{ моль } Cl2, \ hv \rightarrow \dots \ NaOH, H2O \rightarrow \dots \ H2SO4, 140 \ C \rightarrow \dots \ O2, PdCl2, CuCl2 \rightarrow \dots \ NaBH4 \rightarrow X$

- 11.В порядке увеличения температур кипения вещества расположены в ряду:
 - 1) метан, пропан, метанол, этиленгликоль
 - 2) метан, пропан, этиленгликоль, метанол
 - 3) пропан, метан, этиленгликоль, метанол
 - 4) метан, метанол, пропан, этиленгликоль
- 12. При дегидратации насыщенного ациклического одноатомного спирта образовался алкен, объем паров которого в 12 раз меньше объема кислорода, необходимого для полного сгорания такой же порции спирта. Рассчитайте молярную массу спирта (объемы веществ измерены при одинаковых условиях).
- 13.К классу спиртов относится основной продукт превращений:
 - a) $C_2H_5Br+NaOH H2O \rightarrow$
 - б) C_3H_7 Br+КОН спирт→
 - B)CH₃CHO+H_{2 Ni, t→}
 - Γ)C₂H₅CHO+Cu(OH)_{2 t→}
 - 1) a, Γ 2) a, B 3) δ, B 4) δ, Γ

- 1. Найдите сумму молярных масс органических веществ В и Д, образовавшихся в результате превращений, протекающих по схеме(в молекуле вещества В содержится 2 атома углерода):
 - $C_2H_5OH\ H2SO4$, 140 $C\to$ А Br2, $CCl4\to$ Б KOH изб, спирт \to В Сакт \to Г 1 Br2, $FeBr3\to$ Д
- 2. Среди приведенных отсутствует формула представителя класса:

- 1) фенолов
- 2) многоатомных спиртов
- 3) ациклических спиртов
- 4) ароматических спиртов
- 3. Укажите название соединения, строение которого

по систематической номенклатуре:

- 1) цис-2-хлор-4-метилпентен-3-ол-1
- 2) 2-хлор-4,4-диметилбутен-3-ол-1
- 3) транс-2-хлор-4-метилпентен-3-ол-1
- 4) 2-хлор-4-метилпентен-3-ол-1
- 4. Укажите название соединения $C_4H_{10}O$, которое реагирует с металлическим натрием без нагревания, устойчиво к действию $KMnO_4$,легко подвергается внутримолекулярной дегидратации:
 - 1) бутанол-1
 - 2) бутанол-2
 - 3) 2-метилпропанол-2
 - 4) диэтиловый эфир
- 5. Назовите по систематической номенклатуре соединение, формула которого:

$$\begin{array}{c|cccc} H_{3}C & H_{2}C - CH_{2} - CH_{3} \\ & | & | \\ H_{3}C - C - C - CH_{3} \\ & | & | \\ & CH_{3} & OH \end{array}$$

- 1) 3,3-диметил-2-пропилбутанол-2
- 2) 4,5,5-триметилгексанол-4
- 3) 2,2-диметил-4-пропилбутанол-3
- 4) 2,2,3-триметилгексанол-3
- 6. При полном сгорании углеводорода образовались равные химические количества углекислого газа и воды. Углеводород относится к:
 - алканам
 - алкенам
 - 3) алкинам

- 4) гомологам бензола
- 7. Укажите название ненасыщенного спирта, формула которого:

$$CH_{3} - C = CH - CH_{2} - CH_{2} - C - CH = CH_{2}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} - CH_{4} - CH_{5}$$

$$CH_{3} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$$

$$CH_{3} - CH_{5} - CH_{5} - CH_{5} - CH_{5}$$

- 1) 2,6-диметилоктадиен-2,7-ол-6
- 2) 2,6-диметилоктадиен-2,6-ол-6
- 3) 3,7-диметилоктадиен-1,6-ол-3
- 4) 2,6-диметилоктадиен-2,7-овый спирт
- 8. В схеме превращений $C_3H_6Br + X$, t, p, $kt \rightarrow C_3H_7OH + Y$, $H + \rightarrow HCOOC_3H_7$ Х и У являются соответственно веществами, формулы которых:
 - 1) NaOH,CH₃CHO
 - 2) NaOH,CH₃COOH
 - 3) H₂O,CH₃CHO
 - 4) H₂O,HCOOH
- 9. При взаимодействии натрия со смесью метанола, пропанола-2 и этанола выделился газ объемом 0,224 дм³. Укажите массу натрия, который вступил в реакцию.
- 10. Укажите сумму молярных масс основных органических продуктов X_1 и X_2 в цепочке химических превращений

СН₃ОН(1 моль)

1 моль NH3, $Al2O3 \rightarrow \dots HCl \rightarrow \dots NaOH \rightarrow \dots CH3COOH \rightarrow \dots NaOH, - H2O \rightarrow \dots X$ $_{1+}X_{2}$

- 11.В порядке увеличения температур кипения вещества расположены в ряду:
 - 1) метан, метанол, бутан, глицерин
 - 2) бутан, метан, глицерин, метанол
 - 3) метан, глицерин, бутан, метанол
 - 4) метан, бутан, метанол, глицерин
- 12. При неполном окислении насыщенного ациклического одноатомного спирта образовался альдегид, объем паров которого в 6 раз меньше объема кислорода, необходимого для полного сгорания такой же порции спирта. Рассчитайте молярную массу спирта(объемы веществ измерены при одинаковых условиях).
- 13.К классу спиртов относится основной продукт превращений:

a)HCOOH+Ag₂O
$$NH4 + \rightarrow$$

в)
$$C_6H_{12}O_6$$
 дрожжи \rightarrow

$$\Gamma$$
)C₂H₄+H₂O H +, $t \rightarrow$

Карбоновые кислоты (профиль) Вариант 1

					_	
1.	Гексановая	кислота	и (бутановая	кислота	являются:

- 1) одним и тем же веществом;
- 2) гомологами;
- 3) структурными изомерами;
- 4) геометрическими изомерами.
- 2. В схеме превращений органических соединений

X NaOH→ CH₃COONa + H2SO4→ Y

Х и У являются веществами, формулы которых:

- 1) CH₃CH₂Cl и CH₃COOH;
- 2) CH₃COOH и CH₃CH₂Cl;
- 3) CH₃COOCH₃ и CH₃COOH;
- 4) CH₃CH₂OH и CH₃CH₂OH.
- **3.** Бутаналь при нагревании с медь (II) гидроксидом образует в качестве основного продукта:
 - 1) бутанол-1;
 - 2) этановую кислоту;
 - 3) пропанол-1;
 - 4) бутановую кислоту.
- 4. Гидроксикислота образуется при кислотном гидролизе:
 - 1) винилацетата;
 - 2) метилметакрилата;
 - 3) винилхлорида;
 - 4) метилового эфира глицина.
- 5. Укажите превращение, основным продуктом которого является карбоновая кислота:
 - 1) $C_2H_5OH + CuO t \rightarrow ;$
 - 2) $HCOOH + Cu(OH)_2 t \rightarrow ;$
 - 3) $CH_3CH_2COOCH_3 + H_2O$ *H2SO*4, $t \rightarrow$;
 - 4) $C_2H_4 + H_2O \ H2SO4, t \rightarrow .$
- **6.** Для нейтрализации раствора, содержащего 1,5 моль гидроксида кальция, требуется уксусная кислота химическим количеством:
 - 1) 1, 5
- 2) 0,75
- 3)3
- 4) 2.
- 7. Укажите все правильные характеристики относительно уксусной кислоты:
 - а) насыщенная карбоновая;
 - б) слабая кислота;
 - в) образует простые эфиры;
 - г) хорошо растворима в воде;
 - д) применяется в пищевой промышленности.
 - 1) а, б, г, д; 2) а, б, в, г, д; 3) а, б, г; 4) б, г, д.
- 8. Число σ-связей в молекуле терефталевой кислоты равно:
- 1) 11;
- 2) 14;
- 3) 16;
- 4) 18.
- 9. Растворы муравьиной и уксусной кислот можно различить с помощью:
 - 1) Ca;
- 2) Ag₂O;
- 3) лакмуса;
- 4) NaHCO₃.

- **10.**Число ненасыщенных одноосновных карбоновых кислот в ряду: $C_{17}H_{35}COOH$, $C_{17}H_{33}COOH$, $C_{15}H_{31}COOH$, $C_{15}H_{31}COOH$, $C_{17}H_{31}COOH$, $C_{15}H_{29}COOH$, $C_{19}H_{39}COOH$, равно:
 - 1) 2; 2) 3; 3) 4; 4) 5.
 - **В1.** Определите молярную массу соли, полученной в результате следующих превращений органических веществ:

 $\mathrm{CH_4}$ (2 моль) 1500, $t \to \ldots$ $H20, \ HgCl2, \to \ldots$ $Br2 \ H20 \to \ldots$ $CH3(CH2)2NH2 \to \ldots$

- **В2.** На окисление альдегида массой 52,2 г, содержащего одну альдегидную группу, израсходован оксид серебра массой 208,8г. Рассчитайте массу (г) полученной кислоты.
- **В3.** Какой объем (см³) водного раствора уксусной кислоты с массовой долей CH_3COOH 38% (ρ =1,05 г/см³) следует добавить к 100 г раствора уксусного ангидрида в уксусной кислоте с массовой долей ($CH_3CO)_2O$ 35%, чтобы получить 85-процентный раствор уксусной кислоты?

Карбоновые кислоты (профиль) Вариант 2

- 1. Масляная кислота и пентановая кислота являются:
 - 1) одним и тем же веществом;
 - 2) структурными изомерами;
 - 3) гомологами;
 - 4) геометрическими изомерами.
- 2. В схеме превращений

CH₃COONa X→ CH₃COOH KOH→ Y

- Х и У являются веществами, формулы которых:
- 1) H₂SO₄ и CH₃COONa;
- 2) H₂SO₄ и C₂H₅COONa;
- 3) NaOH и CH₃COOK;
- 4) CH₃OH и C₂H₅OK.
- **3.** При кислотном гидролизе (избыток соляной кислоты) парацетамола, относящегося к классу амидов, образуются:
- 1) гидрохлорид 4-гидроксианилина и уксусная кислота;
- 2) этиламин и 3-гидроксибензойная кислота;
- 3) уксусный альдегид и 3-гидроксианилиний хлорид;
- 4) анилин и гидрохлорид глицина.
- **4.** При взаимодействии 2-метилбутаналя с медь (II) гидроксидом при нагревании в качестве основного продукта образуется:
- 1) пропановая кислота;
- 2) 2-метилбутановая кислота;
- 3) 2-метилпропановая кислота;
- 4) бутановая кислота.
- 5. Укажите превращение, основным продуктом которого является карбоновая кислота:
- 1) $C_2H_4 + O_2$ *PdCl2*, *CuCl2*, \rightarrow ;
- 2) $C_2H_4 + KMnO_4 \quad H2O, 5C \rightarrow ;$
- 3) $CH_3CHO + O_2$ кат. \rightarrow ;
- 4) $C_2H_2 + H_2O$ HgCl2, H2SO4 \rightarrow .
- 6. Муравьиная кислота реагирует со всеми веществами ряда:
- 1) NaOH, NaHCO₃, C_2H_6 ;
- 2) CH₃OH, NaCl, Ca;
- 3) K₂CO₃, Ag₂O, Cu;
- 4) Ca, Ag₂O, KHCO₃.
- 7. Укажите все правильные утверждения. Непредельные карбоновые кислоты могут вступать в реакции: а) этерификации; б) окисления; в) полимеризации; г) со щелочами; д) присоединения.
- 1) а, б, в, г, д; 2) б, в, г, д; 3) а, б, г, д; 4) б, г, д.
- 8. При взаимодействии уксусной кислоты с хлором не образуется:
 - 1) CCl₃COOH;
 - 2) CH₂ClCOOH;
 - 3) CHCl₂COOH;
 - 4) CH₂ClCOOCl.
- 9. Водный раствор трихлоруксусной кислоты окрашивает лакмус:
 - 1) в синий цвет;
 - 2) в красный цвет;

- 3) не окрашивает;
- 4) в желтый цвет.
- 10. Не выделяется газ при взаимодействии муравьиной кислоты с:
 - 1) Ag_2O , 2) Ca, 3) $KHCO_3$, 4) C_2H_5OH .
 - **В1.** Определите молярную массу соли, полученной в результате следующих превращений органических веществ:

$$C_2H_4$$
 $H2O\backslash H2SO4 \rightarrow$... $CuO, t \rightarrow$... $KMnO4, \backslash H2SO4 \rightarrow$... $CH3NH2 \rightarrow$...

- **В2.** На окисление альдегида массой 43,2 г, содержащего одну альдегидную группу, израсходован оксид серебра массой 139,2 г. Рассчитайте массу (г) полученной кислоты.
- **B3.** Какой объем (см³) водного раствора уксусной кислоты с массовой долей $CH_3COOH\ 64\%\ (\rho=1,06\ r/cm³)$ следует добавить к 60 г раствора уксусного ангидрида в уксусной кислоте с массовой долей $(CH_3CO)_2O\ 40\%$, чтобы получить 90-процентный раствор уксусной кислоты?

Тепловой эффект. Термохимические расчеты. Вариант 1

- 1. При полном окислении алюминия на воздухе в соответствии с термохимическим уравнением $4Al_{(TB)} + 3O_{2(\Gamma)} = 2Al_2O_{3(TB)} + 3350,4$ кДж получен оксид металла массой 7,14 г. Количество теплоты (кДж), которая выделилась при этом, равно: 1) 97; 2) 117; 3) 189; 4) 256.
- **2.** Термохимическое уравнение реакции синтеза аммиака из простых веществ $N_{2(r)}$ + $3H_{2(r)}$ = $2NH_{3(r)}$ +92кДж. Смесь азота с водородом общим объемом 450 дм³ (н.у.) с относительной плотностью по водороду 3,6 поместили в реактор для синтеза аммиака. В результате реакции относительная плотность смеси газов по водороду возросла на 10%. Рассчитайте количество теплоты (кДж), выделившейся в результате реакции.
- **3.** При сгорании водорода массой 10 г выделяется 1430 кДж теплоты, а при сгорании метана массой 10 г выделяется 556 кДж. Рассчитайте количество теплоты (кДж), которая выделится при сгорании в избытке кислорода смеси водорода и метана объемом (н.у.) 11,2 дм³, содержащей 60% водорода по объему.
- 4. Сгорание водорода и метана протекает согласно термохимическим уравнениям:

$$2H_{2(r)} + O_{2(r)} = 2H_2O_{(ж)} + 570 \ кДж$$
 $CH_{4(r)} + 2O_{2(r)} = CO_{2(r)} + 2H_2O_{(ж)} + 890 \ кДж.$

Рассчитайте количество теплоты (кДж), которая выделится при сгорании смеси водорода и метана массой 15,4 г, взятых в мольном отношении 2:1 соответственно.

- 5. При полном сгорании метана химическим количеством 1 моль в кислороде выделяется 890 кДж теплоты, а в озоне 1032 кДж. В результате сгорания смеси объемом (н.у.) 35,56 дм³, состоящей из метана и озонированного кислорода (смесь озона с кислородом), газы прореагировали полностью с образованием углекислого газа и воды. Определите количество теплоты (кДж), выделившейся при этом, если доля озона в озонированном кислороде составляет 35% по объему.
- 6. При окислении сахарозы химическим количеством 1 моль в организме человека выделяется примерно 5643 кДж теплоты. При беге в течении 1 мин. организм человека расходует энергию, равную 40 кДж. Вычислите массу сахарозы (г), которая должна поступать в организм человека, чтобы компенсировать расход энергии, вызванный бегом в течении 300 секунд.
- 7. Сгорание согласно метана протекает термохимическому уравнению CH_4 + $2O_2$ CO_2 $2H_2O_{(x)}$ 890 кДж. (r) (r) (r) Испарение этанола протекает в соответствии с термохимическим уравнением $C_2H_5OH_{(x)} = C_2H_5OH_{(r)} - 39 кДж.$ Рассчитайте минимальный объем (н.у.) метана $(дм^3)$, который необходимо сжечь для получения теплоты, достаточной для испарения этанола массой 2436 г.

Тепловой эффект. Термохимические расчеты. Вариант 2

1. При взаимодействии цинка с серой в соответствии с термохимическим уравнением $Zn_{({\scriptscriptstyle TB})}+S_{({\scriptscriptstyle TB})}=ZnS_{({\scriptscriptstyle TB})}+201$ кДж получен сульфид цинка массой 58,4 г. Количество теплоты (кДж), которая выделилась при этом, равно:

1) 415; 2) 243; 3) 121; 4) 197.

- **2.** Термохимическое уравнение реакции синтеза аммиака из простых веществ $N_{2(r)}$ + $3H_{2(r)}$ = $2NH_{3(r)}$ +92кДж. Смесь азота с водородом общим объемом 550 дм³ (н.у.) с относительной плотностью по водороду 3,6 поместили в реактор для синтеза аммиака. В результате реакции относительная плотность смеси газов по водороду возросла на 12%. Рассчитайте количество теплоты (кДж), выделившейся в результате реакции.
- **3.** При сгорании водорода массой 10 г выделяется 1430 кДж теплоты, а при сгорании метана массой 10 г выделяется 556 кДж. Рассчитайте количество теплоты (кДж), которая выделится при сгорании в избытке кислорода смеси водорода и метана объемом (н.у.) 11,2 дм³, содержащей 60% водорода по объему.
- 4. Сгорание водорода и метана протекает согласно термохимическим уравнениям:

$$2\dot{H}_{2(r)}+O_{2(r)}=2H_2O_{(ж)}+570\ кДж \ CH_{4(r)}+2O_{2(r)}=CO_{2(r)}+2H_2O_{(ж)}+890\ кДж.$$

Рассчитайте количество теплоты (кДж), которая выделится при сгорании смеси водорода и метана массой 6,8 г, взятых в мольном отношении 1: 2 соответственно.

- 5*. При полном сгорании метана химическим количеством 1 моль в кислороде выделяется 890 кДж теплоты, а в озоне 1032 кДж. В результате сгорания смеси объемом (н.у.) 35,56 дм³, состоящей из метана и озонированного кислорода (смесь озона с кислородом), газы прореагировали полностью с образованием углекислого газа и воды. Определите количество теплоты (кДж), выделившейся при этом, если доля озона в озонированном кислороде составляет 35% по объему.
- 5. При полном сгорании метана химическим количеством 1 моль в кислороде выделяется 890 кДж теплоты, а в озоне 1032 кДж. В результате сгорания смеси объемом (н.у.) 34,384 дм³, состоящей из метана и озонированного кислорода (смесь озона с кислородом), газы прореагировали полностью с образованием углекислого газа и воды. Определите количество теплоты (кДж), выделившейся при этом, если доля озона в озонированном кислороде составляет 14% по объему.
- 6. При окислении сахарозы химическим количеством 1 моль в организме человека выделяется примерно 5643 кДж теплоты. При беге в течении 1 мин. организм человека расходует энергию, равную 40 кДж. Вычислите массу сахарозы (г), которая должна поступать в организм человека, чтобы компенсировать расход энергии, вызванный бегом в течении 500 секунд.
- 7. Сгорание протекает согласно термохимическому метана уравнению CH_{4} CO_2 $2H_2O_{(xc)}$ 890 кДж. $2O_2$ Испарение воды протекает в соответствии с термохимическим уравнением H_2O $_{(x)} = H_2O_{(r)} - 44 кДж.$ Рассчитайте минимальный объем (н.у.) метана (дм³), который необходимо сжечь для получения теплоты, достаточной для испарения воды объемом 2,52 дм³ ($\rho = 1 \Gamma/cm^3$).

Скорость химической реакции. Химическое равновесие. Вариант 1

1. В закрытом сосуде постоянного объема установилось равновесие

	$H_{2(r)} + I_{2(r)} \leftrightarrow 2HI_{(r)} + Q.$
	Затем температуру повысили. Для новой равновесной системы по сравнению
	с первоначальной верными являются утверждения:
	а) давление в системе увеличилось;
	б) образовался водород количеством вдвое меньшим, чем израсходовалось
	иодоводорода;
	в) количество водорода не изменилось;
	г) количество йода уменьшилось.
	1) a, б; 2) a, в; 3) б, г; 4) в, г.
2.	В закрытой системе протекает одностадийное превращение $A_{(r)}+B_{(r)}\leftrightarrow C_{(r)}$. После
	установления равновесия давление в системе увеличили в три раза. Укажите
	правильное утверждение:
	1) объем системы не изменился;
	2) скорость прямой реакции увеличилась, а обратной – уменьшилась;
	3) скорость обратной реакции увеличилась;
	4) скорость прямой реакции уменьшилась.
3.	В сосуде объемом 4 дм^3 протекает реакция $A + B = AB$. Через 12 с после начала
	реакции образовалось вещество АВ химическим количеством 12 моль. Средняя
	скорость (моль/дм ³ · c) образования вещества AB равна:
	1) 0,5; 2) 1; 3) 2; 4) 0,25.
4.	Исходные концентрации веществ С и В, участвующих в одностадийной реакции С
	+ B = Д, равны соответственно 1,34 моль/дм ³ и 1,27 моль/дм3. Через 43 с после
	начала реакции концентрация вещества С снизилась до 0,55 моль/дм ³ . Средняя
	скорость (моль/дм ³ ·с) данной реакции и концентрация вещества В (моль/дм ³) через
	43 с после начала реакции равны соответственно:
	1) 0,023 и 0,45; 3) 0,018 и 0,48; 2) 0,018 и 0,88; 4) 0,023 и 0,48.
5.	В замкнутой системе протекает реакция между газообразными веществами $A_{(r)}$ +
	$2B_{(r)} \leftrightarrow C_{(r)} + D_{(r)} + Q$. Укажите все факторы, увеличивающие скорость прямой
	реакции:
	а) повышение давления в системе;
	б) понижение температуры;
	в) уменьшение концентрации вещества В;
	г) уменьшение объема системы.
	1) в, г; 2) а, б, г; 3) б, в; 4) а, г.
6.	В закрытом сосуде протекает химическая реакция А + 2В = 2С + Д. До начала
	реакции молярная концентрация вещества A равнялась 3 моль/дм ³ , а вещества С –
	0 моль/дм3. Через сколько секунд концентрации веществ А и С сравняются, если
	скорость образования вещества C составляет 0,03 моль/дм ³ · с (все вещества –
	газы, объем сосуда постоянный)?
	1) 22; 2) 25; 3) 33; 4) 67.
7.	При уменьшении давления в 4 раза при постоянной температуре в равновесной
	системе $2CO_{(r)} + O_{2(r)} \leftrightarrow 2CO_{2(r)}$:
	1) равновесие сместится в сторону продуктов реакции;
	2) смещение равновесия наблюдаться не будет;
	3) равновесие сместится в сторону исходных веществ;

4) скорость прямой реакции станет больше скорости обратной реакции.

- **8.** В сторону исходных веществ равновесие в системе $H_{2 (r)} + I_{2 (r)} \leftrightarrow 2HI_{(r)} + Q$ смещается при:
 - а) внесении катализатора;
- б) добавлении в систему НІ
- в) повышении температуры;
- г) удалении из системы H₂ и I₂.
- 1) а, г; 2) б, в, г; 3) а, б, в; 4) б, в.
- **9.** Для реакции $CO_{2\ (r)} + H_{2\ (r)} \longleftrightarrow CO_{(r)} + H_2O_{(r)} Q$ выход водяного пара можно увеличить путем:
 - 1) повышения давления;
- 3) добавления углекислого газа;
- 2) понижение температуры;
- 4) добавления угарного газа.
- **10.** Скорость реакции $PCl_{5(r)} \leftrightarrow PCl_{3(r)} + Cl_{2(r)} Q$ увеличится при:
 - 1) понижении давления;
- 3) увеличении объема системы;
- 2) повышении температуры;
- 4) увеличении концентрации Cl₂.

Скорость химической реакции. Химическое равновесие. Вариант 2

1. В закрытом сосуде постоянного объема установилось равновесие $H_{2(r)}+I_{2(r)} \leftrightarrow 2HI_{(r)}+Q$.

	Затем температуру повысили. Для новой равновесной системы по сравнению
	с первоначальной верными являются утверждения:
	а) давление не изменилось;
	б) давление увеличилось;
	в) количество йода увеличилось;
	г) количество йодоводорода увеличилось, а водорода – уменьшилось на такую
	же величину.
_	1) a, Γ ; 2) a, B; 3) δ , Γ ; 4) δ , B.
2.	В закрытой системе протекает одностадийное превращение $A_{(r)} + B_{(r)} \longleftrightarrow C_{(r)}$. После
	установления равновесия давление в системе увеличили в три раза. Укажите
	правильное утверждение:
	1) скорость прямой реакции увеличилась.
	2) скорость прямой реакции уменьшилась, а обратной - увеличилась;
	3) объем системы не изменился;
_	4) скорость обратной реакции уменьшилась.
3.	В сосуде объемом 4 дм ³ протекает реакция $2A + B_2 = 2AB$. Через 5 с после начала
	реакции образовалось вещество АВ химическим количеством 10 моль. Средняя
	скорость (моль/дм ³ · c) образования вещества AB равна:
	1) 0,5; 2) 1; 3) 2; 4) 0,25.
4.	Исходные концентрации веществ A и B, участвующих в одностадийной реакции A $+$ B = C, равны соответственно 2,25 моль/дм ³ и 2,56 моль/дм3. Через 41 с после
	начала реакции концентрация вещества A снизилась до 1,17 моль/дм ³ . Средняя
	скорость (моль/дм ³ ·с) данной реакции и концентрация вещества В (моль/дм ³) через
	41 с после начала реакции равны соответственно:
	1) 0,025 и 1,22; 3) 0,032 и 1,22;
	2) 0,026 и 1,48; 4) 0,036 и 1,46.
5.	В замкнутой системе протекает реакция между газообразными веществами $A_{(r)}$ +
•	$2B_{(r)} \leftrightarrow C_{(r)} + D_{(r)} + Q$. Укажите все факторы, увеличивающие скорость прямой
	реакции:
	а) понижение давления в системе;
	б) повышение температуры;
	в) увеличение концентрации вещества А;
	г) увеличение объема системы.
	1) в, г; 2) а, в, г; 3) б, в; 4) а, г.
6.	В закрытом сосуде протекает химическая реакция А + 3В = 3С + Д. До начала
	реакции молярная концентрация вещества В равнялась 2 моль/дм ³ , а вещества Д –
	0 моль/дм3. Через сколько секунд концентрации веществ В и Д сравняются, если
	скорость образования вещества Д составляет 0,02 моль/дм ³ · с (все вещества –
	газы, объем сосуда постоянный)?
	1) 75; 2) 50; 3) 38; 4) 25.
7.	При увеличении давления при постоянной температуре в равновесной системе
	$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)} + Q$:
	1) равновесие сместится в сторону исходных веществ;
	2) смещение равновесия наблюдаться не будет;
	3) равновесие сместится в сторону продуктов реакции;

4) скорость прямой реакции станет меньше скорости обратной реакции.

- **8.** В сторону продуктов реакции равновесие в системе $H_{2 (r)} + I_{2 (r)} \leftrightarrow 2HI_{(r)} + Q$ смещается при:
 - а) внесении катализатора; б) добавлении в систему НІ
 - в) понижении температуры; г) удалении из системы H_2 и I_2 .
- **9.** Для реакции $CO_{(r)} + H_2O_{(r)} \leftrightarrow CO_{2(r)} + H_{2(r)} Q$ выход водорода можно увеличить путем:
 - 1) уменьшения концентрации угарного газа;
 - 2) понижения давления;
 - 3) уменьшения концентрации углекислого газа;
 - 4) повышения температуры.
- **10.** Равновесие в системе $PCl_{5(r)} \leftrightarrow PCl_{3(r)} + Cl_{2(r)} Q$ смещается в левую сторону при:
 - 1) повышении температуры; 3)
- 3) понижении давления;
 - 2) уменьшении объема системы;
- 4) уменьшении концентрации Cl₂.

1. Для окислительно-восстановительной реакции

 $FeSO_4 + K_2Cr_2O_7 + H_2SO_4 \rightarrow \dots$ верными являются схемы перехода электронов:

- a) $Fe^{+2} + 2e \rightarrow Fe^0$
- B) $Fe^{+2} e \rightarrow Fe^{+3}$
- 6) $Cr^{+6} + 3e \rightarrow Cr^{+3}$
 - Γ) Cr^{+3} -3e $\rightarrow Cr^{+6}$ 3) a, 6;
- 1) в, г;
- 2) б, в;

4) a, г.

2. Простое вещество, в реакции с которым водород является окислителем:

- 2) Ca;
- 3) Br₂;
- 4) O₂.

3. Окислительно-восстановительной реакцией является реакция, схема которой:

- 1) CaO + $H_2O \rightarrow$;
- 3) $H_2SO_4 + Na_2CO_3 \rightarrow ;$
- 2) $Fe(OH)_3$ $t \rightarrow ;$
- 4) $NH_3 + O_2 \quad t \rightarrow .$

4. Укажите схемы процессов восстановления:

- a) $Cl^{+7} \rightarrow Cl^{+3}$; 6) $Cl^{+3} \rightarrow Cl^{+5}$; B) $N^{+5} \rightarrow N^{+2}$; Γ) $S^{-2} \rightarrow S^{+4}$.

1) a. б:

- 2) B, Γ;
- 3) б. г:
- 4) a. B.

5. С изменением степени окисления кремния протекают реакции:

- a) Si + Cl₂ \rightarrow ;
- δ) Na₂CO₃ + SiO₂ → ;

- B) $Mg + Si \rightarrow$;
- Γ) Na₂SiO₃ + HCl \rightarrow .

- 1) a, b;
- 5, Γ;
- 3) a, 6;
- 4) в. г.

6. Для окислительно-восстановительной реакции

 $K_2MnO_4 + K_2S + H_2SO_4 \rightarrow \dots$ укажите схемы перехода электронов:

- a) $Mn^{+6} 1e \rightarrow Mn^{+7}$
- δ) Mn⁺⁶ + 4e → Mn⁺²

B) $S^{+2} + 2e \rightarrow S^0$

 Γ) S⁻² -2e \rightarrow S⁰

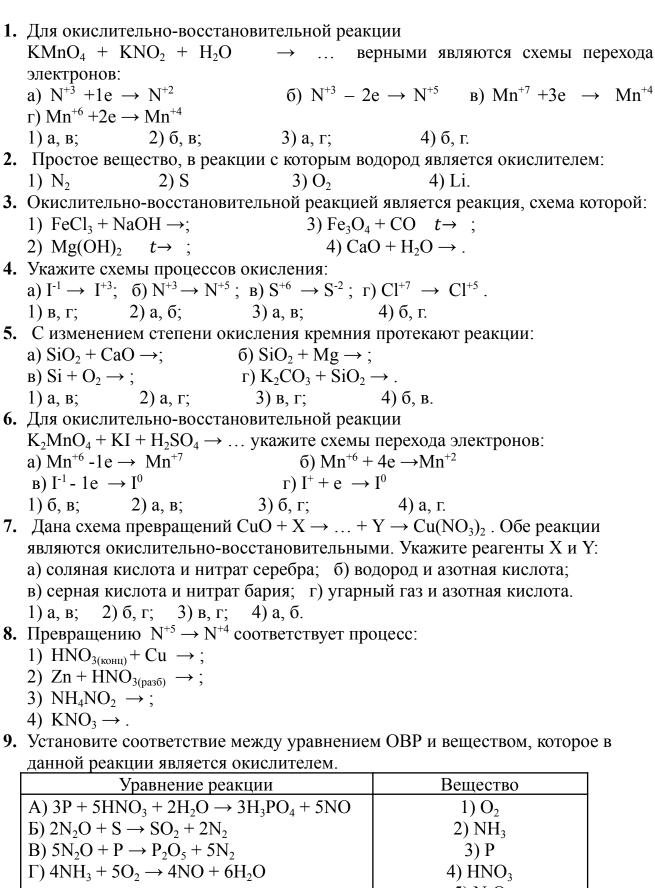
- 1) б, в;
- 6, Γ;
- 3) a, B;
- 4) a, г.

7. Дана схема превращений $CuSO_4 + X \rightarrow ... + Y \rightarrow Cu(NO_3)_2$. Обе реакции являются окислительно-восстановительными. Укажите реагенты X и Y:

- а) железо и азотная кислота (конц.); б) цинк и нитрат ртути (II);
- в) гидроксид натрия и азотная кислота;
- г) хлорид бария и нитрат серебра.
 - 1) a, b;
 - 2) a, 6;
- 3) б, в; 4) B, Γ.

8. Алюминий не проявляет свойства восстановителя в реакции, схема которой:

- 1) $Na_3[Al(OH)_6] + HCl_{(na36)} \rightarrow ;$
- 2) Al + NaOH + $H_2O \rightarrow$;
- 3) Al + HCl \rightarrow ;
- 4) Al + $I_2 \rightarrow .$


9. Установите соответствие между уравнением ОВР и веществом, которое в данной реакции является восстановителем.

71	
Уравнение реакции	Вещество
$A)3P + 5HNO3 + 2H2O \rightarrow 3H3PO4 + 5NO$	1) O ₂
$\text{SO}_2\text{O} + \text{S} \rightarrow \text{SO}_2 + 2\text{N}_2$	2) NH ₃
B) $5N_2O + P \rightarrow P_2O_5 + 5N_2$	3) P
Γ) 4NH ₃ + 5O ₂ \rightarrow 4NO + 6H ₂ O	4) HNO ₃
	$5)N_2O$
	6) S

10. Используя метод электронного баланса, составьте уравнение реакции, протекающей по схеме

$$As_2S_3 + HNO_3 + H_2O \rightarrow H_3AsO_4 + H_2SO_4 + NO$$

Укажите сумму коэффициентов перед формулами веществ молекулярного строения.

5) N₂O 6) S

10. Используя метод электронного баланса, составьте уравнение реакции, $P_2S_3 + HNO_3 + H_2O \rightarrow H_3PO_4 + H_2SO_4 + NO$ протекающей по схеме Укажите сумму коэффициентов перед формулами серной кислоты и воды.

- 1. К раствору серной кислоты массой 300 г с массовой долей H_2SO_4 16% прибавили раствор иодида бария массой 100 г. При этом массовая доля серной кислоты в растворе уменьшилась до 9%. Рассчитайте массовую долю (%) BaI_2 в добавленном растворе.
- 2. При упаривании раствора исходной массой 420 г массовая доля соли в нем увеличилась в 1,5 раза. К полученному раствору добавили эту же соль массой 20 г, которая полностью растворилась, а массовая доля соли в растворе стала равной 18%. Вычислите массовую долю (%) соли в исходном растворе.
- 3. В соляной кислоте массой 240 г с массовой долей HCl 10% растворили хлороводород объемом (н.у.) 33,6 дм³. Рассчитайте массовую долю (%) HCl в полученном растворе.
- **4.** В водном растворе массой 294 г с массовой долей H_2SO_4 5% растворили SO_3 . На полную нейтрализацию полученного раствора затратили раствор щелочи массой 1422 г. В растворе после нейтрализации массовая доля K_2SO_4 равна 4,5%. Укажите массу (г) растворенного SO_3
- **5.** Уксусный ангидрид $(CH_3CO)_2O$ легко взаимодействует с водой, образуя уксусную кислоту: $(CH_3CO)_2O + H_2O \rightarrow 2CH_3COOH$.

Какой объем (см³) водного раствора уксусной кислоты с массовой долей $CH_3COOH~82\%$ ($\rho=1,07~r/cm^3$) следует добавить к 180~r раствора уксусного ангидрида в уксусной кислоте с массовой долей $(CH_3CO)_2O~55\%$, чтобы получить 30-процентный раствор уксусного ангидрида?

- 6. К раствору сульфата меди (II) массой 300 г с массовой долей CuSO₄ 8% добавили медный купорос массой 80 г и перемешали смесь до полного его растворения. Рассчитайте массовую долю (%) соли в полученном растворе.
- 7. Раствор хлорида кальция массой 102,12 г, в котором массовая доля данной соли 25%, смешали с раствором карбоната натрия массой 132,5 г с массовой долей указанной соли 20%. После окончания реакции смесь отфильтровали. Вычислите суммарную массовую долю (%) солей в полученном растворе (потерями пренебречь).
- 8. Уксусная кислота широко применяется в качестве консерванта (пищевая добавка E260). В быту чаще всего используют уксус (массовая доля кислоты 9%, ρ =1,01 г/см³) или уксусную эссенцию (массовая доля кислоты 70%, ρ =1,07 г/см³). Для консервации овощей требуется 150 см³ уксуса. Вычислите, в каком объеме воды (см³) необходимо растворить уксусную эссенцию, чтобы приготовить раствор для консервирования.
- 9. Для анализа смеси хлоридов натрия и аммония провели следующие операции. Навеску смеси массой 5 г растворили в воде. К полученному раствору прибавили 300 г раствора гидроксида калия с массовой долей КОН 2,8 % и нагрели раствор до полного удаления аммиака. В образовавшийся раствор добавили метиловый оранжевый, а затем аккуратно прибавляли соляную кислоту, пока среда раствора не стала нейтральной. Объем израсходованной кислоты равен 210 см³, концентрация HCl в кислоте 0,5 моль/дм³. Вычислите массовую долю (%) хлорида аммония в исходной смеси.
- 10. К раствору серной кислоты массой 140 г добавили смесь нитратов бария и свинца (II). За счет протекания реакции масса раствора увеличилась на 7 г, а массовые доли кислот в растворе уравнялись. Вычислите массовую долю (%) серной кислоты в исходном растворе.
- 11. Свинцовую пластинку массой 70 г опустили в раствор нитрата меди (II) массой 380 г. В момент извлечения пластинки из раствора массовая доля нитрата свинца (II) в растворе оказалась равной 4,3%. Вычислите, на сколько процентов уменьшилась масса пластинки после извлечения ее из раствора.

12. К раствору медного купороса массой 48 г с массовой долей сульфата меди (II) 5 % добавили некоторое количество насыщенного раствора сульфида натрия. Растворимость сульфида натрия в условиях эксперимента составляла 25 г на 100 г воды. После отделения осадка оказалось, что концентрация (моль/дм³) ионов Na⁺ в растворе в семь раз больше, чем S²-. Определите массу (г) насыщенного раствора сульфида натрия, использованного в описанном эксперименте.

- 1. К раствору серной кислоты массой 147 г с массовой долей H_2SO_4 25% прибавили раствор иодида бария массой 120 г. При этом массовая доля серной кислоты в растворе уменьшилась до 9%. Рассчитайте массовую долю (%) BaI_2 в добавленном растворе.
- 2. При упаривании раствора исходной массой 280 г массовая доля соли в нем увеличилась в 1,25 раза. К полученному раствору добавили эту же соль массой 16 г, которая полностью растворилась, а массовая доля соли в растворе стала равной 12,5 %. Вычислите массовую долю (%) соли в исходном растворе.
- 3. В соляной кислоте массой 250 г с массовой долей HCl 10% растворили хлороводород объемом (н.у.) 39,2 дм³. Рассчитайте массовую долю (%) HCl в полученном растворе.
- **4.** В водном растворе массой 367,5 г с массовой долей H_2SO_4 10% растворили SO_3 . На полную нейтрализацию полученного раствора затратили раствор щелочи массой 2865 г. В растворе после нейтрализации массовая доля K_2SO_4 равна 4%. Укажите массу (г) растворенного SO_3 .
 - 5. Уксусный ангидрид $(CH_3CO)_2O$ легко взаимодействует с водой, образуя уксусную кислоту: $(CH_3CO)_2O + H_2O \rightarrow 2CH_3COOH$.

Какой объем (см³) водного раствора уксусной кислоты с массовой долей $CH_3COOH\ 38\%$ ($\rho=1,05\ r/cm^3$) следует добавить к $100\ r$ раствора уксусного ангидрида в уксусной кислоте с массовой долей $(CH_3CO)_2O\ 35\%$, чтобы получить 85-процентный водный раствор уксусной кислоты?

- 6. К раствору сульфата меди (II) массой 600 г с массовой долей CuSO₄ 4% добавили медный купорос массой 55 г и перемешали смесь до полного его растворения. Рассчитайте массовую долю (%) соли в полученном растворе.
- 7. Раствор хлорида кальция массой 100 г, в котором массовая доля данной соли 23%, смешали с раствором карбоната натрия массой 130,5 г с массовой долей указанной соли 21%. После окончания реакции смесь отфильтровали. Вычислите суммарную массовую долю (%) солей в полученном растворе (потерями пренебречь).
- 8. Уксусная кислота широко применяется в качестве консерванта (пищевая добавка E260). В быту чаще всего используют уксус (массовая доля кислоты 9%, ρ =1,01 г/см³) или уксусную эссенцию (массовая доля кислоты 70%, ρ =1,07 г/см³). Для консервации овощей требуется 200 см³ уксуса. Вычислите, в каком объеме воды (см³) необходимо растворить уксусную эссенцию, чтобы приготовить раствор для консервирования.
- 9. Для анализа смеси хлоридов натрия и аммония провели следующие операции. Навеску смеси массой 10 г растворили в воде. К полученному раствору прибавили 550 г раствора гидроксида калия с массовой долей КОН 2,8 % и нагрели раствор до полного удаления аммиака. В образовавшийся раствор добавили метиловый оранжевый, а затем аккуратно прибавляли соляную кислоту, пока среда раствора не стала нейтральной. Объем израсходованной кислоты равен 310 см³, концентрация НС1 в кислоте 0,5 моль/дм³. Вычислите массовую долю (%) хлорида аммония в исходной смеси.
- 10.К раствору серной кислоты массой 160 г добавили смесь нитратов бария и свинца (II). За счет протекания реакции масса раствора увеличилась на 9,8 г, а массовые доли кислот в растворе уравнялись. Вычислите массовую долю (%) серной кислоты в исходном растворе.
- 11. Медную пластинку массой 53 г опустили в раствор нитрата ртути (II) массой 300 г. В момент извлечения пластинки из раствора массовая доля нитрата меди (II) в растворе оказалась равной 4,5%. Вычислите, на сколько процентов уменьшилась масса пластинки после извлечения ее из раствора.

12.К раствору медного купороса массой 24 г с массовой долей сульфата меди (II) 7 % добавили некоторое количество насыщенного раствора сульфида натрия. Растворимость сульфида натрия в условиях эксперимента составляла 25 г на 100 г воды. После отделения осадка оказалось, что концентрация (моль/дм³) ионов Na^+ в растворе в девять раз больше, чем S^{2-} . Определите массу (г) насыщенного раствора сульфида натрия, использованного в описанном эксперименте.

- 1. В газовой смеси, состоящей из метана и азота, объем метана в два раза больше объема азота. К этой смеси добавили неизвестный газ объемом, равным объему метана, при этом плотность смеси возросла на 48%. Определите молярную массу (г/моль) добавленного газа. Все измерения проводились при одинаковых условиях
- 2. Имеется газообразная смесь азота и водорода. Относительная плотность по гелию смеси меньше 1,9. После пропускания смеси над нагретым катализатором образовался аммиак с выходом 60%, а относительная плотность по гелию полученной газовой смеси стала больше 2. Укажите минимальное значение объемной доли (%) азота в исходной газовой смеси. Побочные процессы не протекали.
- 3. В результате сжигания пропана в кислороде (избыток) объем реакционной смеси уменьшился в 1,8 раза и образовалась вода массой 12,86 г. Укажите объем образовавшейся газовой смеси (дм³, н.у.). Объемом воды и растворимостью в ней газов пренебречь. Объемы измеряли при нормальных условиях.
- 4. Ацетилен объемом 500 см³ (н.у.) смешали с избытком кислорода. Смесь подожгли. После окончания реакции и приведения смеси к нормальным условиям объем газов составил 1250 см³. Какой объем кислорода (см³, н.у.) был добавлен к ацетилену?
- **5.** Смесь азота с водородом при нагревании пропустили над катализатором. В результате реакции с выходом 80% был получен аммиак, а содержание водорода в полученной газовой смеси составило 76% по объему. Рассчитайте массовую долю (%) водорода в исходной газовой смеси.
- 6. В смеси, состоящей из этена, метиламина и метана, массовые доли водорода и азота равны 15,7% и 13,7% соответственно. Вычислите максимальную массу (г) такой смеси, которую можно окислить газовой смесью массой 329,6 г, состоящей из озона и кислорода. Продуктами реакции являются только CO₂, H₂O и N₂.
 - 7. В результате полного восстановления оксида железа (III) углеродом была получена смесь угарного и углекислого газов количеством 1,1 моль и массой 43,6 г. Рассчитайте массу (г) образовавшегося при этом железа.
- **8.** В результате поджигания смеси объемом (н.у.) 250 дм³, состоящей из сероводорода, взятого в избытке, и кислорода, образовались сера и вода. После приведения полученной смеси к нормальным условиям в газообразном состоянии остался только сероводород объемом 130 дм³. Рассчитайте объемную долю (%) кислорода в исходной смеси.
- 9. В реактор постоянного объема поместили смесь кислорода и озона химическим количеством 2 моль. В результате разложения всего озона давление в реакторе увеличилось на 15 % (давление измеряли при одинаковой температуре). Вычислите объем (дм³) исходной смеси кислорода и озона (н.у.), необходимой для полного окисления метана массой 16 г до углекислого газа и воды.
- **10.** Относительная плотность смеси озона и кислорода по гелию равна 9,2. Определите минимальный объем (дм³, н.у.) такой смеси, необходимой для полного окисления смеси этана, бутадиена-1,3 и бутина-2 массой 105 г и относительной плотностью по неону 2,46.

- 1. В газовой смеси, состоящей из метана и азота, объем метана в два раза больше объема азота. К этой смеси добавили неизвестный газ объемом, равным объему метана, при этом плотность смеси возросла на 8%. Определите молярную массу (г/моль) добавленного газа. Все измерения проводились при одинаковых условиях.
- 2. Имеется газообразная смесь азота и водорода. Относительная плотность по гелию смеси меньше 1,8. После пропускания смеси над нагретым катализатором образовался аммиак с выходом 80%, а относительная плотность по гелию полученной газовой смеси стала больше 1,8. Укажите минимальное значение объемной доли (%) азота в исходной газовой смеси. Побочные процессы не протекали.
- 3. В результате сжигания пропана в кислороде (избыток) объем реакционной смеси уменьшился в 1,875 раза и образовалась вода массой 6 г. Укажите объем исходной газовой смеси (дм³, н.у.). Объемом воды и растворимостью в ней газов пренебречь. Объемы измеряли при нормальных условиях.
- **4.** Смешали 3м³ пропина и избыток кислорода. Смесь подожгли. После окончания реакции объем газовой смеси составил 17 м³. Какой объем (м³) кислорода был добавлен к пропину? (Измерения объемов проводились при 250°C и давлении 101,3 кПа).
- **5.** Смесь азота с водородом при нагревании пропустили над катализатором. В результате реакции с выходом 60% был получен аммиак, а содержание водорода в полученной газовой смеси составило 55% по объему. Рассчитайте массовую долю (%) водорода в исходной газовой смеси.
- 6. В смеси, состоящей из триметиламина, гексана и изобутана, массовые доли углерода и водорода равны 67,8% и 15,7% соответственно. Вычислите максимальную массу (г) такой смеси, которую можно окислить газовой смесью массой 201,6 г, состоящей из озона и кислорода. Продуктами реакции являются только CO₂, H₂O и N₂.
- 7. В результате полного восстановления оксида меди (II) углеродом была получена смесь угарного и углекислого газов количеством 2 моль и массой 80 г. Рассчитайте массу (г) образовавшегося при этом меди.
- **8.** В результате поджигания смеси объемом (н.у.) 800 дм³, состоящей из сероводорода, взятого в избытке, и кислорода, образовались сера и вода. После приведения полученной смеси к нормальным условиям в газообразном состоянии остался только сероводород объемом 200 дм³. Рассчитайте объемную долю (%) сероводорода в исходной смеси.
- 9. В реактор постоянного объема поместили смесь кислорода и озона химическим количеством 2 моль. В результате разложения всего озона давление в реакторе увеличилось на 28 % (давление измеряли при одинаковой температуре). Вычислите объем (дм³) исходной смеси кислорода и озона (н.у.), необходимой для полного окисления метана массой 25,6 г до углекислого газа и воды.
- **10.**Относительная плотность смеси озона и кислорода по азоту равна 1,2. Определите минимальный объем (дм³, н.у.) такой смеси, необходимой для полного окисления смеси ацетилена, бутана и 2-метилпропана массой 55 г и относительной плотностью по гелию 7,7.

Термохимия Вариант 1

- 1. Образец минерала массой 84 г, в котором массовая доля железа 0,467, массовая доля серы 0,533, сожгли в избытке кислорода. В результате реакции выделилось 579 кДж теплоты. Рассчитайте тепловой эффект (кДж) сгорания минерала химическим количеством 1 моль.
- 2. При полном сгорании метана химическим количеством 1 моль в кислороде выделяется 890 кДж теплоты, а в озоне 1032 кДж. В результате сгорания смеси объемом (н.у.) 34,608 дм³, состоящей из метана и озонированного кислорода (смесь озона с кислородом), газы прореагировали полностью с образованием углекислого газа и воды. Определите количество теплоты (кДж), выделившейся при этом, если доля озона в озонированном кислороде составляет 18% по объему.
- 3. При сгорании водорода массой 8,04 г выделяется 1148 кДж теплоты, при сгорании этана массой 8,04 г выделяется 418 кДж. Рассчитайте количество теплоты (кДж), которая выделится при сгорании в избытке кислорода смеси водорода и этана объемом (н.у.) 6,72 дм³, содержащей 80% водорода по объему.
- 4. Термохимическое уравнение реакции синтеза аммиака из простых веществ $N_{2(r)} + 3H_{2(r)} = 2NH_{3(r)} + 92кДж.Смесь азота с водородом общим объемом 300 дм³ (н.у.) с относительной плотностью по водороду 3,6 поместили в реактор для синтеза аммиака. В результате реакции относительная плотность смеси газов по водороду возросла на 11 %. Рассчитайте количество теплоты (кДж), выделившейся в результате реакции.$
- 5. Сгорание водорода и метана протекает согласно термохимическим уравнениям:

$$2H_{2(r)}+O_{2(r)}=2H_2O_{(\varkappa)}+570\ к$$
Дж $CH_{4(r)}+2O_{2(r)}=CO_{2(r)}+2H_2O_{(\varkappa)}+890\ к$ Дж

Рассчитайте количество теплоты (кДж), которая выделится при сгорании смеси водорода и метана массой 8 г, взятых в мольном отношении 2 : 1 соответственно.

6. При сгорании смеси метана и ацетилена объемом (н.у.) 336 дм³ выделилось 17450 кДж теплоты. Термохимические уравнения сгорания газов:

$$\mathrm{CH_{4(r)}} + 2\mathrm{O_{2(r)}} = \mathrm{CO_{2(r)}} + 2\mathrm{H_2O_{(x)}} + 890 \ \mathrm{кДж}$$
 $2\mathrm{C_2H_{2(r)}} + 5\mathrm{O_{2(r)}} = 4\mathrm{CO_{2(r)}} + 2\mathrm{H_2O_{(x)}} + 2600 \ \mathrm{кДж}$

Рассчитайте химическое количество (моль) метана в исходной смеси газов.

7. Разложение карбоната кальция протекает согласно термохимическому уравнению: $CaCO_{3(r)} = CaO_{(r)} + CO_{2(r)} - 178$ кДж. Для разложения образца карбоната кальция необходимо 35,6 кДж теплоты. Выделившийся при этом оксид углерода (IV) был полностью поглощен раствором гидроксида калия массой 112 г с массовой долей щелочи 9%. Найдите массовую долю (%) соли в полученном растворе.

- 1. Образец минерала массой 56 г, в котором массовая доля меди 0,8, массовая доля серы 0,2, сожгли в избытке кислорода. В результате реакции выделилось 186,2 кДж теплоты. Рассчитайте тепловой эффект (кДж) сгорания минерала химическим количеством 1 моль.
- 2. Термохимическое уравнение реакции синтеза аммиака из простых веществ $N_{2(r)} + 3H_{2(r)} = 2NH_{3(r)} + 92кДж.Смесь азота с водородом общим объемом 200 дм³ (н.у.) с относительной плотностью по водороду 3,6 поместили в реактор для синтеза аммиака. В результате реакции относительная плотность смеси газов по водороду возросла на 12 %. Рассчитайте количество теплоты (кДж), выделившейся в результате реакции.$
- 3. При полном сгорании метана химическим количеством 1 моль в кислороде выделяется 890 кДж теплоты, а в озоне 1032 кДж. В результате сгорания смеси объемом (н.у.) 35,280 дм³, состоящей из метана и озонированного кислорода (смесь озона с кислородом), газы прореагировали полностью с образованием углекислого газа и воды. Определите количество теплоты (кДж), выделившейся при этом, если доля озона в озонированном кислороде составляет 30% по объему.
- 4. При сгорании водорода массой 20 г выделяется 2860 кДж теплоты, при сгорании этана массой 20 г выделяется 1113,5 кДж. Рассчитайте количество теплоты (кДж), которая выделится при сгорании в избытке кислорода смеси водорода и этана объемом (н.у.) 16,8 дм³, содержащей 70% водорода по объему.
 - 5. Сгорание водорода и этана протекает согласно термохимическим уравнениям:

$$2H_{2(r)}+O_{2(r)}=2H_2O_{(ж)}+570\ кДж$$
 $2C_2H_{6(r)}+7O_{2(r)}=4CO_{2(r)}+6H_2O_{(ж)}+3120\ кДж$

Рассчитайте количество теплоты (кДж), которая выделится при сгорании смеси водорода и этана массой 10,2 г, взятых в мольном отношении 2 : 1 соответственно.

6. При сгорании смеси этана и водорода объемом (н.у.) 560 дм 3 выделилось 26250 кДж теплоты. Термохимические уравнения сгорания газов: $CH_{4(r)}$ +

$$2C_2H_{6(r)} + 7O_{2(r)} = 4CO_{2(r)} + 6H_2O_{(x)} + 3120 \text{ кДж}$$
 $2H_{2(r)} + O_{2(r)} = 2H_2O_{(x)} + 570 \text{ кДж}$

Рассчитайте химическое количество (моль) водорода в исходной смеси газов.

7. Разложение карбоната магния протекает согласно термохимическому уравнению: $MgCO_{3(r)} = MgO_{(r)} + CO_{2(r)} - 102$ кДж. Для разложения образца карбоната магния необходимо 13,77 кДж теплоты. Выделившийся при этом оксид углерода (IV) был полностью поглощен раствором гидроксида калия массой 91 г с массовой долей щелочи 8%. Найдите массовую долю (%) соли в полученном растворе.

- 1. При сжигании в кислороде смеси пропена, бутина-1 и паров 2-хлорбутадиена-1,3 с последующим охлаждением продуктов полного сгорания до температуры 20°C образовалась жидкость объемом 32,82 см³ с плотностью 1,1 г/см³, при взаимодействии которой с натрий гидрокарбонатом (избыток) выделяется газ объемом 4,48 дм³ (н.у.). Укажите массу (г) пропена в смеси, если измеренный при нормальных условиях объем вступившего в реакцию кислорода равен 65,408 дм³.
- 2. На окисление альдегида массой 43,2 г, содержащего одну альдегидную группу, израсходован оксид серебра (I) массой 139,2 г. Рассчитайте массу (г) полученной одноосновной кислоты.
- 3. При неполном окислении насыщенного ациклического одноатомного спирта образовался альдегид, объем паров которого в 9 раз меньше объема кислорода, необходимого для полного сгорания такой же порции спирта. Рассчитайте молярную массу (г/моль) спирта (объемы веществ измерены при одинаковых условиях).
- **4.** Масса углекислого газа, образовавшегося при полном сгорании смеси алканов, вдвое превышает массу полученной воды. Найдите молярную массу (г/моль) смеси алканов.
- **5.** Для полного гидрирования газообразной смеси ациклических углеводородов (относительная плотность по гелию 13,5) необходим водород, объем которого вдвое больше объема смеси. Рассчитайте, какой объем (дм³) кислорода требуется для полного сгорания исходной смеси углеводородов массой 54 г (все объемы измерены при нормальных условиях).
- **6.** Газообразная смесь алкана с этеном имеет объем (н.у.) 16,8 дм³. Половину смеси пропустили через сосуд с избытком бромной воды. При этом масса сосуда с содержимым выросла на 7 г. Вторую половину смеси сожгли в избытке кислорода,в результате чего образовалась вода массой 13,5 г. Определите молярную массу (г/моль) смеси углеводородов.
- 7. Алкин массой 81,82 г полностью сожгли в избытке кислорода. Образовавшийся углекислый газ смешали с гелием объемом (н.у.) 168 дм³. Молярная масса полученной при этом смеси газов составила 22 г/моль. Определите молярную массу (г/моль) алкина.
- **8.** Смесь алканов подвергли пиролизу. В результате образовалась смесь этена, пропена и водорода с массовой долей водорода 1,85%. Вычислите молярную массу (г/моль) исходной смеси алканов.
- 9. В результате полного гидролиза дипептида, образованного аминоуксусной кислотой, в присутствии избытка соляной кислоты получили только одно вещество соль аминокислоты массой 53,52 г. Вычислите массу (г) дипептида, подвергшегося гидролизу.
- 10. Насыщенный альдегид, в молекуле которого содержится один атом кислорода, восстановили водородом. Продукт реакции восстановления прореагировал с уксусной кислотой в присутствии серной кислоты. В результате образовалось органическое соединение массой 42,24 г, при взаимодействии которого с избытком раствора гидроксида калия получилось калийсодержащее вещество массой 47,04 г. Определите молярную массу (г/моль) альдегида.

- 1. При сжигании в кислороде смеси пропена, бутина-1 и паров 2-хлорбутадиена-1,3 с последующим охлаждением продуктов полного сгорания до температуры 20°C образовалась жидкость объемом 27,41 см³ с плотностью 1,12 г/см³, при взаимодействии которой с натрий гидрокарбонатом (избыток) выделяется газ объемом 4,48 дм³ (н.у.). Укажите массу (г) пропена в смеси, если измеренный при нормальных условиях объем вступившего в реакцию кислорода равен 54,88 дм³.
- 2. На окисление альдегида массой 52,2 г, содержащего одну альдегидную группу, израсходован оксид серебра (I) массой 208,8 г. Рассчитайте массу (г) полученной одноосновной кислоты.
- **3.** При дегидратации насыщенного ациклического одноатомного спирта образовался алкен, объем паров которого в 6 раз меньше объема паров воды, образовавшейся при полном сгорании такой же порции спирта. Рассчитайте молярную массу (г/моль) спирта (объемы веществ измерены при одинаковых условиях).
- **4.** Масса углекислого газа, образовавшегося при полном сгорании смеси алканов, в полтора раза превышает массу полученной воды. Найдите молярную массу (г/моль) смеси алканов.
- 5. Для полного гидрирования газообразной смеси ациклических углеводородов (относительная плотность по неону 2) необходим водород, объем которого вдвое больше объема смеси. Рассчитайте, какой объем (дм³) кислорода требуется для полного сгорания исходной смеси углеводородов массой 80 г (все объемы измерены при нормальных условиях).
- **6.** Газообразная смесь алкана с этеном имеет объем (н.у.) 8,96 дм³. Половину смеси пропустили через сосуд с избытком бромной воды. При этом масса сосуда с содержимым выросла на 1,4 г. Вторую половину смеси сожгли в избытке кислорода,в результате чего образовалась вода массой 7,2 г. Определите молярную массу (г/моль) смеси углеводородов.
- 7. Алкин массой 126,9 г полностью сожгли в избытке кислорода. Образовавшийся углекислый газ смешали с гелием объемом (н.у.) 112 дм³. Молярная масса полученной при этом смеси газов составила 30 г/моль. Определите молярную массу (г/моль) алкина.
- **8.** Смесь алканов подвергли пиролизу. В результате образовалась смесь этена, пропена и водорода с массовой долей водорода 2,15%. Вычислите молярную массу (г/моль) исходной смеси алканов.
- **9.** В результате полного гидролиза дипептида, образованного аминоуксусной кислотой, в присутствии избытка соляной кислоты получили только одно вещество соль аминокислоты массой 62,44 г. Вычислите массу (г) дипептида, подвергшегося гидролизу.
- 10. Насыщенный альдегид, в молекуле которого содержится один атом кислорода, восстановили водородом. Продукт реакции восстановления прореагировал с уксусной кислотой в присутствии серной кислоты. В результате образовалось органическое соединение массой 36,72 г, при взаимодействии которого с избытком раствора гидроксида калия получилось калийсодержащее вещество массой 35,28 г. Определите молярную массу (г/моль) альдегида.