FLIP-XXX new Apicurio Avro format original.
Status

Discussion https://lists.apache.org/thread/wtkl4yn847tddOwrqm5xgv9wc0cbOkr8
thread

Vote thread

JIRA

Release 1.20 or beyond

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions
get unwieldy fast).

Motivation

Currently, if users have Avro schemas in an Apicurio Registry (an open source Apache 2 licensed

schema registry), then the natural way to work with those Avro events is to use the schemas in the
Apicurio Repository. This FLIP proposes a new Kafka oriented Avro Apicurio format, to allow Flink
users to work with Avro schemas stored in the Apicurio Registry.

Messages in the Apicurio format have a schema ID (usually the global ID in a Kafka header), which
identifies the schema in the Apicurio Registry. The new format will:

- Forinbound messages, use the ID to find the Avro schema
- For outbound messages, register a schema in Apicurio and include the ID in the message

In this way Apache Flink can be used to consume and produce Apicurio events.

Public Interfaces

This FLIP adds a new Format called Apicurio Avro for Apache Kafka and Upsert Kafka.

Apicurio Avro Format

The Avro Schema Registry (avro-apicurio) format allows you to read records that were serialized by the
io.apicurio.registry.serde.avro.KafkaAvroSerializer and to write records that can in turn be read by
the io.apicurio.registry.serde.avro

.KafkaAvroDeserializer.

When reading (deserializing) a record with this format the Avro writer schema is fetched from the configured Apicurio
Registry based on the global ID or content ID encoded in the record while the reader schema is inferred from table
schema.

When writing (serializing) a record with this format, the Avro schema is inferred from the table schema and used to
register an Avro schema whose ID will be included in the outbound message.

The Apicurio Avro format can only be used in conjunction with the Apache Kafka SQL connector or the Upsert Kafka
SOL Connector.

How to create tables with Apicurio Avro format

Example of a table using raw UTF-8 string as Kafka key and Avro records registered in the Apicurio Registry as Kafka
values:

CREATE TABLE user created (
the kafka key STRING,

id STRING,
name STRING,
email STRING

) WITH (
'connector' = 'kafka',
'topic' = 'user events examplel',
'properties.bootstrap.servers' = 'localhost:9092"',

'properties.group.id' = 'mygroupid',

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/kafka/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/upsert-kafka/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/upsert-kafka/

-—- UTF-8 string as Kafka keys, using the 'the kafka key' table column
'key.format' = 'raw',
'key.fields' = 'the kafka key',

'value.format' = 'avro-apicurio',
'value.avro-apicurio.url' = 'http://localhost:8080/apis/registry/v2',
'value.fields-include' = 'EXCEPT KEY'

)i

We can write data into the Kafka table as follows:

INSERT INTO user created

SELECT
-- replicating the user id into a column mapped to the kafka key
id as the kafka key,

-- all values
id, name, email
FROM some table;

Example of a table with both the Kafka key and value registered as Avro records in the Apicurio Registry:
CREATE TABLE user created (

—-— one column mapped to the 'id' Avro field of the Kafka key
kafka key id STRING,

-— a few columns mapped to the Avro fields of the Kafka value
id STRING,

name STRING,

email STRING

) WITH (
'connector' = 'kafka',
'topic' = 'user events examplel',
'properties.bootstrap.servers' = 'localhost:9092"',

- Watch out: schema evolution in the context of a Kafka key is almost never backward nor
-- forward compatible due to hash partitioning.

'key.format' = 'avro-apicurio',
'key.avro-apicurio.url' = 'http://localhost:8080/apis/registry/v2"',
'key.fields' = 'kafka key id',

-— In this example, we want the Avro types of both the Kafka key and value to contain the
field 'id'

-— => adding a prefix to the table column associated to the Kafka key field avoids clashes

'key.fields-prefix' = 'kafka key ',

'value.format' = 'avro-apicurio',

'value.avro-apicurio.url' = 'http://localhost:8080/apis/registry/v2"',
'value.fields-include' = 'EXCEPT KEY'

)

Example of a table using the upsert-kafka connector with the Kafka value registered as an Avro record in the Schema
Registry:

CREATE TABLE user created (

ped to the

kafka key id STRING,

few

id STRING,
name STRING,

email STRING,
upsert-kafka connector requires a p

PRIMARY KEY (kafka key id) NOT ENFORCED

) WITH (

'connector' = 'upsert-kafka',
'topic' = 'user events examplel',
'properties.bootstrap.servers' = 'localhost:9092"',

the
A\l

key.format' = 'raw',

-— => a a prefix to the table co

'key.fields-prefix' = 'kafka key ',
'value.format' = 'avro-apicurio',
'value.avro-apicurio.url' = 'http://localhost:8080/apis/registry/v2"'

'value.fields-include' = 'EXCEPT KEY'
)

Kafka connector Options

Option Required Forwarded Default Type Description

optional

useAdditionalPr
opertiesWithSer
De

no

Boolean

Apicurio avro Format Options

Option

required
Format

optional
properties

optional
apicurio.registry.
request.ssl.trust
store.location

optional
apicurio.registry.
request.ssl.trust
store.type

optional
apicurio.registry.
request.ssl.trust
store.password

optional
apicurio.registry.
request.ssl.keyst
ore.location

optional
apicurio.registry.
request.ssl.keyst
ore.type

optional
apicurio.registry.
request.ssl.keyst
ore.password

no

yes

yes

yes

yes

yes

yes

yes

Required Forwa Default
rded

(none)

(none)

(none)

(none)

(none)

(none)

(none)

(none)

Type

String

Map

String

String

String

String

String

String

Description

Specify what format to use,

Specify true so
additional
properties can be
used in
serialization and
deserialization.

here

should be 'avro-apicurio’.

This is the apicurio-registry client
configuration properties. Any Flink

properties take precedence,
Location / File of SSL truststore

Type of SSL truststore

Password of SSL truststore

Location / File of SSL keystore

Type of SSL keystore

Password of SSL keystore

https://github.com/Apicurio/apicurio-registry/blob/2.5.9.Final/client/src/main/java/io/apicurio/registry/rest/client/config/ClientConfig.java
https://github.com/Apicurio/apicurio-registry/blob/2.5.9.Final/client/src/main/java/io/apicurio/registry/rest/client/config/ClientConfig.java
https://github.com/Apicurio/apicurio-registry/blob/2.5.9.Final/client/src/main/java/io/apicurio/registry/rest/client/config/ClientConfig.java

optional yes
apicurio-auth-ba
sic-userid

optional yes
apicurio-auth-ba
sic-password

optional yes
apicurio-auth-oid
c-url

optional yes
apicurio-auth-oid
c-clientlD

(none)

(none)

(none)l

(none)

String

String

String

String

Basic auth userld

Basic auth password

The auth URL to use for OIDC

Client ID to use for OIDC

optional yes
apicurio.auth.oid
c.clientSecret

optional yes
apicurio-auth-oid
c-scope

optional yes
apicurio-auth-oid
c-client-token-ex
piration-reductio
n

optional yes
apicurio-avro.id-
placement

(none) String
(none) String
1 String

HEADER Enum -
values
HEADER,
LEGACY
CONFLUE
NT

Client secret to use for OIDC

Client scope to use for OIDC

The token expiration to use for OIDC.
This is a Duration in seconds. This is
the amount of time before the token
expires that Apicurio requests a new
token.

The valid values are

HEADER - the schema ID is
processed using the header

LEGACY- the schema ID is processed
in the message payload as a long
CONFLUENT - the schema ID is
processed in the message payload as an
nt.

optional
apicurio-avro.id-
option

optional
avro-apicurio.art
ifactld

optional
avro-apicurio.art
ifactName

optional
avro-apicurio.art
ifactDescription

optional
avro-apicurio.art
ifactVersion

optional
avro-apicurio.sc
hema

optional
avro-apicurio.gr
oupld

optional
avro-apicurio.re
gister-schema

yes

yes

yes

yes

yes

yes

yes

yes

GLOBAL Enum -

ID values
GLOBAL 1
D,
CONTENT
_ID

<topic-na String Y

me>-value

or

<topic-na

me>-key

<topic-na String Y

me>-value

or

<topic-na

me>-key

Schema String Y

register

ed by

Apache

Flink.

“1”? String Y

(none) String

(none) String Y

True Boolean Y

The valid values are

GLOBAL _ID - global IDs will be used
CONTENT ID - content IDs will be
used

Specifies the artifactld of the artifact to be
registered. If not specified, then for a key this
is the topic name suffixed with “-key” and for
a value it is the topic name suffixed with
“-value”. A key and value can be specified
for the same topic.

This specifies the name of the artifact to be
registered. If not specified, then for a key this
is the topic name suffixed with “-key” and for
a value it is the topic name suffixed with
“-value”.A key and value can be specified for
the same topic.

This specifies the description of the artifact to
be registered.

This specifies the version of the artifact to be
registered.

The schema registered or to be
registered in the Apicurio Registry.
If no schema is provided Flink
converts the table schema to avro
schema. The schema provided
must match the table schema.
The group id to use when creating
a schema.

When true the schema is
registered, otherwise the schema is
not registered.

There are a number of sink only format configuration options that affect the schema being registered and
how the ID of the schema is included in the message being sent.

When registering a schema, if an existing schema is found with a matching artifactld, then it is updated. If
no schema is found, then a new one is created.

Data Type Mapping

Currently, Apache Flink always uses the table schema to derive the Avro reader schema during deserialization and
Avro writer schema during serialization. Explicitly defining an Avro schema is not supported yet. See the Apache Avro
Format for the mapping between Avro and Flink DataTypes.

In addition to the types listed there, Flink supports reading/writing nullable types. Flink maps nullable types to Avro
union (null, something), where something is the Avro type converted from Flink type.

You can refer to Avro Specification for more information about Avro types.

Custom types and References

When reading from a Kafka source, the Avro writer schema is obtained from the Apicurio Registry and may contain
references. These references will be expanded so the writer schema can be mapped to the reader schema.

Recursive references are references that refer to its own type or a parent type. These are not supported by the Apicurio
Avro format. This is because the writer schema is expanded, which could not complete if there are circularities.

When using Kafka sinks, the schema is registered to the Apicurio Registry; the registered schema will not contain any
references. The artifactld configuration property ensures that only one schema is created for a Kafka sink, subsequent
serializations attempting to register the schema with the same artifactld do not result in more schemas.

Compatibility, Deprecation, and Migration Plan

No plans for Deprecation and Migration.

In terms of compatibility for the Kafka source this change is across 2 repositories, with 4 main
changes are:

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/formats/avro/#data-type-mapping
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/formats/avro/#data-type-mapping
https://avro.apache.org/docs/current/spec.html

In core Flink add 2 new default methods to the DeserializeSchema interface
/**
* Deserializes the byte message with additional input Properties.
*
* @param message The message, as a byte array.
* @param additionalInputProperties map of additional input Properties that
can be used
* for deserialization. Override this method to make use of the
additionalInputProperties,
* @return The deserialized message as an object (null if the message cannot
be deserialized).
*/
@PublicEvolving
default T deserializeWithAdditionalProperties/(
byte[] message, Map<String, Object> additionallnputProperties) throws
IOException |
return deserialize (message) ;
}
@PublicEvolving
default void deserializeWithAdditionalProperties/(
byte[] message, Map<String, Object> additionallnputProperties,
Collector<T> out)
throws IOException {
T deserialize = deserializeWithAdditionalProperties (message,
additionallInputProperties) ;
if (deserialize != null) {
out.collect (deserialize) ;

- In core Flink add 2 new default methods to the SerializeSchema interface

/**
* Serializes the incoming element to a specified type and populates an output.
* The additional input properties can be used by the serialization and the output
* additionalProperties can be populated by the serialization.
* @param element The incoming element to be serialized
* @param additionallnputProperties additional input properties map supplied to serialization
* @param additionalOutputProperties additional output properties that can be populated by the
* serialization
* @return The serialized element.
4
@PublicEvolving
default byte[] serialize(
T element,
Map<String, Object> additionallnputProperties,

Map<String, Object> additionalOutputProperties) {
throw new RuntimeException(
"Method serialize(T element, Map<String, Object> additionallnputProperties,\n"
+ "Map<String, Object> additionalOutputProperties) should be Overridden.");

- Change the Kafka connector to call the new method in the DeserializeSchema interface
called deserializeWithAdditionalInputProperties (byte[] message,
Map<String, Object> additionalProperties, Collector<T> out. Passing a
map<String, Object> Map of the Kafka headers in the additionalProperties parameter.

- Change the Apicurio Avro deserialization to use the header content to look up the ID,
then call the registry client to get the associated Avro Schema.

In terms of compatibility for the Kafka sink:

With the new Flink Kafka connector change and the new Core Flink changes, the new capability is
there. At some stage the lowest Flink level supported by the Kafka connector will contain the
additionalProperties methods in code Flink. In the meantime so as not to impact existing users, there
will be a new Kafka connector configuration parameter “passHeadersToSerDe” (default false) when
this is true the code will reflectively call the appropriate serialization and deserialization methods
passing the headers; if false then the headers will not be passed.

With the new Kafka connector and an old Flink — this will fail with an Exception indicating that the
Flink level is too low.

With the original Kafka connector and a new Flink then the old deserialize / serialize method will be
called and an error will be issued indicating that the Kafka level is too low.

Deserialisation

There existing Kafka deserialization for the writer schema passes down the message body to be
deserialized. This works for the Confluent Schema Registry as it has the schema id in the payload
after the magic byte.

For normal operation in Apicurio, the schema identifier (the global ID or content ID) is in a header.
So, the Kafka connector needs to be changed to send the header content and the payload in
KafkaValueOnlyDeserializationSchemaWrapper deserialize. Like this:

@Override
public void deserialize (ConsumerRecord<byte[], byte[]> message, Collector<T>
out)

throws IOException {

Map<String, Object> additionalPropertiesMap = new HashMap<>();

for (Header header : message.additionalProperties()) {

additionalPropertiesMap.put (header.key (), header.value());

}

deserializationSchema.deserialize (message.value(),
additionalPropertiesMap, out);

}

New default methods will be added to the interfaces to tolerate the new additionalProperties content, but
also be backwards compatible as they supply default implementation. The additionalProperties are sent
as a map so as not to send down any Kafka specific class.

A new readSchema method in the Apicurio SchemaCoder will be added

public Schema readSchema (InputStream in, Map<String, Object>
additionalInputProperties) throws IOException {

The input stream and additionalProperties will be sent, so the Apicurio SchemaCoder which will try getting
the ID from the headers, then 4 bytes from the payload then 8 bytes from the payload.

A new writeSchema method in the Apicurio SchemaCoder will be added

e
* The Avro schema will be written depending on the configuration.
* @param schema Avro Schema to write into the output stream,

* @param out the output stream where the schema is serialized.
* @param inputProperties properties containing the topic name

* @param headers headers to populate

* @throws IOException Exception has occurred

Y/

@Override

public void writeSchema(
Schema schema,
OutputStream out,
Map<String, Object> inputProperties,
Map<String, Object> outputProperties)
throws IOException {

Serialisation

For normal operation in Apicurio, the schema identifier (the global ID or content ID) is in a header.
So, the Kafka connector needs to be changed to send the header content. This is done by sending
an empty output map that the serialization can populate with the header content. The Kafka
connector then can add these headers onto the message. An inputProperties map is also sent,
detailing the topic name and whether the serialization is for a key (this is required so that the
Apicurio format knows which header to insert (a key or value orientated header).

The Avro Apicurio format will also register the schema in the Apicurio Registry.

Test Plan

1. Run Flink tests multiple times
2. Junits (end to end tests might be tricky as the code lives in 2 git repositories
3. Manually test as a source and sink
1. With global ID in header
With global ID in the payload as a long

With global ID in the payload as a long
With content ID.
With keys and values

With security

N U A W

Other considerations

The implementation does not use the Apicurio SerDe libraries, as the Kafka application lives in the
Kafka connector and the serialization and deserialization is done in core Flink. To use the SerDe
libraries would take a larger refactor. For example being able to specify the artifact and schema
resolver strategy is not present in this proposal.

https://www.apicur.io/registry/docs/apicurio-registry/2.5.x/getting-started/assembly-configuring-kafka-client-serdes.html

We could do something more sophisticated around resolving artifacts using something more akin to
the artifact resolver strategy. In this proposal, the artifact id is used to find the artifact during the
registering of the schema and defaults to topic name, which is one of the artifact resolver strategies.

We have not included Debezium at this stage.

Rejected Alternatives

- Running Apicurio in Confluent mode, so that the Confluent Avro format could be used.
This would be great for some users , but this FLIP is providing new function to facilitate
working naturally with Apicurio schemas where the global ID is in the headers.

	Apicurio Avro Format
	
	How to create tables with Apicurio Avro format
	Kafka connector Options
	Apicurio avro Format Options
	Format
	properties
	apicurio.registry.request.ssl.truststore.location
	apicurio.registry.request.ssl.truststore.type
	apicurio.registry.request.ssl.truststore.password
	apicurio.registry.request.ssl.keystore.location
	apicurio.registry.request.ssl.keystore.type
	apicurio.registry.request.ssl.keystore.password
	apicurio-auth-basic-userid
	apicurio-auth-basic-password
	apicurio-auth-oidc-url
	apicurio-auth-oidc-clientID
	apicurio.auth.oidc.clientSecret
	apicurio-auth-oidc-scope
	apicurio-auth-oidc-client-token-expiration-reduction
	apicurio-avro.id-placement
	apicurio-avro.id-option
	avro-apicurio.artifactId
	avro-apicurio.artifactName
	avro-apicurio.artifactDescription
	avro-apicurio.artifactVersion
	avro-apicurio.schema
	avro-apicurio.groupId
	avro-apicurio.register-schema

	
	There are a number of sink only format configuration options that affect the schema being registered and how the ID of the schema is included in the message being sent.
	When registering a schema, if an existing schema is found with a matching artifactId, then it is updated. If no schema is found, then a new one is created.
	Data Type Mapping

