
RΛILS Instruction Set Developer Guide

Instruction Operand Types
3 Operand Instruction

Op Code 4 bit A operand 4 bit B operand 4 bit C operand 4 bit

Immediate Instruction

Op Code 4 bit Immediate 8 bit C operand 4 bit

Instructions / Descriptions

Name Op code Operand Type Description

ADD 0000 3 Operand A + B = C

ADDC 0001 3 Operand A + B + (previous operation carry out) = C

SUB 0010 3 Operand A - B = C

SWB 0011 3 Operand A - B - (previous operation carry out) = C

NAND 0100 3 Operand A NAND B = C

RSFT 0101 NULL Logical right shift A, stores in C.

LIMM 0110 Immediate Stores Immediate in C.

LD 0111 NULL Loads data from ram address *A and stores at C.

LDIM 1000 Immediate Loads data from ram address IMM and stores at C.

ST 1001 NULL Stores B in ram address *A.

STIM 1010 Immediate Stores B in ram address IMM.

BEQ 1011 Immediate Branch to IMM if r15 and C are equal.

BGT 1100 Immediate Branch to IMM if r15 is greater than C.

JMPL 1101 NULL Jumps to *A and stores the current instruction address + 1 in C.

IN 1110 NULL Loads data from i/o port A and stores at C.

OUT 1111 NULL Stores B in i/o port A.

Description syntax

*X This is a pointer, meaning you are using the contents of the register as an address. That could be
either an address for ram or the program counter. For example if 23 is in register 2 and you jump to
register 2, the pc will be set to 23. If you LD from register 2 then ram address 23 will be stored in C.

rX This is an abbreviation for “register”, so r15 is just short for “register 15”.

Pseudo Instructions

NOP This operation does nothing and is replaced by ADD r0 r0 r0

MOV This moves data from one register to another. It is replaced by ADD source r0 destination

JMP This jumps to imm by doing BEQ imm r15, since r15 will obviously equal itself it will always jump

EXIT This stops all execution and the clock. It is replaced by JMPL r0, r0. It also resets the PC. This puts
the cpu in a state where it is ready to be started again using the power button on the control panel.

Memory

Register File The register file is 16 bytes of dual read registers.
●​ Register 0 is a constant 0. Writing to address 0 results in nothing being saved.

Reading from it will always be 0.
●​ Register 15 will always be used in branch instructions with C

Input/Output Ports My implementation has 8 ports you can read / write to. Since the address is a 4 bit value if
you made your own cpu using this isa you could go up to 16 ports. On mine any address
above 0-7 it just ignores.

Data Storage Data storage is 256 bytes of RAM.

Instruction Storage Instructions are stored in 512 bytes of ROM, since instructions are 16 bit that means you
have a max of 256 instructions.

*diagram might be missing a few labels etc

link to above pic

https://i.imgur.com/pcTXXVe.png

Pipeline
Buffered 2 stage*

Assembly / Assembler
Test

Emulator

Notes
●​ This ISA was developed with the following traits in mind.

○​ Newcomer Friendly.
○​ Made for 8 bit word size.
○​ Easy to understand.
○​ Easy to implement.
○​ Be fully functional / capable of general computation.

	RΛILS Instruction Set Developer Guide
	Instruction Operand Types
	Instructions / Descriptions
	Pseudo Instructions
	Memory
	
	Pipeline
	Assembly / Assembler
	Emulator
	Notes

