
Apache Beam Proposal

Splittable DoFns for Go SDK

Daniel Oliveira (danoliveira@google.com)
https://s.apache.org/beam-go-sdf

@Dev list discussion

Context
This doc proposes an implementation of Splittable DoFns for the Go SDK. It assumes familiarity
with the idea of Splittable DoFns and the concepts involved in implementing it, as laid out in the
original Splittable DoFn proposal. This doc also assumes some familiarity with portability in
Beam which is how all pipelines are run in the Go SDK. A starting point for learning about
portability is the Apache Beam Fn API Overview.

Terminology and Abbreviations
●​ SDF - Splittable DoFn.
●​ UDF - User-Defined Function.
●​ Fn API - The protocol buffer API that enables portable pipelines in Beam.
●​ Restriction - A description of a portion of the work needed to process an element in an

SDF. See the Splittable DoFn proposal for more information.
●​ Block - An unsplittable portion of work identified by a position within a restriction.

Goal
This document aims to propose a functioning implementation of bounded SDF for batch
pipelines that can later be expanded to support the full set of features. At the time of writing this
document, some features of SDF are not yet supported by the Fn API and so cannot be
supported. Therefore rather than support a full implementation for SDF, this implementation
aims to support a smaller subset of features with the intent to expand it later.

Overview
To implement SDFs in the Go SDK requires changes to three largely independent layers. The
changes are described in more detail in later sections, but a rough overview is as follows:

1.​ User-Facing API: This covers the interface that a Beam user would use to write an SDF
using the Go SDK. In addition to describing how a user would write an SDF, it also

mailto:danoliveira@google.com
https://s.apache.org/beam-go-sdf
https://lists.apache.org/thread.html/327bc72a0b30e18c6152b562bac2613c0edc942465d67b215830819e@%3Cdev.beam.apache.org%3E
https://s.apache.org/splittable-do-fn
https://s.apache.org/beam-fn-api
https://s.apache.org/splittable-do-fn

covers how that user-defined SDF gets converted to the Go SDKs internal pipeline
representation.

2.​ Serialization: This covers changes that would be made to the process of serializing the
Go SDKs internal pipeline representation to the protobufs used in the Fn API pipeline
representation. The goal is to correctly serialize SDFs so that runners with SDF support
can recognize and handle the SDF.

3.​ Execution: This covers functionality that needs to be added to the Go SDK Harness to
allow it to execute SDFs. This includes correctly deserializing user-defined SDFs and
using them to execute the SDF component transforms as defined by URNs in the Beam
Runner API.

User-Facing API

Requirements
The user-facing API is the interface allowing users of the Go SDK to write SDFs. Rather than
borrowing existing implementations for the user-facing API from the Java SDK or Python SDK,
the API for Go is intended to be implemented to fit the expectations of the Go language and
remain consistent with the rest of Beam’s Go SDK. In order to be complete, the user-facing API
must fulfill the requirements below.

Support Existing DoFn Functionality
SDFs are a subset of DoFns and therefore should still support features that all DoFns are
expected to have. Primary among these being support for all DoFn methods (Setup,
StartBundle, ProcessElement, FinishBundle, Teardown) and optional parameters such as
context, window information, or event time.

Support User-Defined Restrictions
The term “restriction” refers specifically to data describing a portion of the work needed for
processing an element passed to the SDF. The kind of work that is described by a restriction
can vary largely, so the SDF API must allow users to be able to define and use custom
restrictions based on users’ needs. The only requirements that must be enforced on these
restrictions are those required by the SDF model itself as described in the Splittable DoFn
proposal.

Support Restriction Tracking
The SDF API must allow users to define behavior for tracking the amount of work that has been
processed within a restriction while processing an element (i.e. the current position).

https://github.com/apache/beam/blob/master/model/pipeline/src/main/proto/beam_runner_api.proto
https://github.com/apache/beam/blob/master/model/pipeline/src/main/proto/beam_runner_api.proto
https://s.apache.org/splittable-do-fn#heading=h.vjs7pzbb7kw
https://s.apache.org/splittable-do-fn#heading=h.vjs7pzbb7kw

Splitting Restrictions
Users must be able to define behavior for splitting a restriction into two or more additional
restrictions, based on desired split points or user-defined initial splits to take advantage of liquid
sharding in runners that support it.

Associate a Restriction with a Written SDF
There must exist some way to associate a type of restriction and its associated behavior with an
SDF, so that when the SDK harness executes the SDFs it will be able to provide the correct kind
of restriction that the UDFs expect.

Omissions
This implementation targets a minimal working implementation for batch pipelines, so several
SDF features have been intentionally omitted for now, with plans for later implementation. The
most prominent omissions are:

●​ ProcessContinuation: This is unnecessary for the initial implementation. Can later be
added as an optional return value in an SDF’s ProcessElement method.

●​ Handling Watermarks: Watermarks are currently unimplemented in the Go SDK.
Watermarks support is a prerequisite for streaming support for SDFs. The API for
watermark support in SDFs is currently undecided.

Approach
Writing user-defined SDFs is done by implementing two interfaces - a restriction tracker and a
restriction provider - and writing the processing code in a DoFn. These two interfaces are
modeled after the corresponding interfaces in the Python SDK ([1], [2]) and Java SDK ([1], [2])
and therefore should be somewhat familiar to users from those SDKs.

The restriction tracker is an interface for defining a restriction and tracking its progress, and is
intended to cover behavior primarily used when processing elements of the SDF. A restriction
tracker can be paired with each element to describe what portion of that element to process and
how much has already been processed.

The restriction provider on the other hand is an interface containing behavior needed for an SDF
as a whole. This includes how to create a new restriction tracker for an element, as well as how
to perform a single split or initial splitting over an existing restriction.

In order to associate these interfaces with a DoFn, there needs to be some method in that DoFn
to indicate that the DoFn is splittable, and what RestrictionProvider to use. A DoFn that is
marked as splittable must also adhere to various requirements in its implementation in order to
function correctly as an SDF, the details of which are described below.

https://github.com/apache/beam/blob/fb8efe3af66ddfe3ce7d4020c43d10d8467f0ab9/sdks/python/apache_beam/transforms/core.py#L188
https://github.com/apache/beam/blob/fb8efe3af66ddfe3ce7d4020c43d10d8467f0ab9/sdks/python/apache_beam/io/iobase.py#L1103
https://github.com/apache/beam/blob/279f2d436af1d1f3ea696aa6dc39703dc170eda7/sdks/java/core/src/main/java/org/apache/beam/sdk/transforms/DoFn.java#L573
https://github.com/apache/beam/blob/279f2d436af1d1f3ea696aa6dc39703dc170eda7/sdks/java/core/src/main/java/org/apache/beam/sdk/transforms/splittabledofn/RestrictionTracker.java

Implementation
A proposed implementation of the interfaces described above is as follows:

package sdf

type RTracker interface {

 TryClaim(pos interface{}) (ok bool, err error)

 TrySplit(fraction float64) (residual RTracker, err error)

 GetProgress() float64

 IsDone() bool

}

type RProvider interface {

 CreateInitialTracker(element interface{}) RTracker

 InitialSplits(element interface{}, rt RTracker) []RTracker

 RestrictionSize(element interface{}, rt RTracker) float64

 RTrackerType() reflect.Type

}

type SplittableDoFn interface {

 RProvider() RProvider

}

And to create an SDF a DoFn would be written with methods similar to the following:

func (fn *FooDoFn) RProvider()

func (fn *FooDoFn) ProcessElement(in Foo, restriction RTracker, emit func(out))

The following sections will explain the above interfaces in more detail and provide a practical
example illustrating their usage.

Restriction Tracker
The RTracker interface requires users to implement several methods around their user-defined
restrictions in order to fulfill the SDF specification. The underlying user-defined restriction can be
any arbitrary internal implementation, assuming that the requirements of restrictions are
followed according to the SDF model. Specifically, the blocks of work in a restriction must have
a strict ordering so that they can be processed sequentially in monotonically increasing order.

The RTracker is also used in the SDF’s ProcessElement method to ensure that claimed work
is tracked. Using the RTracker interface to split and track progress also allows the details of

multi-threading to be abstracted away from the user by wrapping the user’s RTracker with
another that handles those details. This is described in more detail below.

A restriction coder must be available if defining an RTracker to allow for serialization of the
underlying restriction. This coder can be either generated or manually defined. The Go SDK
already has default methods for generating coders which can be leveraged for this (ex. JSON
encoding).

TryClaim

TryClaim(pos interface{}) (ok bool, err error)

Used in the SDF’s ProcessElement method to claim a block of work in the restriction before
performing that work and emitting outputs. Claims must be performed for every block in a
restriction in monotonically increasing order. When a claim fails it indicates that the
ProcessElement method must stop processing without emitting any more outputs.

The usage of this method is important for keeping the restriction synchronized between the
execution of ProcessElement and the execution of split requests, which can modify the bounds
of the restriction.

This declaration of TryClaim uses an empty interface as a position type to allow
implementations of RTracker to accept whatever type best fits the restriction being used.

TrySplit

TrySplit(fraction float64) (residual RTracker, err error)

Attempts to split the restriction at a specific fraction of its unclaimed work. This method turns the
current RTracker into the primary restriction by changing its endpoint as appropriate, and
returns a new RTracker representing the residual. This method gets called by the SDK harness
during a split request, if the split must happen along a currently executing restriction.

GetProgress

GetProgress() float64

Returns the fraction of work completed on the restriction as a fraction from 0 (no work complete)
to 1 (all work complete). This method is used by the SDK harness to check on progress when
performing splits or progress reporting.

IsDone

IsDone() bool

Checks whether all work in the restriction has been claimed. This method is mainly used for
pipeline validation, so that incorrectly written ProcessElement methods will cause errors for
users instead of silently producing incorrect output.

Restriction Provider
The RProvider interface allows defining the interactions between the input elements of an SDF
and the RTrackers associated with those elements. These methods are mainly needed for the
SDK harness to be able to execute transforms used by the SDK Harness to execute SDFs.
After being defined, an RProvider implementation is associated with a DoFn instance, which
means that all elements in a DoFn’s main input will get passed into the RProvider methods
when the methods get used.

It made sense to make these methods separate from RTracker because the methods in
RProvider are more dependent on a user’s specific needs compared to those in RTracker.
RTracker implementations can often be generalized while RProvider implementations are
would often be tailored to the specific SDFs being used.

Due to the lack of generics in Go, the elements in these methods are all declared as empty
interfaces. Type assertion must be used to match the type with that of the DoFn’s input. It is the
pipeline author’s responsibility to avoid type mismatch errors by ensuring that the type
assertions match the actual input types being used. The following is an example of using type
assertions in a RProvider expecting string inputs:

func (*FooRProvider) InitialSplits(element interface{}, tracker RTracker)

[]RTracker {

 stringElement := element.(*string)

 ...

}

There will most likely be differences between the elements passed in here compared to the
same elements passed to the DoFn methods like ProcessElement. This is due to the fact that
the methods in RProvider lack the runtime analysis performed on ProcessElement in order to
detect the input types. Any differences a user may encounter between the elements input to
RProvider vs ProcessElement must be well-documented for users.

CreateInitialTracker
Creates an RTracker for an entire element. This method gets called on all inputs to a Splittable
DoFn before ProcessElement gets called.

InitialSplits
Allows users to split the initial restrictions created by CreateInitialTracker before they get
processed. This is used for optimizing performance on runners that support liquid sharding, as it
allows the processing of an element to immediately be split between several restrictions and be
sent to different workers to process in parallel without having to wait for a split request from the
runner.

RestrictionSize
Returns an estimate of the amount of work involved in processing a restriction. This size
estimate is used as a weight when distributing work on runners that support liquid sharding with
sized restrictions. Sizes have no unit of measurement, they only represent abstract weights
relative to each other (ex. 200 means twice as much work as a 100).

RTrackerType
Returns the reflect.Type of the RTracker produced by the various methods in the RProvider.
This method is used by the Go SDK and SDK harness to get the restriction coder used in an
SDF. This method can be easily implemented similarly to the following example implementation:

return reflect.TypeOf((*FooRTracker)(nil))

Splittable DoFns
SplittableDoFn is an interface used for identifying DoFns as splittable and associating them with
an RProvider. A DoFn is considered a Splittable DoFn if it implements all the methods of this
interface and fulfills the following requirements:

1. The ProcessElement method has an RTracker parameter after the inputs.
2. The ProcessElement method only produces output via emit functions and not a return value.

An example of a valid DoFn:

type FooDoFn struct {

}

func (fn *FooDoFn) Splittable() RProvider {

 return new(FooRProvider)

}

func (fn *FooDoFn) ProcessElement(s string, tracker RTracker, emit func(out)) {

 fooTracker := tracker.(*FooRTracker)

 ...

}

Changes would need to be made to DoFn validation (in the following files: [1], [2]) to support
checking whether a DoFn is splittable and, if so, checking that it is a validly constructed SDF.

Example SDF
This section presents an example SDF illustrating all the elements of the user-facing API that
were described above. The example will focus on showing the usage of SDF API elements and
omit or simplify code not directly relevant to SDF, such as file IO or error checking. Therefore,
this example should not be used in actual pipelines.

The following code is an example of an SDF which will read in filenames of text files and output
every line of that file as a string. The splitting will be done at byte offsets within the file.

Restriction Tracker

// OffsetRangeRTracker tracks a restriction that can be represented as a range of

// integer values, for example for byte offsets in a file, or indices in an array.

type OffsetRangeRTracker struct {

 start, end int64 // Half-closed interval with boundaries [start, end).

 claimed int64 // Tracks the last claimed position.

 stopped bool // Tracks whether TryClaim has already indicated to stop

 // processing elements for any reason.

}

func NewOffsetRangeRTracker(start, end int64) *OffsetRangeRTracker {

 return &OffsetRangeRTracker{

 start: start,

 end: end,

 claimed: start - 1,

 stopped: false,

 }

}

OffsetRangeRTracker is a very basic restriction tracker that represents a restriction as a range
of integer values. For this example the integer values will represent byte offsets in a file. Since a
block of work in this SDF is one line of text, but the restriction measures byte offsets, it is likely
that the range of a restriction will not always line up perfectly with blocks of work, which is
something that must be accounted for when using this restriction tracker in an SDF.

NewOffsetRangeRTracker is a helper method that will be used below, for quickly creating a
properly-initialized OffsetRangeRTracker.

// TryClaim accepts an int64 position and successfully claims it if that position

// is greater than the previously claimed position and within the restriction.

https://github.com/apache/beam/blob/7c92fe0bc3ba73320ee26b6323eb01884381afcc/sdks/go/pkg/beam/core/funcx/fn.go
https://github.com/apache/beam/blob/7c92fe0bc3ba73320ee26b6323eb01884381afcc/sdks/go/pkg/beam/core/graph/fn.go

// The tracker considers a restriction finished processing once the user tries to

// claim a position at or past the end of the restriction.

func (tracker *OffsetRangeRTracker) TryClaim(rawPos interface{}) (bool, error) {

 if tracker.stopped == true {

 return false, errors.New(

 "Cannot claim more work after TryClaim returns false.")

 }

 pos := rawPos.(int64)

 if pos <= tracker.claimed {

 tracker.stopped = true

 return false, errors.New(

 "Claim must be greater than previously claimed position.")

 }

 tracker.claimed = pos

 if pos >= tracker.end {

 tracker.stopped = true

 return false, nil // Done processing restriction, not an error.

 }

 return true, nil

}

This implementation of TryClaim accepts positions as int64 values to be compatible with
OffsetRangeRTrackers. This example illustrates error checking for requirements of the
TryClaim method; returning errors if the position claimed is not monotonically increasing, or if a
claim attempt occurs after TryClaim indicates to stop. Allowing TryClaim to return errors is
intended to let users differentiate between stopping due to successfully processing a restriction
versus stopping because an error was encountered. It also lets users add in-depth error
checking to their SDFs.

This TryClaim implementation expects users to continue claiming positions until one is claimed
at or past the end of the restriction, at which point it indicates to finish processing. This
approach is not mandated by the requirements of TryClaim but selected for this implementation
for ease of use. In other implementations it may make more sense to have different ways to
detect when a restriction is finished processing.

// TrySplit splits at the nearest integer greater than the given fraction of the

// remainder.

func (tracker *OffsetRangeRTracker) TrySplit(fraction float64) (RTracker, error) {

 if tracker.stopped || tracker.IsDone() {

 return nil, nil

 }

 if fraction < 0 || fraction > 1 {

 return nil, errors.New("Fraction must be in range [0, 1]")

 }

 splitPt := tracker.start + int64(fraction * float64(tracker.end -

tracker.start))

 if splitPt == tracker.end {

 return nil, nil

 }

 residual := NewOffsetRangeRTracker(splitPt, tracker.end)

 tracker.end = splitPt

 return residual, nil

}

The TrySplit method is straightforward, splitting the restriction at the given fraction of the
remainder.

// GetProgress reports progress as the claimed fraction of the restriction.

func (tracker *OffsetRangeRTracker) GetProgress() float64 {

 fraction := float64(tracker.claimed - tracker.start) /

 float64(tracker.end - tracker.start)

 return math.Min(fraction, 1.0)

}

GetProgress is straightforward, returning the fraction of work remaining (with some clamping to
keep the fraction between 0 and 1).

// IsDone returns true if the most recent claimed element is past the end of

// the restriction.

func (tracker *OffsetRangeRTracker) IsDone() bool {

 return tracker.claimed >= tracker.end

}

IsDone takes the simple approach and checks if the entire range of the restriction has been
claimed. In comparison, less simple RTracker implementations could check whether each
individual block of work has been claimed.

Restriction Provider

type ReadLinesRProvider struct {

}

// CreateInitialTracker takes a string filename of a text file and returns an

// RTracker representing the entirety of that file as a size in bytes.

func (provider *ReadLinesRProvider) CreateInitialTracker(element interface{})

RTracker {

 filename := element.(string)

 stat, _ := os.Stat(filename)

 size := stat.Size()

 return NewOffsetRangeRTracker(0, size)

}

CreateInitialTracker is straightforward. Of note is the usage of a type assertion to access
the concrete element, which is necessary for elements and RTrackers passed to RProvider
methods.

// InitialSplits splits each initial restriction in two.

func (provider *ReadLinesRProvider) InitialSplits(element interface{}, rt RTracker)

[]RTracker {

 rtImpl := rt.(*OffsetRangeRTracker)

 mid := ((rtImpl.end-rtImpl.start) / 2) + rtImpl.start

 splitRt := make([]RTracker, 2)

 splitRt = append(splitRt, NewOffsetRangeRTracker(rtImpl.start, mid))

 splitRt = append(splitRt, NewOffsetRangeRTracker(mid, rtImpl.end))

 return splitRt

}

Here InitialSplits always splits each restriction in two in order to serve as an example
implementation of this method. Actual implementations can take more dynamic approaches,
such as splitting restrictions so that each restriction is no larger than a specified size.
Alternatively, if it is known that the job will not be on a runner that supports liquid sharding, then
this method could merely be a stub and return the restriction unchanged.

// RestrictionSize returns a size estimate of the restriction as the size of the

// restriction in bytes.

func (provider *ReadLinesRProvider) RestrictionSize(element interface{}, rt

RTracker) float64 {

 rtImpl := rt.(*OffsetRangeRTracker)

 return float64(rtImpl.end - rtImpl.start)

}

For this example the size estimate returned by RestrictionSize is simply the size in bytes of
the restriction. This is reasonable for an SDF reading a text file where the amount of work
involved is a linear correlation to the size of the file. But in other SDFs, the work may not linearly
correlate with the size of the restriction, and in those cases the implementation of this method
would be more complex to get a more accurate estimation.

// Returns the reflect.Type of the RTrackers used by this RProvider.

func (provider *ReadLinesRProvider) RTrackerType() reflect.Type {

 return reflect.TypeOf((*OffsetRangeRTracker)(nil))

}

RTrackerType is very straightforward and shows the suggested approach of calling
reflect.TypeOf on a nil pointer to the RTracker being used in the RProvider.

DoFn

// A splittable DoFn that reads a text file and outputs each line.

type ReadLinesDoFn struct {

}

// Mark this DoFn as splittable with an RProvider for reading text files.

func (fn *ReadLinesDoFn) RProvider() RProvider {

 return &ReadLinesRProvider{}

}

// For each filename, open the file and read it, outputting each line.

func (fn *ReadLinesDoFn) ProcessElement(filename string, rt RTracker, emit func(out

string)) error {

 rtImpl := rt.(*OffsetRangeRTracker)

 file, _ := os.Open(filename)

 var scanner *bufio.Scanner

 var pos int64

 if rtImpl.start > 0 {

 // Find the start of the first line within the restriction.

 file.Seek(rtImpl.start - 1, 0)

 scanner = bufio.NewScanner(file)

 scanner.Scan()

 pos = rtImpl.start - 1 + int64(len(scanner.Bytes()))

 } else {

 // Restriction starts at the beginning of a file, no seek needed.

 scanner = bufio.NewScanner(file)

 pos = 0

 }

 var ok bool

 var err error

 for ok, err = rtImpl.TryClaim(pos); ok == true; {

 scanner.Scan()

 emit(scanner.Text())

 pos += int64(len(scanner.Bytes()))

 }

 if err != nil {

 return err

 }

 return nil

}

ReadLinesDoFn is where all the code above comes together and actually forms an SDF. The
DoFn is marked as splittable by giving it the RProvider method and indicating our previously
written provider as the one to use.

The ProcessElement method is where the actual splittable work occurs. Of particular note is
the way that block length is handled. Blocks of work begin at the first byte of a line, so if a
restriction begins anywhere other than the start of the file, the method must seek to a spot
slightly before the restriction and use the scanner to seek to the beginning of the next line.
Meanwhile, the method keeps track of what position to claim with the pos variable, updating it
as lines are read.

The loop for claiming and processing work follows all the requirements of using TryClaim. It
always attempts to claim work before producing any output, only processes claimed blocks, and
immediately stops work and exits ProcessElement once a claim fails, which is expected to
happen when the loop attempts to claim a block beyond the end of the restriction.

Open Questions
There are still some open questions in the API proposed above, either because the issues in
question are not vital for an initial implementation, or because additional feedback is needed
before making a final decision.

Merged or Split Restriction Trackers
Should the API split restriction trackers and restrictions as concepts, or keep them merged?

In the current proposal, RTrackers encompass both the concept of a restriction (a range of
work, with start and end boundaries) and the restriction tracker (behavior that tracks the claims
made on work inside a restriction). This differs from the other SDKs which make a distinction
between the two.

Merged: The current merged approach was selected largely because it simplified the
user-facing API, despite being less consistent with the SDF model semantically. The downside
of this approach is that an optimal restriction coder would need to avoid encoding non-restriction
fields (i.e. only encode the start and end boundaries). It is also slightly more difficult to explain to
users how the RTracker is used since the tracking parts and the restriction are used differently.

Separate: Keeping the restriction tracker and restriction separate are more semantically correct
and easier to communicate to users. The downside of this approach is that it would add some
complexity to the API. Users would need to be able to associate restriction trackers/objects to
their SDF, and be able to add and retrieve restriction objects from restriction trackers. The SDK
harness would also gain the responsibility of creating the correct restriction trackers from
restriction objects and providing those trackers to DoFns (currently this occurs implicitly).
Ultimately this somewhat increases the complexity of the API, but would make the API more
semantically consistent with the model.

Thread-safe Restriction Tracker Wrapper
How to go about implementing a wrapper around RTrackers to handle concurrency?

RTracker needs to be thread-safe, especially with the TryClaim, TrySplit, and GetProgress
methods. TrySplit is expected to be called while ProcessElement uses TryClaim in a
separate thread. The Java SDK currently handles this concurrency behind the scenes by
wrapping restriction trackers to add thread safety and then delegate to the user-written
methods. This also allows additional correctness checks such as checking that no output is
produced after TryClaim returns false, or that there isn't a subsequent call to TryClaim after
one that returns false. This can greatly reduce boilerplate error checks in user code.

That approach is desirable, but more difficult in the current API because users expect to be able
to cast RTrackers to their concrete type to view the restriction boundaries.

Possible solutions:

1.​ Add the thread-safe wrapper to the API and pass the user’s tracker already wrapped into
ProcessElement, informing users that they are required to unwrap their tracker to
inspect it.

func (fn *FooDoFn) ProcessElement(i int, rt RTracker, emit func(out int)) error {

 rtImpl := rt.(*WrappedRTracker).Unwrap().(*FooRTracker)

2.​ Make thread-safety the user’s responsibility. Add an optional thread-safe wrapper to the

API, but don’t automatically wrap the trackers for the user. User must wrap trackers
themselves in CreateInitialTracker.

3.​ Split the restriction object and restriction tracker so that users no longer need to cast
restriction trackers to inspect restriction boundaries. This is the approach the Java SDK
takes.

Alternative Considered
Because of the lack of generics in Go, the implementation above requires users to cast the
elements and restriction trackers used as inputs to the UDFs. A similar issue was avoided for
the inputs to DoFns by dynamically validating the method names and signatures on any

interface that a user is using as a DoFn. This essentially allows any arbitrary struct to be used
as a DoFn with method signatures containing the already cast inputs.

A similar approach was considered for the user-facing SDF API. With that approach no more
casting would be required. For example:

Proposed Implementation:

func (*FooRProvider) InitialSplits(element interface{}, tracker RTracker)

[]RTracker {

 fooTracker := tracker.(*FooRTracker)

 stringElement := element.(*string)

 ...

}

Alternative:

func (*FooRProvider) InitialSplits(element string, tracker FooRTracker)

[]FooRTracker {

 ...

}

Essentially this approach would treat the restriction provider similarly to a DoFn. Any struct
could be used as a restriction provider, and the method names and signatures would be
analyzed to ensure that types are consistent everywhere, including within any DoFns that the
restriction provider is used with.

This approach is more user-friendly and consistent with the current state of the Go SDK,
however it requires a far more complex implementation to perform the dynamic analysis and
validation, such as what currently exists for DoFns ([1], [2]). This approach would take longer to
implement, would require additional testing due to its complexity, and would be less performant
by default due to requiring reflection or code generation to execute methods.

Ultimately the simpler implementation was preferred because it allows for a faster
implementation of SDF, and if it is later decided that this alternative is better, it is easier to go
from a simple implementation to a more complex one than vice versa.

https://github.com/apache/beam/blob/7c92fe0bc3ba73320ee26b6323eb01884381afcc/sdks/go/pkg/beam/core/funcx/fn.go
https://github.com/apache/beam/blob/7c92fe0bc3ba73320ee26b6323eb01884381afcc/sdks/go/pkg/beam/core/graph/fn.go

Serialization

Overview
SDFs must be identifiable to runners as splittable in order for runners to correctly treat them as
SDFs. This is done by serializing SDFs as ParDos and setting the following fields in
ParDoPayload: splittable and restriction_coder_id. In addition to those fields, the
contents of the do_fn field in SDFs can differ from those in non-splittable ParDos if desired.

Implementation
Serialization of pipelines from the Go SDK representation to the proto representation occurs in
translate.go. The translation of ParDos will need to be modified to check if the DoFn within the
ParDo is splittable, and if so set the necessary fields when serializing it.

The DoFn can be identified as splittable by performing a type assertion with the DoFn used in
the ParDo to check if it fulfills the Splittable interface. This can be done either when creating
the edge with the SDF and storing the result, or by checking during the translation into protos.

The restriction_coder_id field is somewhat more difficult to serialize since it requires
retrieving the SDF’s associated RProvider and then retrieving the associated RTracker’s type.
This is easily done by calling the RTrackerType method on the RProvider and is the reason for
the existence of said method. Once the type is retrieved, it can be used to retrieve the restriction
coder followed by the coder ID.

Finally, the do_fn field can optionally have a different payload if needed for SDFs, but as of yet
no changes are needed and the current payload for standard DoFns should continue to work for
SDFs.

Execution

Overview
The execution of SDFs is the responsibility of the SDK harness. After an SDF has been
serialized and sent to the runner as part of a pipeline description, the runner may expand the
transform in a number of ways and then send the expanded SDF to the runner harness as part
of bundles. These expanded transforms are identified via URNS from
SplittableParDoComponents in the Beam Runner API.

https://github.com/apache/beam/blob/fab3ae034140dc13bb39601fa5b9d912568ce1d6/model/pipeline/src/main/proto/beam_runner_api.proto#L375
https://github.com/apache/beam/blob/fab3ae034140dc13bb39601fa5b9d912568ce1d6/sdks/go/pkg/beam/core/runtime/graphx/translate.go#L205
https://github.com/apache/beam/blob/559708610f13e660296d1639e3fdc2e9eea3fd9c/model/pipeline/src/main/proto/beam_runner_api.proto#L279

In order to support the execution of SDFs, the Go SDK harness must implement transforms for
all those URNs that are required by SDF-capable runners, and support splitting and progress
reporting on elements currently being processed.

SplittableParDoComponents URNs
At the time of writing this document, the URNs under SplittableParDoComponents includes
some soon-to-be deprecated URNs that may not be present in the initial implementation. The
following URNs will be targeted for the initial implementation:

●​ PAIR_WITH_RESTRICTION: This transform uses CreateInitialTracker from the
RProvider to pair incoming elements to the SDF with their initial restrictions.

●​ SPLIT_AND_SIZE_RESTRICTIONS: This transform uses InitialSplits and
RestrictionSize from the RProvider to perform initial splits on the initial restrictions
and get size estimates for each of the split restrictions.

●​ PROCESS_SIZED_ELEMENTS_AND_RESTRICTIONS: This transform actually processes an
SDF, similarly to how a ParDo transform would process a non-splittable DoFn. This
transform is the only one where split requests from another thread may call TrySplit on
RTrackers being processed in the execution thread.

●​ SPLIT_RESTRICTION: This transform is simply a version of
SPLIT_AND_SIZE_RESTRICTIONS listed above, but without size estimation. This
transform is likely to be deprecated, but will need to be implemented if the initial
implementation is done before the deprecation.

Implementation

URN Execution
The URNs needed for SDFs must be handled in translate.go similarly to how Combines are
currently handled ([1], [2]). If the transform is detected to have one of the SDF URNs, then the
payload must be read to retrieve the data needed to perform the SDF (in particular to be able to
construct restriction providers), and an executor created to handle the actual execution of the
URNs.

PAIR_WITH_RESTRICTION and SPLIT_AND_SIZE_RESTRICTIONS make use of the user-written
RProvider, so the RProvider method in the SDF must be used to create an instance of the
user’s RProvider, and then its methods may be called.

PROCESS_SIZED_ELEMENTS_AND_RESTRICTIONS functions nearly identically to an executor for
ParDos with the only addition being the handling of the RTracker parameter. The RTrackers
are already paired with input elements due to the previously used transforms, so the only
additional work the executor needs to do is extracting the RTracker from the KV and passing it
into the DoFn’s ProcessElement method.

https://github.com/apache/beam/blob/fab3ae034140dc13bb39601fa5b9d912568ce1d6/sdks/go/pkg/beam/core/runtime/exec/translate.go
https://github.com/apache/beam/blob/fab3ae034140dc13bb39601fa5b9d912568ce1d6/sdks/go/pkg/beam/core/runtime/exec/translate.go#L350
https://github.com/apache/beam/blob/fab3ae034140dc13bb39601fa5b9d912568ce1d6/sdks/go/pkg/beam/core/runtime/exec/translate.go#L409

Split Requests
ProcessBundleSplitRequests from the runner are already partially supported in the Go SDK.
The Go SDK harness can currently split along element boundaries, but cannot yet split within an
element due to lacking SDF support. The split request handling code is found in harness.go,
plan.go, and datasource.go, all three of which may require some changes.

To expand the existing code to support SDFs, first the calculation to determine the split point
must also be made to check if the split point lies within the currently processing element and at
what remainder of that element. Then, the executor for the data source must somehow be able
to retrieve the restriction tracker of the currently processing element and call TrySplit on it.

The elements in an SDF are processed in a different thread than the one handling the split
request, so an important part of supporting SDF splits is the implementation of some form of
thread-safety on the RTracker. A more in-depth discussion on this can be found above.

Progress Reporting
ProcessBundleProgressRequests from the runner are already supported in the Go SDK for
element counts. With SDFs, this implementation must be expanded to also cover sub-element
progress. This existing code is, just like the splitting code, found in harness.go, plan.go, and
datasource.go.

To get sub-element progress, the methods involved will need to retrieve the restriction tracker of
the currently processing element and call GetProgress on it to retrieve the fraction of work
completed.

Similarly to the splitting code, some form of thread-safety should be present on the RTracker
when retrieving progress.

https://github.com/apache/beam/blob/7688bcfc8ebb4bedf26c5c3b3fe0e13c0ec2aa6d/sdks/go/pkg/beam/core/runtime/harness/harness.go#L246
https://github.com/apache/beam/blob/c85f0f51634e65fe332e8bbe18fbf0689eb44d0f/sdks/go/pkg/beam/core/runtime/exec/plan.go#L209
https://github.com/apache/beam/blob/7688bcfc8ebb4bedf26c5c3b3fe0e13c0ec2aa6d/sdks/go/pkg/beam/core/runtime/exec/datasource.go#L261
https://github.com/apache/beam/blob/7688bcfc8ebb4bedf26c5c3b3fe0e13c0ec2aa6d/sdks/go/pkg/beam/core/runtime/harness/harness.go#L222
https://github.com/apache/beam/blob/c85f0f51634e65fe332e8bbe18fbf0689eb44d0f/sdks/go/pkg/beam/core/runtime/exec/plan.go#L173
https://github.com/apache/beam/blob/7688bcfc8ebb4bedf26c5c3b3fe0e13c0ec2aa6d/sdks/go/pkg/beam/core/runtime/exec/datasource.go#L248

	Apache Beam Proposal
	Context
	Terminology and Abbreviations
	Goal

	Overview
	User-Facing API
	Requirements
	Support Existing DoFn Functionality
	Support User-Defined Restrictions
	Support Restriction Tracking
	Splitting Restrictions
	Associate a Restriction with a Written SDF

	Omissions
	Approach
	Implementation
	Restriction Tracker
	TryClaim
	TrySplit
	GetProgress
	IsDone

	Restriction Provider
	CreateInitialTracker
	InitialSplits
	RestrictionSize
	RTrackerType

	Splittable DoFns

	Example SDF
	Restriction Tracker
	Restriction Provider
	DoFn

	Open Questions
	Merged or Split Restriction Trackers
	Thread-safe Restriction Tracker Wrapper

	Alternative Considered

	Serialization
	Overview
	Implementation

	Execution
	Overview
	SplittableParDoComponents URNs

	Implementation
	URN Execution
	Split Requests
	Progress Reporting

