
Development Roadmap



Timeline
2016

● Q4
✓ 0x founded
✓ Deployed pre-alpha contracts to Ropsten testnet

2017
● Q1

✓ Released whitepaper
● Q2

✓ Hired Fabio
✓ Deployed alpha contracts (upgradeable) to Kovan testnet
✓ Launched 0x OTC on Kovan
✓ 1st Place, Consensus 2017 Startup Competition
✓ Hired Leo
✓ Released 0x.js v0.8.0

● Q3
✓ Contracts moved from alpha to beta via governance on Kovan
✓ Hired Alex
✓ Hired Ben
✓ Token sale announcement
✓ Security audits completed
✓ 0x v1.0.0 deployed on mainnet
✓ ZRX token sale
✓ Hired Phillipe
✓ Radar Relay beta launch
✓ 0x.js updates
✓ 0x Portal announcement
✓ Standard relayer API draft published

● Q4
○ 0x hackathon
○ 0x external development grant program
○ Relayer legal framework
○ Website redesign
○ 0x Portal feature updates
○ Standard relayer API v1 finalized
○ 0x.js v1.0.0 released
○ Protocol features and optimizations R&D
○ 0x v1.x.x deployed on Kovan and Ropsten testnets

2018
● Q1

○ Governance R&D
○ Reusable relayer UI components

http://www.coindesk.com/consensus-2017-0x-proof-of-work-competition-startup-blockchain/


○ 0x v2.0.0 deployed on mainnet
● Q2

○ Trade explorer v1 released
○ Governance whitepaper

Core functions

1. Developer tools
a. 0x.js v1.0.0
b. 0x.js Tutorials
c. Contract ABI Documentation & Tutorials
d. Standard Relayer API

2. User tools
a. ERC20 Token Wallet
b. Token Explorer (via TokenRegistry)
c. Trade Explorer
d. Governance Web Application

3. R&D
a. Governance Protocol
b. ZEIP Process & Contribution Guidelines
c. Privacy Preserving Cryptography
d. Decentralized Order Book



Overview

The 0x team will be responsible for the development of open source software, tools and
infrastructure that support 0x protocol, its users and the surrounding ecosystem. 0x will be
funded through the sale of ZRX tokens (0x protocol’s native token) in a public token launch
to be carried out on the Ethereum blockchain. Activities may be broken down into three
primary areas: user tools, developer tools and R&D.

User Tools Developer Tools Research & Development

Activities - User Interfaces
- Protocol Interaction
- Decentralized Gov.
- Order Inspection
- Trade Explorer
- Documentation

- 0x.js
- HTTP/WS wrapper
- Relayer Tools
- DB + Websockets
- Standard API
- UI components
- Trader tools
- Relayer aggregator

- Governance
- Blockchain Abstraction
- Crypto Abstraction
- Future Proofing
- Privacy
- Scaleability
- Decentralized Orderbook
- ZEIPs

Team Members - Product Manager
- Project Manager
- UI/UX Designer
- Frontend Engineer
- Blockchain Engineer

- Product Manager
- Product Marketing
Manager
- Project Manager
- API Developer
- Blockchain Engineer

- Research Director
- 2x Technical Staff

https://github.com/0xProject/ZEIPs


User Tools

0x OTC
0x OTC is a browser-based web application that facilitates over-the-counter exchange using
0x protocol. 0x OTC allows users to generate, inspect and fill orders that adhere to 0x
message format. Makers must manually share their orders with a known counterparty
(email) or broadcast their orders across their social networks (Twitter, Reddit, Facebook). 0x
OTC will not act as a Relayer that hosts and maintains a real-time order book, it will merely
allow users to leverage the message format. 0x OTC is open source and free to use.

Decentralized Governance
Web application that allows stakeholders to generate, inspect and vote on proposed updates
to the protocol. It may be possible to integrate with Aragon or Boardroom, though we will
need to customize the UI and governance logic for 0x protocol.

Documentation & Tutorials
Documentation for non-technical users that explains how 0x protocol works. Demonstrate
functionality with visual aids, tutorials and examples.

Trade Explorer
All information on the Ethereum blockchain is public. However, it is much easier for an
experienced programmer to interact with and monitor the blockchain than a non-technical
end user. In order to reduce this information asymmetry, we will create a trade explorer that
compiles and presents data related to trading activity on 0x protocol. Examples of
information the trade explorer will present include:

● trading statistics and history associated with each ERC20 token, Relayer and dApp
● trading statistics and history associated with individual addresses
● performance leaderboards
● integrate identity/reputation systems

Token Registry
Verify ERC20 token addresses and exchange rates using trusted information provided by the
Token Registry. Allow users of 0x protocol to input an order JSON and get out a
human-readable visual representation of the order and its associated parameters.

Metadata
Each token within the TokenRegistry is assigned a 34-byte ipfsHash, which is a
self-describing content-addressed identifier that maps to a hash-chain based data structure
stored on IPFS. Token metadata is then expressed within a JSON document, as per the IPLD
standard (see the spec), with named merkle-links that can be traversed.

https://0xproject.com/otc
https://ipld.io/
https://github.com/ipld/specs/tree/master/ipld


ERC20 Token Wallet
The ecosystem needs a user friendly wallet for tokens that makes it easy to interface with all
of the standard token functionality. We plan on integrating this wallet with 0x OTC in order to
make trading tokens with a known counterparty as simple as a regular token transfer. It will
also allow users to interact with the 0x Token Registry to query and verify information about
tokens in the ecosystem.

Developer Tools

0x.js
Official JavaScript Library for 0x Protocol. Provides an API for interacting with and listening
to 0x smart contracts, ERC20 tokens, and converting between Ether and ERC20 wrapped
Ether tokens. Version 1.0.0 will also listen for and handle pending transactions and
blockchain reorgs.

Standardized Relayer APIs
If relayers adopt a standard format for their public APIs, it will reduce friction costs to trade
across exchanges. This would also allow us to build tools that allow connectivity to any
relayers that utilize this format. We will create and strongly recommend that relayers use this
standard API.

Relayer Aggregator
With a standard relayer API, it will be easy to aggregate relayer orders into a single data
stream. This will allow traders to programmatically interact with a single global liquidity pool.

0x Components
We will create reusable and customizable UI components for relayers, which will simplify the
process of creating a prototype front-end.

https://0xproject.com/otc
https://medium.com/0x-project/announcing-0x-js-30dff30b10f


Research & Development

Future-Proofing
The rapid pace of innovation in cryptography, smart contracts and decentralized networks
practically guarantees that current standards will soon be outdated. As developers and
maintainers of 0x protocol, it is our job to ensure that new innovations may be seamlessly
integrated. Key components of 0x protocol that may need to be replaced over time include
hashing algorithms (see multihash, Blake2b), cryptography (non-secp256k1 elliptic curves
used in secure hardware enclaves, zkSNARKs, BLS, Schnorr signatures, ...) and smart
contract integration capabilities. SIMD operations in the EVM.

Decentralized Governance
No reason to use a simple majority vote when there is an entire design space to work with.
How do we maximize security while minimizing the chances of the protocol being held
hostage by a small minority? Are commitments needed to submit proposals? Perhaps
vetoes are more important than affirmative support?

Privacy
All trading activity through 0x protocol’s shared settlement layer is public. While transparency
can be healthy for markets, there are legitimate reasons why market participants would want
privacy. Part of our research and development efforts will go towards extending 0x protocol
to new and emerging cryptographic primitives such as zkSNARKs to allow for fully trustless
and untraceable exchange. Potential approaches for driving this research effort could
include:

● Provide funding to Alessandro Chiesa’s (UC Berkeley) or Eli Ben-Sasson’s (Technion)
research group to complete a summer research project (short term) or bring on a
new PhD student (long term).

Decentralized Order Book
For now, individuals will act as Relayers responsible for hosting and maintaining order
books. Relayers will likely use conventional centralized databases. In the future, we would
like to develop a Relay protocol that moves the order book from a centralized database onto
a decentralized low-latency peer-to-peer network where swarms of nodes are compensated
for propagating orders across the network according to the level of contribution made.
Potentially based upon the IPFS tech stack, something like orbit-db.

https://github.com/multiformats/multihash
https://github.com/ethereum/EIPs/issues/152
https://github.com/ethereum/EIPs/issues/616
https://blog.ethereum.org/2017/01/19/update-integrating-zcash-ethereum/
https://people.eecs.berkeley.edu/~alexch/
http://eli.net.technion.ac.il/
https://github.com/orbitdb/orbit-db


0x Improvement Proposals (ZEIPs)
ZEIP1: Support Order Generation for Smart Contracts
ZEIP2: Order Matching
ZEIP3: Add Support for Cross-Relayer Orders
ZEIP4: Add orderType Field to Message Format
ZEIP5: Standard Deposit Contract
ZEIP6: Cross Chain OTC Trades with EVM Blockchains

EIP50: Struct Support in the Contract ABI
EIP50 proposes an extension to the contract ABI to support structs passed in as arguments
to external functions. This would allow us to establish a standard OrderSchema data
structure that conforms with 0x message format, simplifying the contract interface for
Exchange.sol. A standard OrderSchema struct would not only improve code readability but
also simplify external contract interactions.

EIP101: Currency & Crypto Abstraction
EIP101 includes a proposal to move Ether up one level of abstraction, allowing Ether and
other Ethereum-based sub currencies (ERC20 tokens) to be treated similarly by smart
contracts. For now, a “wrapper” smart contract may be used to extend the ERC20 token
interface to deposited Ether. For reference, see the Maker implementation or Gnosis
implementation.

ERC223 Token Standard
ERC223 allows a token transfer to contain an arbitrary data parameter that may be called by
the receiving contract. This essentially allows tokens to have “push” functionality rather than
“pull” functionality only. This would remove the need for the taker of an order to grant a token
allowance to the Proxy contract, as they could transfer a token to the Exchange contract and
while calling the fill function at the same time.

https://github.com/0xProject/ZEIPs/issues/1
https://github.com/0xProject/ZEIPs/issues/2
https://github.com/0xProject/ZEIPs/issues/3
https://github.com/0xProject/ZEIPs/issues/4
https://github.com/ethereum/EIPs/issues/50
https://github.com/ethereum/EIPs/issues/28
https://github.com/makerdao/token-wrapper/blob/82d379769390c336abcb8ac0629d039a44d21e22/src/wrapper.sol
https://github.com/ConsenSys/gnosis-contracts/blob/master/contracts/solidity/Tokens/EtherToken.sol
https://github.com/ConsenSys/gnosis-contracts/blob/master/contracts/solidity/Tokens/EtherToken.sol
https://github.com/ethereum/EIPs/issues/223

