Google Summer of Code

GSoC 2020 Proposal for

Visible Component Extensions

Proposed by Pavitra Golchha (@pavi2410)

Under the category: prototypes and proofs of concept

®

= APP INVENTOR

Organisation: MIT App Inventor

https://github.com/pavi2410

Table of Contents

Interest in App Inventor

Interest in introductory programming

Proposed summer project

Visible Component Extensions

Abstract + Implementation
Thoughts on generating mock components
Deliverables

The proposal aims to come up with the following:

Ability to create a visible component extension.

Ability for extension devs to create a customized mock for their visible component
extension.

Experience with the development tools

Experience with teams, online developer communities and large code bases

Application challenges

Challenge 1: Creating a non-trivial app

hallenge 2:Design challenge -- Enhancing th mer. ration

Deprecation of UseFront property in the Camera component

Capture images without user intervention

Google Summer of Code ' = MIT
g ' APP INVENTOR

Interest in App Inventor

| am interested in App Inventor because it allowed me to create an Android app
without any prior knowledge of Computer Science. It helped me learn the
fundamentals of computer programming. | was amazed how | can develop apps

easily that | can run on my phone!

Interest in introductory programming

Though | have taught little basics of App Inventor to my siblings and friends, | have
no other significant experience in teaching introductory programming in App Inventor.
If not teaching, then | have helped many people through their problems faced with

using App Inventor.

)

|| e Summer of Code
- — APP INVENTOR

Proposed summer project

Visible Component Extensions’

Brief explanation: Work has been done during the last few GSoC sessions in
developing a Component Developer’s Kit to App Inventor. This facility
provides for loading externally developed components into App Inventor.
However this work is currently limited in scope. In particular only components
that have no visible Ul elements can be added. We would like to extend the
CDK capabilities to include extensions with Ul elements. Extensions are
currently only available in English. We would like an enhancement to that
extension writers can provide strings in other languages as well, as is the

case with builtin components.

Expected results: The ability to build and add extensions with text in

non-English languages as well as access to Ul elements.

Knowledge Prerequisite: Java and familiarity with GWT and the Android SDK.
Familiarity with systems integration, release management, and systems

architecture is a plus.

Difficulty and estimated time: Hard; this would be a whole summer project.

| chose this project because it was something many extension developers have

requested in the past 2 ® and was one key missing feature of the CDK. As a result of

1

https://github.com/mit-cml/appinventor-sources/wiki/Google-Summer-of-Code-2020#visible-componen
t-extensions

2 https://groups.google.com/d/msg/app-inventor-open-source-dev/9QUzm2d7x54A/JKglbxTXEAAJ

3 https://groups.google.com/d/msa/app-inventor-open-source-dev/mjkaDdrTwEE/ktkhjtFtAgAJ

Google Summer of Code ‘ = MIT

! APP INVENTOR

https://groups.google.com/d/msg/app-inventor-open-source-dev/mjkaDdrTwEE/ktkhjtFtAgAJ
https://groups.google.com/d/msg/app-inventor-open-source-dev/9Uzm2d7x54A/JKqlbxTxEAAJ
https://github.com/mit-cml/appinventor-sources/wiki/Google-Summer-of-Code-2020#visible-component-extensions
https://github.com/mit-cml/appinventor-sources/wiki/Google-Summer-of-Code-2020#visible-component-extensions

that, extension developers have worked around this by making a function which
takes a component (as parent container) which makes using those extensions

unintuitive 4 5.

Abstract + Implementation

Currently, extensions are limited to just non-visible components. Due to this,
extensions can't be dragged into the mock form designer. To work around this,
extension developers have to get a reference to a visible component as parent under
which they create Ul views. This, however, defeats the idea of App Inventor, which

allows the users to create their Ul of their apps using the concept of WYSIWYG.

My proposal to solve this problem is to have a generic
“MockVisibleComponentExtension” which can be dragged into the designer. The
extension will be just a visible component as opposed to non-visible component. This
allows the extension to be placed under a "ComponentContainer under which the
extension can create its views. This allows the users to view a clear hierarchy of their
app's Ul when using "visible" extension. Then, there will also be a need for
"MockComponentContainerExtension’ into which any visible component/extension

can be placed.

There will be default mock provided for such extensions which do not have
specialized mock (yet to be discussed). The default mock will only contain the
extension icon. This is good because the mechanism to generate the mock has not
been thought upon, and we are yet to discuss the possibility. Extension developers

can choose to not provide a specialized mock if their extension is simple enough.

On the Android side, there is no need to do anything. The instantiation of

components is well-handled by the runtime.scm#L51 file. Same goes for the

buildserver.

4 [Free] ActionBar Extension - #ThunkableClassicExtensions

5 [Free] CardView Extension - #ThunkableClassicExtensions

U z_;':a};][\a‘—f summer or L.ode X

—_— APP INVENTOR

https://github.com/mit-cml/appinventor-sources/blob/03209c86c739b46063fb1d96714f00c65bfacb9e/appinventor/buildserver/src/com/google/appinventor/buildserver/resources/runtime.scm#L51
https://community.thunkable.com/t/free-cardview-extension/11353
https://community.thunkable.com/t/free-actionbar-extension/4985

For extension generation also, there is nothing special to do, other than generating

mock.

As part of my research, I've successfully created a branch ® where | am able to build
a visible component extension ’, drop it to the designer, and succeeded in running

the aforementioned extension in the companion app as well as a standalone app.

Thoughts on generating mock components

A Mock component is used to show a preview of the component in the designer. This
component reacts to the changes in the component’s properties and adapts
accordingly. This works great for built-in components, because we already have all
the information of every built-in component. But this is something of a concern for
achieving the goal of this proposal. This was not a problem with non-visible

extensions because it's not visible in the designer as the name suggests.

We could create an interface or an abstract class, which will then be extended by the
extension developer (optional, as the extension dev may choose not to create the
mock component, so we provide a default implementation which just shows the
extension’s icon). Due to the limitations of GWT, we cannot use Java Reflection nor
load JS files dynamically using eval() due to security concerns. After learning

more about GWT, | found about “Deferred Binding”. But, according to the docs,

“‘Deferred binding is a feature of the GWT compiler that works by generating many

versions of code at compile time, only one of which needs to be loaded by a

particular _client _during bootstrapping at runtime. ...”, this may not work for us

because we want to be able to load many different visible component extensions.

The companion app, on the other hand, can load extension classes dynamically by
loading the extension .dex files in the DexClassLoader.This works because the
environment the companion app runs on is Android, which has a Dalvik/ART VM

equivalent of JVM. So, it is guaranteed by the JVM to be able to load classes

6 https://github.com/pavi2410/appinventor-sources/iree/visible-extensions
7 https://gist.github.com/pavi2410/211607ae22e263cas8f3c89eb909766fb

& i}ﬂﬂ”@:" SUmmel u’-’f Code .-
- | APP INVENTOR

http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsDeferred.html
https://gist.github.com/pavi2410/211607ae22e263ca8f3c89eb909766fb
https://github.com/pavi2410/appinventor-sources/tree/visible-extensions

dynamically. Whereas, in the GWT side, it is transpiled into JS files and depends on
the emulation of the JRE, due to which stuff like reflection and class loading is simply
not possible. To tackle such limitations, GWT has introduced “Deferred Binding” and

“Generators”, which have their own set of limitations.
However, in an ideal condition, | have thought of a dummy implementation plan:
e There will be an abstract class (say MockVisibleComponentExtension)
public class MockVisibleComponentExtension {}

e Extension devs would then implement the above abstract class to create the

Mock for their visible component extension.

NOTE: The API surface has to be thought upon in order to access the

properties set in the properties panel for this extension.

e The implemented class will be transpiled by the GWT compiler to JS files
which will be added to the .aix file.
e When a visible component extension is imported into the builder. The builder

will register the extension’s Mock component like this:

MockComponentRegistry.register(String extensionFqcn,

Class<MockVisibleComponentExtension> mockClass);

e When this extension is dragged and dropped into the MockForm designer, the
mockClass corresponding to the extensionFqcn will be instantiated and

added into the parent MockComponent by calling:

MockVisibleComponentExtension mvce =

mockClass.newInstance();

parentMockConatinerComponent.add(mvce); // hypothetical

method for demonstration

)

_— APP INVENTOR

Deliverables

The proposal aims to come up with the following:

e Ability to create a visible component extension.

® Ability for extension devs to create a customized mock for their visible

component extension.

Google Summer of Code ‘

—_— APP INVENTOR

Experience with the development tools

e Java

| have around 4 years of progressive experience in Java. | have a good

understanding of OOP, SOLID principles and clean code architecture. | know

Ant and Gradle build tool systems.

Although | have now switched to over Kotlin, | have a handful of projects and

achievements to showcase:

o https://repl.it/@pavi2410/Markdown-Generator

o My commits to App Inventor’s open source repo, notably PR #1417
o Passed LinkedIn Assessment for Java

e JavaScript

| have 2.5 years of experience in JavaScript. Until now, | have made many

websites and web apps to learn new concepts. | have also worked with

Node.js.

o

https://github.com/pavi2410/REPLIisp - A programming language

o

https://github.com/pavi2410/Random-Quote-Machine

https://github.com/pavi2410/URL-Inspector

https://glitch.com/~dsc-survey
e Android development with the Java SDK

O

o

| have been learning and developing Android apps for 2 years now. Daily, |

learn new things and try to put that into practice.

o https://github.com/pavi2410/GooglePlayCloneKt
o https://github.com/pavi2410/VVRCompatibilityChecker

o https://github.com/pavi2410/DSC-ToDo-List

Google Summer of Code ‘

—_— APP INVENTOR

https://www.sololearn.com/Certificate/1068-675658/pdf/
https://repl.it/@pavi2410/Markdown-Generator
https://github.com/mit-cml/appinventor-sources/commits?author=pavi2410
https://github.com/mit-cml/appinventor-sources/pull/1417
https://www.linkedin.com/in/pavi2410/skills/report/Java
https://www.sololearn.com/Certificate/1024-675658/pdf/
https://github.com/pavi2410/REPLisp
https://github.com/pavi2410/Random-Quote-Machine
https://github.com/pavi2410/URL-Inspector
https://glitch.com/~dsc-survey
https://github.com/pavi2410/GooglePlayCloneKt
https://github.com/pavi2410/VRCompatibilityChecker
https://github.com/pavi2410/DSC-ToDo-List

e Git/Github

| am proficient in using GitHub and prefer it over other Git servers. My GitHub

profile can be found here.

| can also use git to stage files, make commits, create and checkout branch,
pull/push changes from/to GitHub, all from the command line. | mostly use
GitKraken though.

Google Summer of Code ‘

—_— APP INVENTOR

https://github.com/pavi2410

10

Experience with teams, online developer communities and

large code bases

| am active in online developer communities through the platforms like

StackOverflow, Reddit, Twitter. On StackOverflow, | have gained over 700+

reputation. On Reddit and Twitter, | mostly follow Android and Web devs, and

actively participate in their discussions.

In the App Inventor world, | am part of the App Inventor Open Source Development
community, | was a part of the Thunkable community and now | am active in the

Kodular community, helping people through their various problems.

Talking about large code bases, | have worked with App Inventor’s source code (and

Kodular alike). Apart from that, | worked on the Bulma_CSS framework.

& i}ﬂﬂ”@:" SUmmel u’-’f Code .-
- | APP INVENTOR

https://stackoverflow.com/users/7595401/pavi2410
https://reddit.com/u/pavi2410
https://twitter.com/PavitraGolchha
https://github.com/jgthms/bulma

11

Application challenges

Challenge 1: Creating a non-trivial app

The app | made is called “Speak Now!”. It is a recreation of my own app, which was
featured as the “MIT App Inventor App of the Month - Most Creative” in February,
20158,

Most Creative
February 2015

Speak Now! is an app that converts written text to speech. It was created by
14-year-old Pavitra Golcha from India so that people could learn how to

correctly pronounce English words.

As instructed to use a local server, unfortunately, | cannot make the Yandex
Translate component work °. Instead, | used a Web component to get the

translations.

AlA: https://drive.google.com/open?id=1WSI1YGhhRIirnTSMYBJ1UBFDGIHDDZEE

APK: https://drive.google.com/open?id=1XGppb4QGKkIZKNPOfSIWENUVYFguiBniG

8 App of the Month Winners 2015
® https://github.com/mit-cml/appinventor-sources/issues/2126

Google Summer of Code ‘ = MIT

! APP INVENTOR

https://drive.google.com/open?id=1WSI1YGhhRltrnT5MYBJ1UBFDGlHDDZEE
https://drive.google.com/open?id=1XGppb4QGkIZKNP0f5IW6NUVYFguiBniG
https://github.com/mit-cml/appinventor-sources/issues/2126
https://appinventor.mit.edu/explore/app-month-winners-2015

12

Challenge 2:Design challenge -- Enhancing the Camera operation

Deprecation of UseFront property in the Camera component

The UseFront property was deprecated because it was using an undocumented,
test Intent Extra flag (“android.intent.extras. CAMERA FACING”) defined in the

AOSP Camera app source. Since this flag is undocumented, it is not surprising at all

if it doesn’t work at some point in time. The UseFront property didn’t work because
there was no way left to tell the camera app which camera to use through the means

of Intent.

Capture images without user intervention

The Camera component uses an Intent (“android.media.action.IMAGE_CAPTURE”)
to launch the device’s camera app. This requires users to manually take a picture.
But, in order to take a picture without user intervention, we must display a preview to
the user, considering the user’s privacy. As the existing Camera component is a
AndroidNonvisibleComponent, | would create a new visible component named
“CameraView" in the

appinventor/components/src/com/google/appinventor/components/runtime directory.

The visible component can be placed in any container in the designer and can used
to replicate a camera app. The component will add a SurfaceView in the layout in
combination with the Camera API (not using Camera2 API as it’s only available from
APl 21 and App inventor should be compatible with APl 9 or newer; to provide

compatibility with newer devices, we can instead use the CameraX Jetpack library.)

| would then define the following methods/functions:

e TakePicture

Google Summer of Code ‘

—_— APP INVENTOR

https://github.com/mit-cml/appinventor-sources/blob/03209c86c739b46063fb1d96714f00c65bfacb9e/appinventor/components/src/com/google/appinventor/components/runtime/Camera.java#L116
https://android.googlesource.com/platform/packages/apps/Camera/+/094db3868a6f18d9ea2c4268b32214a02a62908c/src/com/android/camera/VideoCamera.java#347
https://github.com/mit-cml/appinventor-sources/tree/master/appinventor/components/src/com/google/appinventor/components/runtime

13

This will capture the image and save it to the file specified. Must call

StartPreview before calling this method.
e RecordVideo

The component could also record videos.
e StartPreview

Starts the preview shown to the user.
e StopPreview

Stops the preview shown to the user.
e IsPreviewRunning

To check whether the preview is running.

Also, these properties will be added:
e FilePath(String)
Used to set the path of the file to save the image/video.
e UseFrontCamera(Boolean)
Setting this to true will set the preview to use the front camera.
e Rotate(Int)
The user can specify the angle of the preview in degrees.
e TurnFlash(Boolean)
This property tells whether to turn on the flash.

e ... several camera specific properties.

_— APP INVENTOR

14

For the implementation, the official Android docs gives us a clear view of how the

integration will work.

The general steps for creating a custom camera interface for your application

are as follows:

Detect and Access Camera - Create code to check for the existence
of cameras and request access.
Create a Preview Class - Create a camera preview class that extends

SurfaceView and implements the SurfaceHolder interface. This class

previews the live images from the camera.

Build a Preview Layout - Once you have the camera preview class,
create a view layout that incorporates the preview and the user
interface controls you want.

Setup Listeners for Capture - Connect listeners for your interface
controls to start image or video capture in response to user actions,
such as pressing a button.

Capture and Save Files - Setup the code for capturing pictures or
videos and saving the output.

Release the Camera - After using the camera, your application must

properly release it for use by other applications.

When the component is initialised, we will add a surface view to the container like

this:

public CameraView(ComponentContainer container) {

}

Google Summer of Code ‘

surfaceView = new SurfaceView(this);

container.Sadd(surfaceView) ;

_— APP INVENTOR

https://developer.android.com/guide/topics/media/camera
https://developer.android.com/reference/android/view/SurfaceView
https://developer.android.com/reference/android/view/SurfaceView
https://developer.android.com/reference/android/view/SurfaceHolder

15

and to take a picture:

@SimpleFunction
public void TakePicture() {
camera.takePicture(null, null, this /*

Camera.PictureCallback jpeg */);
}

The Camera.PictureCallback interface will be implemented by the component class

and this method will be overridden:

@Override
public void onPictureTaken(byte[] data, Camera camera) {

// save the image to the file

Google Summer of Code ‘

—_— APP INVENTOR

https://developer.android.com/reference/android/hardware/Camera.html#takePicture(android.hardware.Camera.ShutterCallback,%20android.hardware.Camera.PictureCallback,%20android.hardware.Camera.PictureCallback,%20android.hardware.Camera.PictureCallback)

	GSoC 2020 Proposal for
	 Visible Component Extensions
	
	Interest in App Inventor
	Interest in introductory programming
	
	Proposed summer project
	Visible Component Extensions
	Abstract + Implementation
	Thoughts on generating mock components
	Deliverables

	The proposal aims to come up with the following:
	●​Ability to create a visible component extension.
	●​Ability for extension devs to create a customized mock for their visible component extension.
	Experience with the development tools
	Experience with teams, online developer communities and large code bases
	Application challenges
	Challenge 1: Creating a non-trivial app
	Challenge 2:Design challenge -- Enhancing the Camera operation
	Deprecation of UseFront property in the Camera component
	Capture images without user intervention

