
1.​ Proposal title: Tensor Execution engine on GPU

2.​ Introduction:
The goal is to optimize the FasTensor tensor computing library to work efficiently on
GPUs. Currently, it only works well on CPUs. This optimization would enable FasTensor
to efficiently compute tensor contractions on GPUs while maintaining the
structure-locality of tensor data. The project aims to create custom-defined
computational operations (kernels) on GPUs to achieve this goal. This optimization is
essential for many scientific applications, including advanced AI model training.

3.​ Project goals:

a.​ The main objective of this project is to optimize FasTensor to work efficiently on
GPUs, which will benefit a wide range of scientific applications that require
tensor-based computing. The community will benefit from a more flexible and
efficient tensor library that can run on different hardware platforms.

b.​ The expected deliverables from this proposal include a working implementation
of FasTensor on GPUs, a report on the performance of the execution engine, and
documentation of the execution mechanism.

c.​ Future work may involve further optimization of FasTensor for different types of
hardware, as well as integration with other scientific computing libraries.

4.​ Implementation plan:
a.​ The project will use a combination of programming languages, including C++ and

CUDA, to implement the mechanism for moving user-defined computing kernels
onto GPUs. My plan will be to interact with the mentor and other members of the
open-source community through online discussions and code reviews.

b.​ The technical elements of the project include implementing the necessary
algorithms and data structures to maintain the structure-locality of tensor data on
GPUs, as well as developing efficient memory access patterns and data
movement strategies.

c.​ The main challenges I anticipate include ensuring compatibility with different
GPU architectures, managing memory and data movement efficiently, and
ensuring that the execution engine can handle a wide range of user-defined
computing kernels. Proposed solutions include using profiling and benchmarking
to identify performance bottlenecks and optimizing the implementation
accordingly.

d.​ The project timeline includes an initial period of research and planning, followed
by implementation and testing, and a final period of documentation and reporting.
The planned deliverables include a working implementation of FasTensor on
GPUs, performance benchmarks, and documentation of the execution
mechanism.

5.​ Project Timeline:

a.​ Week 1: Research existing literature on tensor computing and GPU optimization
techniques. Familiarize with Fastensor's codebase and identify areas that need
to be modified for GPU optimization.

b.​ Week 2-4: Develop a plan for optimizing Fastensor on GPU and start
implementing the changes.
Deliverable: A detailed plan outlining the specific changes to be made to
Fastensor to optimize it for GPU computing. Modified Fastensor codebase that
runs efficiently on GPU

c.​ Week 5-7: Test and debug the modified code on a variety of GPU hardware and
software configurations
Deliverable: A report detailing the results of testing the modified Fastensor code
on various GPU hardware and software configurations, including any bugs or
issues encountered and how they were resolved.

d.​ Week 8-10: Evaluate the performance of the optimized Fastensor against
existing tensor computing libraries on GPU.
Deliverable: A report comparing the performance of the optimized Fastensor
against existing tensor computing libraries on GPU, including any speedup
achieved.

e.​ Week 11-12: Document the modifications made to Fastensor, including any
performance improvements achieved and any challenges encountered.
Deliverable: A comprehensive documentation of the modifications made to
Fastensor for GPU optimization, including any challenges encountered and how
they were addressed.

6.​ Biographical information:

Name: Rishabh Ballabh Singh Email: rbs7261@nyu.edu
Phone: 917-375-2150
LinkedIn: https://www.linkedin.com/in/rishabh-singh-274120169/ Github:
https://github.com/ris0801/
Current Affiliation: New York University, Tandon School of Engineering
Relevant experience and educational background:
Experience:
Senior Software Engineer at Arcesium(3 years): ​​
At Arcesium, I worked with the team on full-stack development, extensively on Java, Spring,
MySQL for backend, ReactJS for frontend development, and AWS for building modern
software solutions spanning the investment cycle. One of my most noteworthy projects was
to increase the efficiency of reading data from upstream applications. Data was being read
as quickly as within 5 mins compared to as worse as 6 hours before. It also reduced the
number of data read issues by 99%. As a senior engineer, I supervised two other software
engineers in developing a sustainable application as a team. We built a machine-learning
suggestive application for the annual hackathon to help the Financial Operations team with
highly positive reviews.

Software Engineer Intern at Samsung(6 months):

https://www.linkedin.com/in/rishabh-singh-274120169/
https://github.com/ris0801/

At Samsung, I worked in the Voice Intelligence team, where we succeeded in deploying
General Adversarial Networks as part of the Natural Language Generation Team using
Python, Keras, TensorFlow, and scikit-learn after reading numerous research papers. We
constructed a primary pipeline with 88% accuracy from datasets of queries and expected
responses requested from Bixby over the years. Bixby was generating answers for the first
time instead of replying from a fixed set of responses.

Education:
Masters in Computer Engineering (New York University, Tandon School of Engineering,
Sep 2022 - Present)
Relevant coursework:

●​ Machine Learning, Deep Learning, High Performance Machine Learning (HPML),
Artificial Intelligence, Data Structure and Algorithm

Technical interests and strengths:
●​ Programming Languages: Python, Java, C++, MATLAB
●​ Technical: Deep Learning, Tensorflow, Pytorch, Keras, Scikit-learn, GPU

architecture, CUDA programming, GPU memory management, Git, SQL,
Pandas, AWS, Linux

