
Beyond Bitswap: Related Work

Motivation​ 1

File-sharing in IPFS​ 2
Bitswap​ 2
Graphsync​ 2
Known issues of current implementations​ 3
Security concerns​ 3

File-sharing protocols general framework​ 4
Protocol Architecture​ 4
Use Cases​ 6
Request Patterns Topology​ 7

State of the art​ 9
Community Proposals​ 9
Papers, Patents and Publications​ 10

Baseline Test Framework​ 13
Proposed metrics​ 13
Test case scenarios​ 15

Motivation
One of the projects the ResNetLab is currently involved in is in the analysis of potential
improvements to file-transfer in IPFS. There are currently two main implementations for the
exchange of content in IPFS: Bitswap (block exchange protocol) and Graphsync (graph
exchange protocol). The first task we’ve performed in the scope of the project is a thorough
analysis of the current status of file-transfer in IPFS, as well as an extensive revision of the state
of the art in the field of file-transfer in P2P networks. In the process, we have not limited
ourselves to the study of academic papers, but also to the recollection of ideas and proposals
scattered through the IPFS ecosystem (we may have missed some of the proposals and ideas
proposed within the extense IPFS community, so do not hesitate to let us know if you are
missing something relevant).

In this document we present the results of all our work along with some conclusions,
abstractions and a collection of new ideas that can serve as a foundation for the design and
implementations of future improvements in IPFS’ file-sharing subsystem.

This document extends/complements the work done here:
https://github.com/ipfs/notes/blob/master/OPEN_PROBLEMS/ENHANCED_BITSWAP_GRAPH
SYNC.md

File-sharing in IPFS
There are currently two main exchange interfaces implemented in IPFS: Bitswap and
Graphsync.

Bitswap
Briefly, Bitswap is a message oriented protocol. When a peer wants a specific CID, it sends a
WANT-HAVE message with the block CID to all its connected peers. Any node answering with a
HAVE message to this request will be added to the same session. Sessions aggregate peers
with information about the content being requested. If no connected peers have the block
requested, Bitswap fallbacks to the DHT to find peers storing the block.

To actually request the transmission of the block, Bitswap sends a WANT-HAVE message to all
peers of the session except for one of them to whom a WANT-BLOCK message is sent to
request the actual transmission of the block. If this WANT-BLOCK fails, the peer can try to send
it to other peers in the session.

A more in depth description of how Bitswap works can be found here:
https://github.com/ipfs/go-bitswap/blob/master/docs/how-bitswap-works.md

Graphsync
Graphsync is a request-response protocol. It relies on the use of IPLD selectors to specify the
content that wants to be retrieved by a node. Instead of sending flat WANT messages to its
connected peers, in Graphsync an IPLD selector is included in the content request asking for a
set of blocks in a IPLD DAG structure.

Implementation details can be found here:
https://github.com/ipld/specs/blob/master/block-layer/graphsync/graphsync.md.

https://github.com/ipfs/notes/blob/master/OPEN_PROBLEMS/ENHANCED_BITSWAP_GRAPHSYNC.md
https://github.com/ipfs/notes/blob/master/OPEN_PROBLEMS/ENHANCED_BITSWAP_GRAPHSYNC.md
https://github.com/ipfs/go-bitswap
https://github.com/ipfs/go-bitswap/blob/master/docs/how-bitswap-works.md
https://github.com/ipfs/go-graphsync
https://github.com/ipld/specs/blob/master/block-layer/graphsync/graphsync.md

Known shortcomings of current implementations
Some of the pressing limitations identified for current implementations of content exchange in
IPFS are:

●​ The same discovery and transmission strategy is followed for any type content
exchanged. These protocols only understand blocks and CIDs (being Graphsync a bit
smarter in the discovery in this sense). IPFS accommodates a great gamut of use cases,
and it may benefit from the implementation of a “use case-aware” (or interchangeable)
content exchange interface. Thus, the specific content discovery and transmission
algorithms to be used would be steered according to the specific data to be retrieved.
The download of large data files may not benefit from the same schemes as the
download of small blocks.

●​ Bitswap follows a blind and optimistic search of content. Peers send a flat Wantlist to its
directly connected peers with the hope that at least one of them has the content. If this
fails, it has to fallback to the DHT to perform the lookup. Maybe it would be worth
evaluating more efficient ways to “direct the search” so that we provide some kind of “a
priori” knowledge to the peer for him to be able to orchestrate the content discovery
more efficiently. This “a priori” information can come through the periodic exchange of
information with its connected peers (similar to how is done in GossipSub, for instance?).

●​ These protocols are not very bandwidth efficient, as the blind and optimistic search leads
to a lot of duplicate messages and blocks being exchanged. Recent improvements over
Bitswap were directed on reducing this (thus the use of WANT-HAVEs and sessions)
with impressive results.

●​ Finally, we don't have a reference testbed and a baseline benchmarking of the protocols
to help us identify the “expensive parts” of the protocol. Many of the aforementioned
problems and assumptions are the result of our observation of the protocol, but we don’t
have a complete benchmark to identify what parts of the protocol have a bigger impact in
the performance of the protocol, if it is the content discovery, the actual transmission of
data, or the scarcity of bandwidth under different scenarios. To fix this, we are planning
to build a testbed and a general framework to ease the evaluation of content exchange
protocols in order to see if we are able to identify the bottlenecks and overheads of
current implementations.

Security concerns
Bitswap also can be vulnerable to a set of potential attacks:

●​ Peer floods a local node with useless blocks: A peer sends many blocks to the local
node that the local node doesn’t want, flooding the local node’s bandwidth. Mitigation:
Deprioritize peers that send many unwanted blocks.

●​ Peer sends HAVE message when it doesn’t have the block: The local node sends
want-have to a peer; the peer responds with HAVE; the local node sends want-block to

the peer; the peer times out or sends DONT_HAVE. Mitigation: Deprioritize peers that
frequently send HAVE but then don’t have the block.

●​ Eclipse HAVE Attack: Many sybils connect to the local node: Local node sends
want-have CID; Each sybil responds with HAVE CID; Local node sends want-block CID
to a sybil; Sybil doesn’t respond, so the request times out; Repeat from the want-block
stage. Because Bitswap only requests one want-block at a time, the sybils can introduce
a delay of <number of want-block requests to sybils> x <timeout>. Mitigation: Increase
parallelism of want-block requests, deprioritize peer that send WANT but don’t have
blocks. Prioritize peers that have been connected longest.

●​ Connect flood: Crowd honest peers. Mitigation: Favour longer lived, more stable nodes.

File-sharing protocols general framework
To ease the understanding and the analysis of the proposals and improvement ideas collected
throughout this work, we abstracted the implementation of file-sharing protocols into different
layers. This lays the foundation for the testbed design and frames the ideas over a common
context.

Protocol Architecture
From our study of the current implementations of file-sharing subsystems in IPFS (mainly
Bitswap and Graphsync) we have arrived at the following general architecture of file-sharing
protocols in P2P networks. The aim of this architecture is to divide file-sharing protocols in
different submodules, each with clear responsibilities, so that performance and overheads can
be tracked at each of these levels. This framework would allow us to direct our improvements
efforts to the less efficient part of the file-sharing protocol (this will make more sense as we
progress through the document).

●​ Layer 0 - Data Structure: Layer responsible for determining the structure of the content.
It determines how the data is stored, the coding scheme used to represent the data, and
the specific architecture followed to store content in the network.

○​ Some schemes belonging to this layer: The split of content in blocks (chunker),
the use of Merkle DAGs to structure the data and store it, or the use of specific
structures to represent the Providers Record to perform lookup in the network
(DHT, hierarchical DHT).

●​ Layer 1 - Content Discovery and Announcement: It specifies all the schemes for the

discovery of content in the network. It determines how to conform the requests and the
messages to be sent to find content in the network, as well as the announcements of
seen/stored content to other nodes.

○​ Some schemes belonging to this layer: The use of control messages (Wantlists,
WANT-HAVE, etc.). The use of sessions to discover nodes with high probability

of having the content, and peer selection algorithms used to select to whom the
content will be requested.

●​ Layer 2 - Negotiation and Content Transmission: Along with the discovery of content,

there may optionally be a negotiation phase so that once the content has been
discovered its transmission is “formally” requested. This layer implements schemes to
negotiate the request of content to the most suitable peers available as well as the
actual transmission of blocks from the network. It negotiates and opens a transmission
channel between the requestor node and the provider of the content. In some
implementations this layer may be embedded in layer 1.

○​ Some schemes belonging to this layer: Peer selection to ensure the higher
throughput, optimal path selection, or the use of network coding to add
redundancy in the transmission of blocks to requestor peers (more about network
coding below).

Use Cases
In this section we present an overview of general use cases that can potentially be implemented
using IPFS. For each use we analyze its specific requirements they may impose in the
file-sharing subsystem in order to operate successfully. There’s a lot of room for discussion in
this section (as well as in the overall document), so do not hesitate to refute these claims,
complement it with real data, or suggest additional use cases.

Use Case DAG
Structure

Latency
needs

Throughp
ut needs

Sync /
Ordered

Churn
impact

Paralleliza
ble

Live
Stream

Wide tree High
(depends
QoS /
codec)

High Yes Withstands
a small
number of
lost blocks.
Replicas
may be
increased
to better
availability
and
throughput.

Depends
on DAG
structure
used

Messaging Depends
implement
ation

Low Low Potentially
yes

Low
number of
replicas.
Small files.
Events in
the
network.

No

Large Files Wide tree No Very high No Enough
replicas to
ensure
availability

Yes

Databases Wide and
deep tree
(Database
-> Schema
-> Docs).

< 2s Mid-high
(depends
on the size
of the data)

No Enough
replicas to
ensure
availability

No for
single
queries.
Yes in
batch

Frontend
Backend
Assets

Wide tree < 1s Low No (except
index)

Low #
replicas.
Accessed
regularly

Yes

Blockchain
Ledgers

Narrow
and deep
tree.

Low Low Depends Enough
replicas to
ensure
availability

Yes
in-sync, no
specific
queries

VoD Wide tree High
(depends
QoS /
codec)

High Yes Withstand
a small
number of
lost blocks.
Replicas
may be
increased
to better
availability
and
throughput.

No

Request Patterns Topology
From the use cases above, we may infer a set of common request patterns. This extends the
request patterns analysis presented here.

●​ Request of specific blocks: The node is requesting a specific CID from a DAG
structure such as: <Root_CID>/link1/link2/<CID>. This pattern requires the discovery of
the ROOT_CID, traversing the DAG until we reach the CID, and then the request of the
blocks for <CID>. This pattern is widely seen when requesting specific files from a
filesystem, blocks of a blockchain ledger, or frontend/backend assets for a web
application.

○​ Important metrics: This specific pattern would benefit from low latency, fast
discovery of the specific CID, data availability and high churn resistance.

●​ Request of full DAG structures: The node is requesting the full DAG structure either

from its root CID: <DAG_CID>/*; or from a certain level:
<ROOT_CID>/link1/<DAG_CID>/*. This pattern requires the discovery of the DAG_CID
and the discovery and transmission of all the blocks belonging to this DAG. This pattern
is used for blockchain synchronization and the download of large files.

○​ Important metrics: Full discovery of the DAG without requiring full traversal,
bandwidth efficiency (there are a lot of blocks to be requested) and high
throughput. I also may benefit from “a priori” information of the structure of the
tree.

●​ Request of a custom subgraph in a DAG structure: When a specific subset of the

DAG wants to be retrieved. In this case we are not requesting the full DAG but a
subgraph (all the leaves, a branch of the DAG, the right side of a symmetric graph, etc.).
The only efficient way of achieving these complex requests is by using IPLD selectors.
This pattern requires the parsing of the IPLD selector, and the retrieval of all the CIDs

https://github.com/ipfs/go-bitswap/issues/186

fulfilling the request. This pattern may be useful for databases, large datasets or
messaging apps.

○​ Important metrics: Smart discovery of blocks and bandwidth efficiency. Churn
resistance.

●​ Ordered transmission: The node requests an ordered transmission of the blocks

conforming a DAG. In a request such as: <ROOT_CID>/link1/<DAG_CID>, the upper
levels and left side of DAG_CID should be discovered first and transmitted before the
leaves which needs to be transmitted in an orderly manner. Improved IPLD selectors
may be needed to implement this pattern efficiently.

○​ Important metrics: Low latency. Ordered delivery. Caching, buffering schemes?

●​ Regularly accessed content: The node requests content regularly accessed in the
network. This may be useful for web caching, filesystems, registries, name systems, etc.
If the regularly accessed content has the following CID and belongs to the following
DAG: <Root_CID>/link1/link2/<CID>, both requests should lead to the same number of
requests and control messages in the file-sharing protocol. Requesting through the full
path shouldn’t lead to additional messages. Some kind of pre-defined WANT messages,
hashed wantlists, or caches may be required for this specific content.

○​ Important metrics: Fast discovery. Caching schemes.

More complex request patterns may be devised, but in our opinion they will end up being a
combination of the ones mentioned above. Thus, in order to request the content to load a large
video and be able to playback and seek, the resulting content requesting will be a combination
of three of the above patterns: (i) request a subgraph with the first blocks of the video and then
(ii) all of the tree structure except the leaves; finally (iii) request the full DAG (all the blocks of the
video) in an orderly manner.

Other examples of use cases and request patterns can be found here:
https://github.com/ipld/specs/blob/master/block-layer/graphsync/graphsync.md#example-use-ca
ses

State of the art
In this section we will present some of the main improvement ideas proposed by the community
(in Github Issues or public forums) and academia that could serve as an inspiration for potential
improvements to file-sharing in IPFS. Every proposal will be mapped to the specific layer in the
protocol we think may benefit from the idea. Our aim is for this list to be “alive” so every new
paper or community proposal around file-sharing in P2P networks can be suggested and
appended here if considered relevant enough. So feel free to suggest additions to these lists.

https://github.com/ipld/specs/blob/master/block-layer/graphsync/graphsync.md#example-use-cases
https://github.com/ipld/specs/blob/master/block-layer/graphsync/graphsync.md#example-use-cases

Community Proposals
Many of the candidate open problems and proposals collected throughout the work have
already been considered or implemented in the latest implementation of Bitswap. Thus, we only
add the ones not yet added in the protocol. The baseline implementation of Bitswap considered
in the analysis are the ones discussed here: https://github.com/ipfs/go-bitswap/issues/186 and
merged here: https://github.com/ipfs/go-bitswap/pull/189.

Proposal How it works Use Case Potential
impact

Protocol Layer

Paralellize DAG
walks

We have a priori
information of
the structure of
the DAG. We
traverse the
structure in
parallel.

Useful for
symmetric DAG
structures and
when the full
structure wants
to be traversed.

Same number
of RTTs, less
latency.
Probably
required more
bandwidth.

Layer 1 -
Content
Discovery and
Announcement

Bitswaxx
(@alanshaw) - 2
hop Bitswap

Your wantlist
becomes your
peers wantlist.
Increases scope
of the search.

Useful for the
discovery of
rare files far
from the source.

Increased
bandwidth and
storage
requirement in
peers for others
wantlists. Faster
discovery

Layer 1 -
Content
Discovery and
Announcement

Bare hash
wantlist

We request a
wantlist hash
instead of a full
wantlist.

Useful for
content in the
network
requested
regularly.

Fast discovery.
Less overhead
and bandwidth.
Requires
storage of
common
wantlists.

Layer 0 - Data
structure

Reed Solomon Add redundancy
when storing
blocks of
content.

Useful for large
files

Increases the
number of
blocks but
eases the
discovery and

Layer 0 - Data
Structure

https://github.com/ipfs/go-bitswap/issues/186
https://github.com/ipfs/go-bitswap/pull/189
https://github.com/ipfs/notes/issues/386
https://github.com/ipfs/notes/issues/386
https://github.com/ipfs/notes/issues/386
https://github.com/ipfs/notes/issues/388
https://github.com/ipfs/notes/issues/388
https://github.com/ipfs/notes/issues/196

transmission.

Implementation
of Reed
Solomon over
IPFS

Example of the
implementation
of Reed
Solomon over
IPFS

Resilient
storage in IPFS

Churn
resistance

Layer 0 - Data
Structure.

Papers, Patents and Publications

Paper Protocol Layer Main idea

Rate sensitive packet transfer
mechanism over a
peer-to-peer network

Layer 2 -
Content
Transmission

A pool of nodes collaborate to send the
packets to the node increasing the overall
bandwidth of the transmission.

2Fast: Collaborative
downloads in P2P networks

Layer 2 -
Content
Transmission

Delegate the download of files to a group
of nodes. A node shares bandwidth for a
promise for future bandwidth from that
node.

Performance Analysis of
Peer-to-Peer Networks for
File Distribution

Layer 0 - Data
Structure

Analyses the use of tree, linear and forest
architectures for chunk distribution. May be
worth reading it for ideas on how to chunk
and manage blocks in IPFS.

QoS Prediction for Neighbor
Selection via Deep
TransferCollaborative
Filtering in Video Streaming
P2P Networks

Layer 2 -
Content
Discovery and
Announcement

Use deep learning to generate a model
that enables nodes to evaluate QoS of
other nodes, and select them accordingly
for content transmission. Potential
alternative to Bitswap’s current peer
selection scheme.

Improving Media Services on
P2P Networks

Layer 2 -
Content
Discovery and
Announcement

Conform a weighted graph to choose the
“best path” for the exchange of content
according to the advertised cost.
This relates with the idea presented above
of having “a priori” information for the
discovery and efficient transmission of
content.

https://github.com/Wondertan/go-ipfs-recovery
https://github.com/Wondertan/go-ipfs-recovery
https://github.com/Wondertan/go-ipfs-recovery
https://github.com/Wondertan/go-ipfs-recovery
https://patents.google.com/patent/US8694606B2/en
https://patents.google.com/patent/US8694606B2/en
https://patents.google.com/patent/US8694606B2/en
http://www.st.ewi.tudelft.nl/iosup/2fast06ieeep2p.pdf
http://www.st.ewi.tudelft.nl/iosup/2fast06ieeep2p.pdf
http://members.unine.ch/pascal.felber/publications/QofIS-04a.pdf
http://members.unine.ch/pascal.felber/publications/QofIS-04a.pdf
http://members.unine.ch/pascal.felber/publications/QofIS-04a.pdf
http://downloads.hindawi.com/journals/ijdmb/2019/1326831.pdf
http://downloads.hindawi.com/journals/ijdmb/2019/1326831.pdf
http://downloads.hindawi.com/journals/ijdmb/2019/1326831.pdf
http://downloads.hindawi.com/journals/ijdmb/2019/1326831.pdf
http://downloads.hindawi.com/journals/ijdmb/2019/1326831.pdf
https://ieeexplore.ieee.org/abstract/document/978372
https://ieeexplore.ieee.org/abstract/document/978372

Data Location Management
Protocol for ObjectStores in a
Fog Computing Infrastructure

Layer 0 - Data
structure

DNS-like tree structure to locate content in
the network. Applies a Dijkstra-like
algorithm to identify the “best path”.
Includes space locality information for the
discovery in the structure of stored blocks.

Binary search routing
equivalent (BSRE): A circular
design for structured P2P
networks

Layer 1 -
Content
Discovery and
Announcement

Binary search routing equivalent, a circular
design for structured P2P network.
Alternative to DHT-based search.

Survey of Network Coding
Based P2P File Sharing in
Large Scale Networks

Layer 2 -
Content
Transmission

Survey of different network coding
techniques (full-coding, sparse coding,
generation-based, etc.). Interesting field to
explore for the transmission of blocks.

Understanding and improving
piece-related algorithms in
Bittorent Protocol

Layer 1 -
Content
Discovery and
Announcement

Analyzes different piece selection
algorithms. Proposes the dynamic
management of unfulfilled requests. The
ideas presented here may give inspiration
on smarter ways of requesting blocks to
the network. It also proposes the use of
signals between connected nodes to get
knowledge about what is happening with
content in the network.

Cooperative Caching for
Efficient Data Search in
MobileP2P Networks

Layer 0 & 1 Conform cache cluster between different
connected nodes. Search is performed
using metadata received from neighboring
peers. Nodes collaboratively build a cache
cluster storing content from the network. To
discover who is storing the data there is an
exchange of metadata between them
(relate to GossipSub?).

MDHT: A Hierarchical Name
Resolution Service
forInformation-centric
Networks

Layer 0 - Data
Structure

Name-based anycast routing using a
hierarchical DHT. Location-dependant
overlay architecture. Maps the architecture
of the Internet.

Really Truly Trackerless
BitTorrent

Layer 1 -
Content
Discovery and
Announcement

Proposes the use of graphs for piece
discovery. It removes the Bittorent tracker
completely. It is really focused on node
discovery but the ideas may be
extrapolated to content discovery. Would it
make sense to have random walker

https://hal.archives-ouvertes.fr/hal-02190125/document
https://hal.archives-ouvertes.fr/hal-02190125/document
https://hal.archives-ouvertes.fr/hal-02190125/document
https://www.researchgate.net/publication/288480272_Binary_search_routing_equivalent_BSRE_A_circular_design_for_structured_P2P_networks
https://www.researchgate.net/publication/288480272_Binary_search_routing_equivalent_BSRE_A_circular_design_for_structured_P2P_networks
https://www.researchgate.net/publication/288480272_Binary_search_routing_equivalent_BSRE_A_circular_design_for_structured_P2P_networks
https://www.researchgate.net/publication/288480272_Binary_search_routing_equivalent_BSRE_A_circular_design_for_structured_P2P_networks
https://www.mdpi.com/2076-3417/10/7/2206/htm
https://www.mdpi.com/2076-3417/10/7/2206/htm
https://www.mdpi.com/2076-3417/10/7/2206/htm
http://www4.comp.polyu.edu.hk/~csbxiao/bittorrentweb/report/report.pdf
http://www4.comp.polyu.edu.hk/~csbxiao/bittorrentweb/report/report.pdf
http://www4.comp.polyu.edu.hk/~csbxiao/bittorrentweb/report/report.pdf
https://link.springer.com/content/pdf/10.1007/s11277-017-4714-1.pdf
https://link.springer.com/content/pdf/10.1007/s11277-017-4714-1.pdf
https://link.springer.com/content/pdf/10.1007/s11277-017-4714-1.pdf
http://conferences.sigcomm.org/sigcomm/2011/papers/icn/p7.pdf
http://conferences.sigcomm.org/sigcomm/2011/papers/icn/p7.pdf
http://conferences.sigcomm.org/sigcomm/2011/papers/icn/p7.pdf
http://conferences.sigcomm.org/sigcomm/2011/papers/icn/p7.pdf
https://mirror.explodie.org/really_truly_trackerless_bittorrent.pdf
https://mirror.explodie.org/really_truly_trackerless_bittorrent.pdf

supernodes (behaving as decentralized
trackers) that share some information
about how content is distributed in the
network?

Sloppy hashing and
self-organizing clusters

Layer 0 - Data
Structure

Proposes a new way of indexing (and
storing) data in the network. It uses an
alternative DHT structure where the same
key may store several keys depending on
the node storing the data. Requests for the
same key to different nodes may lead to
the reception of different content.

Peer-to-Peer resource
discovery in Grids: Models
and systems

Layer 1 -
Content
Discovery and
Announcement

Construction of flat P2P overlay networks.
Use of super-peers with metadata about
the rest of peers (similar to trackers). One
DHT per attribute.

Broccoli: Syncing Faster by
Syncing Less

Layer 2 -
Content
Transmission
and Negotiation

A blog post describing new improvements
in file syncing from the engineers at
Dropbox. They propose the use of
compression in the transmission of blocks.
It is preceded by a negotiation phase
between client and server. Not specific for
P2P networks but may be useful as
inspiration.

Rateless Codes and Big
Downloads

Layer 0 - Data
Structure

It uses rateless erasure codes to enhance
the transfer of data between peers. It
performs linear combinations between
blocks. Good explanation also here

On-Demand Routing for
Scalable Name-Based
Forwarding

Layer 1 -
Content
Discovery and
Announcement

On-Demand Routing(ODR) computation
for content name prefixes as interests
arrive.ODR makes use of domain-level,
per-prefix routing instructions usable by all
the forwarders in a domain, namedRouting
InformationObjects (RIO). This could be
useful to build “content routing tables”.

A Native Content Discovery
Mechanism for
theInformation-Centric
Networks

Layer 1 -
Content
Discovery and
Announcement

Use opportunistic content discovery in the
path.

https://www.coralcdn.org/docs/coral-iptps03.pdf
https://www.coralcdn.org/docs/coral-iptps03.pdf
https://mirror.explodie.org/really_truly_trackerless_bittorrent.pdf
https://mirror.explodie.org/really_truly_trackerless_bittorrent.pdf
https://mirror.explodie.org/really_truly_trackerless_bittorrent.pdf
https://dropbox.tech/infrastructure/-broccoli--syncing-faster-by-syncing-less
https://dropbox.tech/infrastructure/-broccoli--syncing-faster-by-syncing-less
http://www.scs.stanford.edu/~dm/home/papers/maymounkov:rateless.pdf
http://www.scs.stanford.edu/~dm/home/papers/maymounkov:rateless.pdf
https://docs.google.com/document/d/1PdfuPZs5ti7u67R9p4lZl_JFBzk477CjmruiWbLQr4U/edit#heading=h.lrqjoh4tz0t6
http://conferences.sigcomm.org/acm-icn/2018/proceedings/icn18-final53.pdf
http://conferences.sigcomm.org/acm-icn/2018/proceedings/icn18-final53.pdf
http://conferences.sigcomm.org/acm-icn/2018/proceedings/icn18-final53.pdf
https://www.ee.ucl.ac.uk/~ipsaras/files/efib-icn17.pdf
https://www.ee.ucl.ac.uk/~ipsaras/files/efib-icn17.pdf
https://www.ee.ucl.ac.uk/~ipsaras/files/efib-icn17.pdf
https://www.ee.ucl.ac.uk/~ipsaras/files/efib-icn17.pdf

The ideas collected from the analysis of the state of the art may be summarized per layer as
follows:

Protocol Layer Ideas

Layer 0 Chunking schemes
Structure and storage of data in the network (hierarchical architecture,
alternatives to DHT).

Layer 1 Build graphs or overlay networks to ease the discovery of content.
Use of supernodes to track content in the network.
Node clustering for efficient content discovery.
Exchange of metadata to share local views of the network.

Layer 3 Use of network coding and compression in the transmission of content.
Delegate the download of data to a group of nodes (and maybe content
discovery).
Finding the “best path” for the transmission of data.

Baseline Test Framework
In this section, we present the different metrics and test case scenarios we are currently
considering for the building of our testbed and the evaluation of the protocols. This is another
important part where we really appreciate as much feedback as possible.

Proposed metrics

Metric How to measure it

Time to fetch / Latency Time elapsed since the request of the content to its full
transmission. It will be the sum of the time to full discovery and
the transmission time.

Time for full discovery Time required to discover all the blocks comprising the
requested content. This time shouldn’t account the time
required to send the data through the wire.

Transmission time Time from the transmission of the first bit to the full
transmission of the content requested. To effectively measure

this for content comprising several blocks we need to remove
the time required to discover subsequent blocks.

Overall throughput Amount of data per second sent by all nodes serving the
actual content. To accurately measure this we shouldn’t
account for duplicate content. Ideally we should only focus on
the actual content requested.

Control Message Counters Counters to identify the number of control messages
exchanged by the protocol (WANT, HAVE, WANT-HAVE,
content requests, etc.). Is a good way of understanding the
behavior of the protocol under different scenarios.

Bandwidth efficiency /
Protocol Overhead

Rate of useful data exchanged through the wire. A rate would
mean that through the wire only data related to the content is
exchanged (bandwidth efficiency = 1). This metric measures
the protocol overhead. It would be interesting to compare this
metric with existing file-exchange protocols such as TCP
exchange, FTP or BitTorrent.

Rate of data loss Number of requests for content unsuccessful or lost (requiring
retransmission or additional requests).

Computational footprint Computational resources used by peers (CPU, RAM, etc.)

Rate of data duplication Number of duplicate messages received. This metric could
give good indication about if the protocol would benefit from
caching schemes.

Number of times we resort to
the DHT

Number of times the file-sharing protocol is not able to
discover blocks and has to resort to the DHT to find providers.

Latency overhead Time required to download content compared to TCP / FTP /
Bittorent

Some of these metrics may require the addition of loggers or trackers on protocol
implementations to effectively measure them (these probes shouldn’t impact the operation of the
protocol in any way).

Test case scenarios
To evaluate the overall performance of the protocol, the following test case scenarios will be
considered.

Test Case Test Flow Behavior to test

Different number of
connections between
peers

We modify the maximum number
of connections for peers. Less
connection will increase the
number of hops required to
discover content.

We want to test the
performance of the protocol for
different network topologies.

Different number of
seeders and leechers

We modify the seeders/leechers
ratio. Lowering this ratio may lead
to a congestion of seeders.

We want to test how the
number of content providers
affect the performance of the
protocol.

High churn We rotate nodes during the test to
see how churn affects the
performance of the protocol.

We want to test the churn
resistance of the protocol.

Different file sizes Change the size of the files used
for the test.

We want to test the
performance for different file
sizes.

Different DAG
structures and request
patterns

Test different request patterns. We want to evaluate the
performance of the protocol for
the different request patterns.

Different types of links
between nodes

Have nodes with different
bandwidth, latency and jitter.

Understand the performance
of the protocol in
heterogeneous networks.

Protocol coexistence
(hot experiment)

Evaluate the coexistence of
different content exchange
protocols in the network. The best
way to achieve this is to force the
communication of the nodes of our
testbed through the real IPFS
network.

We want to evaluate the
behavior of the protocol when
coexisting with legacy nodes in
a real deployment.

The configuration of all these test cases should be designed so that they test some of the use
cases and request patterns presented above, that way we have a way of evaluating and
fine-tuning the protocols against their desired performance.

	Beyond Bitswap: Related Work
	
	
	Motivation
	File-sharing in IPFS
	Bitswap
	Graphsync
	Known shortcomings of current implementations
	Security concerns

	File-sharing protocols general framework
	Protocol Architecture
	Use Cases
	Request Patterns Topology

	State of the art
	
	Community Proposals
	Papers, Patents and Publications

	Baseline Test Framework
	Proposed metrics
	Test case scenarios

