GRADE 10

LIFE SCIENCES

CELL: THE BASIC UNIT OF LIFE

1. Discovery of the Cell

Discoverer	Contribution
Robert Hooke (1665)	First used the term <i>cell</i> when observing cork cells under a light microscope.
Antonie van Leeuwenhoek	First person to observe living cells (e.g. bacteria, protozoa) under a microscope.

- Discovery enabled by development of **microscopes**.
- Led to development of **cell theory**.

2. Tools for Studying Cells

▲ Types of Microscopes

Microscope	Features	Use
Light Microscope	Uses light rays and lenses; up to 1000× magnification	General cell structure
Transmission Electron Microscope (TEM)	Electrons pass through specimen; up to 50 million×	Internal organelles
Scanning Electron Microscope (SEM)	Scans surface; 3D images	Cell surface structure

Key Terms:

- Micrograph: Image captured using a microscope.
- Staining: Enhances contrast in cells for visibility.

3. Cell Theory

[Classic Cell Theory (Schleiden & Schwann, 1838–39):

- 1. All living organisms are made of cells.
- 2. Cells are the basic units of life.
- 3. All cells come from pre-existing cells.

Modern Extensions:

- 4. All biochemical activities of life occur within cells.
- 5. Hereditary information (DNA) is in cells.
- 6. All cells share similar chemical composition.

🧱 4. Basic Cell Structure

Feature Prokaryotic Eukaryotic

Nucleus X (no true nucleus) (membrane-bound)

Organelles X (no membrane-bound) V

Size Small (1–10 μ m) Larger (10–100 μ m)

Examples Bacteria Plants, animals, fungi

9 6. Plant vs Animal Cells

Feature Plant Cell Animal Cell

Cell wall (cellulose) X

Plastids (chloroplasts) 🔽

Vacuole Large, central Small or absent

Centrioles X

Shape Regular (boxy) Irregular/rounded

7. Detailed Structure of Organelles

Cell Wall

- Found in: plants, fungi, bacteria
- Made of: cellulose (plants), chitin (fungi)
- Function:
 - o Support, protection, shape
 - Allows water & minerals through (fully permeable)
 - Plasmodesmata: channels for transport between cells

Cell Membrane (Plasma Membrane)

- Present in: all cells
- Made of: phospholipid bilayer with proteins (fluid mosaic model)
- Functions:
 - o Controls what enters/leaves cell
 - Selectively permeable
 - o Involved in: osmosis, diffusion, active transport

Cytoplasm

• Jelly-like substance inside cell

- Site of metabolic reactions
- Suspends organelles

Nucleus

- Control center
- Contains DNA (chromatin)
- Surrounded by nuclear envelope with pores
- Contains **nucleolus** makes ribosomes

Mitochondria

- Powerhouse of the cell
- Site of aerobic respiration
- Releases ATP (energy)
- Has its own DNA

Ribosomes

- Site of protein synthesis
- Found in cytoplasm or on rough ER
- Endoplasmic Reticulum (ER)

Type Function

Rough ER Has ribosomes; makes & transports proteins

Smooth ER No ribosomes; makes lipids & detoxifies

Golgi Apparatus (Body)

- Packages, modifies, and secretes substances
- Forms vesicles

Plant Cell Animal Cell

Large central vacuole Small, scattered vacuoles

• Stores water, minerals, pigments, waste

Lysosomes

- Contains enzymes
- Break down waste or damaged organelles
- Only in animal cells

- Involved in **cell division**
- Found only in animal cells

Plastids (Plant Cells Only)

Type Function

Chloroplasts Photosynthesis (contain chlorophyll)

Chromoplasts Pigments for colour (fruit/flowers)

Leucoplasts Storage (e.g. starch)

* 8. Functions All Cells Perform

- Metabolism
- Respiration
- Growth
- Reproduction (cell division)
- Excretion
- Sensitivity (response)
- Movement (internal or external)