
Modularization

The next coding assignment, Adventure, will be significantly more complex than TicTacToe and
JSON. However, just because the functionality provided by the program is more complex,
doesn’t mean that the code has to be more confusing / more difficult to digest and understand.

The key to writing simple code that performs complex tasks is modularization (i.e. splitting up
the functionality in a logical and intuitive way). One reason code can become difficult to
understand is that there are too many steps / details to keep in your head at the same time, and
you lose track of the big picture. Modules alleviate this problem by hiding details behind an
interface.

When you use a module, you don’t have to worry about the details happening behind the
scenes; you should only have to worry about the result (e.g. the return value, or the change in
an object’s state). Conversely, if a module requires you to know what’s happening behind the
scenes in order to use it, then it hasn’t been designed well. (For example, if function1 calls
function2 in your code, someone else reading function1 shouldn’t have to stop and read
function2 in order to understand function1).

Functions are modules

The most fundamental level of modularization is functions. Functions should make sense as a
single “unit” of work (i.e. can’t be split up into smaller units of work that make sense on their
own). Each method should perform one distinct task. If you find yourself writing very long
functions, then it can probably be split up. Long functions require you to keep more details in
your head, which can lead to more bugs. This problem is exacerbated if the function no longer
fits on a screen and you have to scroll to read it. Short functions are also easier to test
thoroughly, and when a test fails, you’ll have more specific information about what exactly went
wrong.



Object decomposition

Functions are the smallest unit / module in our code. Objects/classes are another level of
modularization that is one level higher. They are a way to bundle functions together into larger
coherent units. (For example, it might make sense to group methods in an object if they both
operate on data stored in that object’s member variables.)

Big idea: The purpose of object decomposition is to group related things together and separate
unrelated things.

Choice of classes to create

When creating good object oriented code, it is crucial to think carefully about which classes you
need. Classes should be coherent units and have clear purposes, and avoid covering
functionality that isn’t their ‘job’. Think about what one class is responsible for doing and try to
make sure it is only executing that functionality.

Separating input/output handling from game logic

One important aspect of modularization is to prevent input/output handling from being too
entangled with the actual game logic. In a future assignment, you will be extending Adventure
by allowing a user to play from a website instead of the command line. You should be able to
hook up your game engine to a different type of input/output without any significant changes. In
order to achieve this, the game engine class must provide an interface that can be used by
multiple clients (both the command line and the web server). In other words, the game engine
class shouldn’t be responsible for too many things; it’d probably be a good idea to create a
separate module for parsing user input.

In general, modularization makes our programs more flexible, because we can reuse our
modules in different contexts.

Parallel Arrays

Having parallel arrays to track information is generally bad practice and can easily lead to
inconsistency and bugs. If you find yourself creating parallel arrays, it’s usually a sign that you
may want to group that information in a class. For example, instead of having 3 arrays, xCoor,
yCoor, and zCoor to keep track of a collection of points, we can define a Point class that has 3
member fields: xCoor, yCoor, and zCoor. This is a lot less prone to error, since we don’t have to
concurrently modify 3 lists when we want to insert, delete, or reorder points.



Placement of Methods

How to determine which class a method belongs in?

Figuring out which class variables/methods “belong” to can be tricky; it’s an intuitive skill that
develops with practice. For example, consider the following code:

public class Zoo {
List<Animal> animals;

}

public class Animal {
private int age;

int getAge() {
return age;

}

int getOldestAnimalAge(List<Animal> animals) {
// implementation here

}
}

In this case, getOldestAnimalAge is in the class Animal, which may seem appropriate. After all,
it returns the age of an animal, and takes a list of Animals as a parameter. But we want to
consider more than that. Getting the oldest animal’s age is an operation that we perform on a
Zoo and on the Zoo’s data; it does not make sense as an operation performed on a single
Animal. We could restructure the code to look like this:



public class Zoo {
List<Animal> animals;

int getOldestAnimalAge() {
// implementation here

}

}

public class Animal {
private int age;

int getAge() {
return age;

}

}

Note that this also reduces the number of arguments needed for the function, because the data
that the function operates on is already stored in the same class as the function. This makes the
code simpler and also better encapsulated (because the Zoo class doesn’t need to pass data
around to other classes).



Member variables stored by each class

Redundant member variables / minimize the amount of state in your objects

In general, it’s best to avoid redundant member variables that contain multiple copies of the
same data, or data that can quickly be derived from other data. For example, in the class below:

class GameEngine {
int numberOfPlayers;
List<PlayerStrategy> playersList;

// member functions
}

The member variable numberOfPlayers is redundant when you also have a list of players. This
is not safe from bugs, because you have to remember to update all copies of the redundant
data, and you might forget to update one of them. For example, if you want your GameEngine to
allow a player to join in the middle of a tournament, perhaps you would add their strategy to the
list, but forget to increment numberOfPlayers, which would almost certainly cause a bug.

A better solution that maintains the same level of readability is to make a very simple member
function:

class GameEngine {
List<PlayerStrategy> playersList;

int getNumPlayers() {
return playersList.size();

}
}



Encapsulation

Encapsulation is the concept of bundling data and functionality into individual units, and hiding
the internal state of an object -- essentially creating a firewall.

Public vs. Private

We use access modifiers to hide unnecessary details from the client of a class. Making member
functions and variables private strengthens the firewall. Only methods which are needed by
clients should be visible as part of the public interface of the class. This makes the module
easier to use (since it’s easier to find the functions which are actually relevant).

Hiding helper methods and member variables also ensures that clients don’t rely on the internal
representation / implementation of the class. This allows the representation / implementation to
be changed without breaking any clients’ programs, as long as the changes still satisfy the
interface’s specification. For example, a class that represents a complex number could change
its internal representation from Cartesian to polar; this change would only be safe if the member
variables were private.

Don’t need getters and setters for everything

In order to make the firewall as effective as possible, we should minimize the amount of entry
points from which clients can access/change member variables. In other words, we don't need a
getter and a setter for EVERY private variable. We only need a setter if it makes sense for
clients to have write access to the variable; similarly, we only need a getter if it makes sense for
clients to have read access to the variable.



Mutable private variables

Imagine that class A has a private member variables. That variable should generally only be
modified by member functions which are also in class A (that’s what encapsulation means).
Code from a different class (say, class B) shouldn’t be directly handling class A’s member
variables. (This is bad because if class B handles class A’s member variables, then class B has
to deal with the details of class A’s internal representation, which destroys the firewall between
modules.) Instead, class B should only modify class A by calling class A’s public member
functions.

Here’s a slightly tricky example:

class Tournament {
private List<Integer> scores;

public List<Integer> getScores() {
return scores;

}
}

class Game {
public void updateScores(tournament) {

for (int i = 0; i < getNumPlayers(); ++i) {
tournament.getScores()[i] =

calculatePlayerScore(players[i]);
}

}
}

Here, Game is directly modifying the Tournament’s scores member variable. This is possible
because the getScores() method returns a reference to a mutable private member variable.
Doing that is essentially the same as making your member variable public, which is really bad in
terms of encapsulation.

Instead, the Tournament could call the Game’s calculatePlayerScore method, and then take
care of updating the overall tournament scores.

In general, mutation can be dangerous, especially when it’s not clear that mutation is occuring. It
can make code more difficult to understand (because it’s hard to find how different objects are
communicating with each other), and it can make code more prone to bugs (because your
variables might get unexpectedly mutated without you knowing about it). Usually, it’s better
practice to have a function communicate its results via its return value. A void function mutating



an object might not be clear, even with good naming practices, and can make debugging (as
well as testing) hard.



Testing Objects

When we design objects, we want a way to execute a small step at a time (e.g. a single turn in a
game). If the interface of the object only allows you to run an entire game all at once, it’s
basically impossible to determine if everything worked properly just based on the result of the
game.

If an instance method modifies the state / member variables of an object, you not only need to
check the return value of the method; you also need to make sure that the state of the object
has updated properly!


