
                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    INDEX 
1. Introduction: 
​​Abstract 



​​Company Profile 
 2. Synopsis 
 3. Requirement Analysis Document(RAD) 
          3.1    Introduction 
                  3.1.1  Purpose Of The System 
                  3.1.2  Scope Of The System 
                  3.1.3  Acronyms And Abbreviations 
          3.2    Current 
          3.3    Proposed System 
                  3.3.1  Overview 
                  3.3.2  Functional Requirements 
                  3.3.3  Nonfunctional Requirements 
                  3.3.4  Pseudo Requirements   
          3.4    Functional Model    
                   3.4.1  Scenarios 
                   3.4.2  Use case Model 
           3.5  Object Model 
                   3.5.1  Data Dictionary 
                   3.5.2   Class Diagrams 
           3.6  Dynamic Model 
                   3.6.1  Sequence Diagrams 
 4.    System Design Documentation(SDD) 
            4.1  Subsystem Decomposition 
            4.2  Persistent Data Management 
5.  Forms 
            5.1  Input Forms 
            5.2  Output Forms 
6.  Coding 
7.  Testing 
      7.1  Module Testing 
8.  Conclusion 
9.  Bibliography 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
                                      ABSTRACT 
 
 
The main aim of  our project is to prepare a Tax summary or Tax Returns of a 
client. In Tax Information system System, a client registers himself enters all the 
details and uploads  various Documents that are necessary for preparation of Tax 
Summary and Schedules for an interview after successful submission  of all the 
documents. After all the procedures are completed  Tax Returns  or Tax summary 
is prepared for all the clients by the admin who calls the clients and arranges an 
interview for discussing various issues regarding Tax summary  . 
 
Once the client pays the amount for preparation of Tax Summary he can download 
the PDF format of his Tax Summary. 
 
This project is composed of two main modules which also includes many sub 
modules. 

1.​ Client module 
2.​ Admin module 

 
Client Panel : 
 

●​ Register  
●​ Create client profile  
●​ Upload documents 
●​ Schedule interview 
●​ Tax Summary 
●​ Payment 
●​ PDF/Review/Correction 
●​ Authorization 
●​ E-File Acknowledgement 
●​ Refund Status 

 
 
 
 
 
 



 
Admin Panel : 
 

●​ Call the clients 
●​ Collect Documents 
●​ Schedule interviews 
●​ Preview Client Profile and Documents 
●​ Interview 
●​ Tax Preparation 
●​ Send Tax summary 
●​ Tax Summary Queries 
●​ Review Tax Summary 
●​ Payment follow up 
●​ Payment Receipt    
●​ Discounts 
●​ PDF upload /Correction 
●​ Receiving E Files 
●​ Manual filling 
●​ Send E File 
●​ Refund Status 

 
Client module includes registration of clients, submission of various documents 
etc., Admin module includes the calling the clients ,Scheduling interviews, 
Observation of various documents and preparation of Tax Summary and sent a 
mail to the client upon successful payment of fee. 
 
The project has been planned to be having the view of distributed architecture ,with 
centralized storage of the database. The application for the storage of the data has 
been planned .Using the construct of  
MS-SQL Server 2005 and all the users interfaces have been designed using the 
ASP.Net technologies .The database connectivity is planned using the ‘SQL 
Connection’ methodology. The statement of security and data protective 
mechanism have been given a big choice for proper usage. The application takes 
care of different modules and their associated reports, which are their associated 
reported ,which are produced as per the applicable strategies and standards that are 
put forwarded by the administrative staff. 
 
 
 



                                  Company Profile  
 
 
BLESSO  is a proactive organization located in Hyderabad,  
Andhra Pradesh .India .Specializing in customized software training & 
development corporate training ,and consultancy service. 
 
The business paradigm of Blesso , includes the following areas 
 
Customized software development – Blesso ,develops customized software 
solutions for its clients and also for internal use. The library of  
on-the-self software’s include Payroll Software, Educational Institute Management 
Software. Library Management Software etc.. 
 
Corporate Training and IT Education –Blesso , has also launched various 
initiatives in the area of corporate training and IT education. This has brought the 
company as a benchmark for Training solutions by some of the biggest names of 
the global corporate world and Govt. Institute, in Hyderabad and Southern India. 
 
Mission 
 
To be a proactive leader of the global information technology fraternity. 
 
Vision 
 
To develop a strong client base with an equally effective support structure which 
acts as a catalyst for effective deployment of futuristically complete and credible 
IT solutions. We strive to achieve this by focusing individually on each project and 
build a healthy relationship with our customers. 
  
Quality 
 
Quality is a comprehensive and fundamental rule or believe, for leading and 
operating an organization. And this helps in continually improving performance 
over the ling term.      
 
 
 



Management Term 
 
After having brought the company from the conceptualization stage onward, the 
management is confident that technologies, work force and determination are 
poised for growth and wide acceptance. The management is continually identifying 
some more niche segments, is desirable to ensure globalization of the 
organization’s where the presence is desirable to ensure globalization of the 
organization’s presence. 
   
Corporate training  
 
From more than past 4 years corporate training has been our domain. We provide 
quality computer education for all type of computer related courses, at the client’s 
as well as our own premises. We manage whole if the training process that begins 
with the selection of the place of training ,and continues till course delivery and 
final certificate (and this includes industry level  certification like .Net 
Certification.) 
 
Technical Strength 
 
So far have 40 employee working on various projects and also handles corporate 
batches. 
 
Clientele  
 

1.​ India Law Group 
2.​ KCP Projects Ltd 
3.​ Prasad Association 
4.​ Orange Model School 
5.​ ZSS technologies ​  
6.​ Sri Sai Granites 
7.​ B.S Enterprises 

 
 
 
 
 
 
 



 
 
Technical Expertise: 
 
Operating Systems                                : Windows 2000 family                                                            

                                  products.LINUS            
Frameworks                                          : .Net Framework ,.Net, Testing       
                                                                Tools ,J2SE,J2EE(EJB.JSM,JNDI, 
                                                                 JTS,JAAS,JAXP,JAVA MAIL), 
                                                                 Remoting 
 
Database                                                Oracle 8i/9i, MySQL 
                                                                4.0/5.0.SQL Sever 
 
Markup language                                  : XML, HTML, WML 
 
Security Testing                                    : Manual and Automation  
 
Testing Tools                                        : QTP, Winrunner , Test Director,   
                                                                 Load runner, Rational Robot 
 
BLESSO SOFTWARE INDIA Pvt,Ltd 

 

//#302,Balaji Towers, Beside Mythri  Hospital  
Gayatri Nagar., Ameerpet, 
Hyderabad-500038 
Ph: 91-040-55661333. 
 
E_Mail: enquiries@visualmindindinfo.net 
 
www.visualmindinfo.net 
  
 
      
 
 
 
 
 

mailto:enquiries@visualmindindinfo.net
http://www.visualmindinfo.net


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
 
 
 
                          
 
 
 
 
 
 
 
 
 
 
 

 
 

 
                         REQUIREMENT ANALYSIS 

 
 



 
 
3.1 INTRODUCTION 
 
A complete understanding of software requirement is essential to the success of 
software development effort. No matter how well design/well coded, a poorly 
analyzed and specified program will disappoint the user and bring the grief to the 
user. 
 
The requirement analysis task is a process of discovery, refinement, modeling and 
specification. The software initially established by the system engineer and refined 
during software project, planning is refined in detail. Models of the required 
information and control flow, operational and data content are created. Alternative 
solutions are analyzed and allocation to various software elements. 
 
Requirements analysis, software-engineering task  that bridge the gap between 
system level software allocation and software design .Requirements analysis 
enables to specify software function and performance indicates software’s interface 
with other system elements and established design constraints   that the software 
must meet. Requirement analysis allows the software engineers to refine. 
 
The software allocation and build models of processes, date and behavioural 
domains that will be treated by software designer with a representation of 
information and function that can be translated to data, architectural and procedural 
design. Finally, the requirement specification the developer and customer with the 
means to access quality once the software is built. 
 
 
 
 
 
 
 
 
 
 
 
 



3.1.1 PURPOSE OF THE SYSTEM: 
 
The main aim of  our project is to prepare a Tax summary or Tax Returns of a 
client. In Tax Information system System, a client registers himself enters all the 
details and uploads  various Documents that are necessary for preparation of Tax 
Summary and Schedules for an interview after successful submission  of all the 
documents. After all the procedures are completed  Tax Returns  or Tax summary 
is prepared for all the clients by the admin who calls the clients and arranges an 
interview for discussing various issues regarding Tax summary  .Once the client 
pays the amount for preparation of Tax Summary he can download the PDF format 
of his Tax Summary. 
 
3.1.2 SCOPE OF THE SYSTEM: 
 
          Our system mainly focus on the Tax that need to be paid by the people who 
are migrated from India to foreign countries. The scope of  the system is restricted 
to Indians. Our system is capable of including future advancements. 
 
 
3.1.3 ACRONYMS AND ABBREVIATIONS: 
       
          The various acronyms and abbreviations used in our project are 
          
             TIS  : Tax information system 
               
              SSN : Social Security number 
 
 
 
 
3.2 CURRENT SYSTEM: 
 
Tax Information System is a professional financial services company established 
by experienced CPA’s and chartered accounts to provide cost effective and efficient 
financial and tax planning solutions to a wide range of clients across the globe. 
 



It is too expensive to overlook  the deductions that you are entitled to ? 
Let out professionals plan and prepare your tax returns to make sure you get the 
maximum benefit you deserve . 
 
Tax information system is providing single window tax service to the  Indian 
software consultants having income from both India and USA by minimizing the 
overall tax burden claiming foreign tax credits and other tax planning strategies 
according to the US internal revenue code and India income tax Act,1961 
 
3.3 PROPOSED SYSTEM : 
 
3.3.1 OVERVIEW 
 
Why the new system? 
  
With the new system the following activities get more moment. 
 
1. Login/Register 
 

●​ Returning clients should login to our website to update then profiles. 
●​ New clients should register at our website to create their profiles. 

 
2. Documents 
 

●​ Upload / Fax your W2s, 1099 s or any other statement relating the interest, 
divide or stocks. 

 
 
 
3. Tax Interview  
 

●​ Schedule your convenient date time for brief Tax interview. 
●​ Keep all the tax relevant information ready  for the Tax Interview. 

 
4. Tax Summary 
  

●​ Tax Summary will be ready within 24 – 48 hrs after Tax Interview. 
●​ Login and check the Tax Summary. 



 
5.  Make Payment 
 

●​ Pay the Tax Preparation Fees at our website using pay pal Account or credit 
card 

 
6.  Tax Returns Download  
  

●​ Download Tax Returns in PDF on payment of Tax Preparation Fees. 
●​ Review Tax Returns carefully to ensure that there are no omissions if 

misstatements. 
●​ Send us an Email or call us for any questions or corrections. 
●​ Sign the e- files authorization form and fax it. 

 
7.  E-File 
 

●​ We E-File your Tax Returns at no extra cost on receipt of authorization. 
●​ Finally, check your filling and refund status at our website 

 
3.3.2  FUNCTIONAL REQUIREMENTTS 
 
    The system deals with Tax Information System 
 
 
 
     Module description: 
 
          This project is composed of two main modules which also includes        
              Many sub modules 
 

1.​ Client module 
2.​ Admin module 

 
Client Panel : 
 

●​ Register  
●​ Create client profile  
●​ Upload documents 



●​ Schedule interview 
●​ Tax Summary 
●​ Payment 
●​ PDF/Review/Correction 
●​ Authorization 
●​ E-File Acknowledgement 
●​ Refund Status 

 
Admin Panel : 
 

●​ Call the clients 
●​ Collect Documents 
●​ Schedule interviews 
●​ Preview Client Profile and Documents 
●​ Interview 
●​ Tax Preparation 
●​ Send Tax summary 
●​ Tax Summary Queries 
●​ Review Tax Summary 
●​ Payment follow up 
●​ Payment Receipt    
●​ Discounts 
●​ PDF upload /Correction 
●​ Receiving E Files 
●​ Manual filling 
●​ Send E File 
●​ Refund Status 

 
Client module includes registration of clients, submission of various documents 
etc., Admin module includes the calling the clients ,Scheduling interviews, 
Observation of various documents and preparation of Tax Summary and sent a 
mail to the client upon successful payment of fee. 
 
The project has been planned to be having the view of distributed architecture ,with 
centralized storage of the database. The application for the storage of the data has 
been planned .Using the construct of  
MS-SQL Server 2005 and all the users interfaces have been designed using the 
ASP.Net technologies .The database connectivity is planned using the ‘SQL 
Connection’ methodology. The statement of security and data protective 



mechanism have been given a big choice for proper usage. The application takes 
care of different modules and their associated reports, which are their associated 
reported ,which are produced as per the applicable strategies and standards that are 
put forwarded by the administrative staff 
 
        
3.3.3 NONFUNCTIONAL  REQUIREMENTS 
      
         3.3.3.1   User Interface and Human Factor : 
                           The system provides user-friendly interface with both  
                         Keyboard and mouse, the forms are 
                    
 

▪​ Client Login form 
▪​ Register form 
▪​ Myprofile form 
▪​ Spouse form 
▪​ Dependent form 
▪​ Bank information form 
▪​ Vehicle information form 
▪​ Documents form 
▪​ Scheduled interview form 
▪​ Change password form 
▪​ Tax Summary form 
▪​ Payments  form 
▪​ Tax return form 
▪​ Admin login form 
▪​ Register form 
▪​ Assign Interviewer 

 
 
         
 
       3.3.3.2 DOCUMENTATION  
 

▪​ Requirement Analysis Document (RAD) 
▪​ System Design Document 



▪​ Coding 
▪​ Testing 

 
          3.3.3.3  HARDWARE CONSIDERATIONS 
 

▪​ INTEL CELEON/P2/P4  :  600 MHZ OR ABOVE 
▪​ RAM(SD/DDR)                 :  256 OR ABOVE 
▪​ HARD DISC                      :  10GB OR ABOVE 
▪​ PRINTER                           : HP LASER JET 
▪​ INTERFACE                     :  MOUSE, KEYBOARD 

 
            
           3.3.3.4  ERROR HANDLING AND EXTREAM  
                         CONDITIONS: 
                    
                       The users of the system either  ADMIN or CLIENT should  
                 enter all the fields in the relevant forms. The entered fields should                                     
​    not violate the primary key constraints. If the user either wants to       
                 update or delete a record, which is not in database, it will display                      
                 a massage. 
 
           3.3.3.5  SYSTEM MODIGICATIONS 
 
​        Future enhancements are possible, our system can include any                                  
                   number of extensions that the Client  want to include.  
  
 
3.3.4 PSEUDO REQUIREMENT     
            
           
 
 
 
 



 
            3.3.4.1  Hardware requirement  

 
 

▪​ 486 Processor ( a Pentium based computer) 
▪​ 32MB of RAM 
▪​ About 150MB of free Hard-Drive space 
▪​ Windows NT Server 4.0, Windows NT Workstation 4.0 or 

Windows98/Windows95 with TCP/IP Networking support properly installed 
and configured. 

▪​ A web server that supports ASP 2.0 
▪​  A Database that supports ODBC (Such as Microsoft Access or Microsoft 

SQL Server). 
▪​ Microsoft Visual interDev 6.0 

 
           3.3.4.2  Software specifications 
 

▪​ windows 2000 server/professional ofr above 
▪​ .Net Framework 2.0 
▪​ Asp.Net, C# .Net 
▪​ SQL Server 2005 
▪​ IIS 5.0 or Above 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



         
 
 
 
 
 
 
 

                      MICROSOFT .NET FRAMEWOR 
 
 
The .NET Framework is a new computing platform that simplifies application 
development in the highly distributed environment of the Internet.  The .NET 
Framework is designed to fulfill the following objectives. 

●​ To provide a consistent object-oriented programming environment whether 
object code is stored and executed locally.  Executed locally but internet – 
distributed, or executed remotely. 

●​ To provide a code-execution environment that minimizes software 
deployment and versioning conflicts. 

●​ To provide a code-execution environment that guarantees safe execution of 
code, including code created by an unknown or semi-trusted third party. 

●​ To provide a code-execution environment that eliminates the performance 
problems of scripted or interpreted environments. 

●​ To make the developer experience consistent across widely varying types of 
application, such as Windows-based application and Web-based application. 

●​ To build all communication on industry standards to ensure that code based 
on the .NET Framework can integrate with any other code. 

 
   ​  
The .NET Framework has two main components; the common language runtime 
and the .NET Framework class library.  The common language runtime is the 
foundation of the .NET Framework.  You can think of the runtime as an agent that 
manages code at execution time, providing core services such as memory 
management, thread management, and remoting,   
while also enforcing strict type safety and other forms of code accuracy that ensure 
security and robustness.  In fact, the concept of code management is a fundamental 



principle of the runtime. Code that targets the runtime is known as managed code, 
while code that does not target the runtime is known as unmanaged code.  
 
The class library, the other main component of the .NET Framework, is a 
comprehensive, object-oriented collection of reusable types that you can use to 
develop applications ranging from traditional command-line or graphical user 
interface (GUI) applications to applications based on the latest innovations 
provided by ASP.NET, such as Web Forms and XML Web services. 
 The .NET Framework can be hosted by unmanaged components that load the 
common language runtime into their processes and initiate the execution of 
managed code, thereby creating a software environment that can exploit both 
managed and unmanaged features. The .NET Framework not only provides several 
runtime hosts, but also supports the development of third-party runtime hosts. 
 
For example, ASP.NET hosts the runtime to provide a scalable, server-side 
environment for managed code. ASP.NET works directly with the runtime to 
enable Web Forms applications and XML Web services, both of which are 
discussed later in this topic. 
 
Internet Explorer is an example of an unmanaged application that hosts the runtime 
(in the form of a MIME type extension). Using Internet Explorer to host the 
runtime enables you to embed managed components or Windows Forms controls in 
HTML documents. Hosting the runtime in this way makes managed mobile code 
(similar to Microsoft® ActiveX® controls) possible, but with significant 
improvements that only managed code can offer, such as semi-trusted execution 
and secure isolated file storage. 
 
Features of the Common Language Runtime 
 
The common language runtime manages memory, thread execution, code 
execution, code safety verification, compilation, and other system services. These 
features are intrinsic to the managed code that runs on the common language 
runtime. 
 
With regards to security, managed components are awarded varying degrees of 
trust, depending on a number of factors that include their origin (such as the 
Internet, enterprise network, or local computer). This means that a managed 
component might or might not be able to perform file-access operations, 



registry-access operations, or other sensitive functions, even if it is being used in 
the same active application. 
 
The runtime enforces code access security. For example, users can trust that an 
executable embedded in a Web page can play an animation on screen or sing a 
song, but cannot access their personal data, file system, or network. The security 
features of the runtime thus enable legitimate Internet-deployed software to be 
exceptionally feature rich. 
 
The runtime also enforces code robustness by implementing a strict type- and 
code-verification infrastructure called the common type system (CTS). The CTS 
ensures that all managed code is self-describing. The various Microsoft and 
third-party language compilers generate managed code that conforms to the CTS. 
This means that managed code can consume other managed types and instances, 
while strictly enforcing type fidelity and type safety. 
 
In addition, the managed environment of the runtime eliminates many common 
software issues. For example, the runtime automatically handles object layout and 
manages references to objects, releasing them when they are no longer being used. 
This automatic memory management resolves the two most common application 
errors, memory leaks and invalid memory references. 
 
The runtime also accelerates developer productivity. For example, programmers 
can write applications in their development language of choice, yet take full 
advantage of the runtime, the class library, and components written in other 
languages by other developers. Any compiler vendor who chooses to target the 
runtime can do so. Language compilers that target the .NET Framework make the 
features of the .NET Framework available to existing code written in that language, 
greatly easing the migration process for existing applications. 
 
While the runtime is designed for the software of the future, it also supports 
software of today and yesterday. Interoperability between managed and unmanaged 
code enables developers to continue to use necessary COM components and DLLs. 
 
The runtime is designed to enhance performance. Although the common language 
runtime provides many standard runtime services, managed code is never 
interpreted. A feature called just-in-time (JIT) compiling enables all managed code 
to run in the native machine language of the system on which it is executing. 



Meanwhile, the memory manager removes the possibilities of fragmented memory 
and increases memory locality-of-reference to further increase performance. 
Finally, the runtime can be hosted by high-performance, server-side applications, 
such as Microsoft® SQL Server™ and Internet Information Services (IIS). This 
infrastructure enables you to use managed code to write your business logic, while 
still enjoying the superior performance of the industry's best enterprise servers that 
support runtime hosting. 
 
Common Type System 
 
The common type system defines how types are declared, used, and managed in 
the runtime, and is also an important part of the runtime's support for 
cross-language integration. The common type system performs the following 
functions:  
 
Establishes a framework that enables cross-language integration, type safety, and 
high performance code execution.  
Provides an object-oriented model that supports the complete implementation of 
many programming languages.  
Defines rules that languages must follow, which helps ensure that objects written in 
different languages can interact with each other.  
In This Section Common Type System Overview 
Describes concepts and defines terms relating to the common type system.  
 
Type Definitions  
 
Describes user-defined types.  
 
Type Members  
Describes events, fields, nested types, methods, and properties, and concepts such 
as member overloading, overriding, and inheritance.  
 
Value Types 
 
Describes built-in and user-defined value types.  
 
Classes  
 
Describes the characteristics of common language runtime classes.  



 
 
 
Delegates 
 
Describes the delegate object, which is the managed alternative to unmanaged 
function pointers.  
 
Arrays  
 
Describes common language runtime array types.  
 
Interfaces 
 
Describes characteristics of interfaces and the restrictions on interfaces imposed by 
the common language runtime.  
 
Pointers 
 
Describes managed pointers, unmanaged pointers, and unmanaged function 
pointers.  
 
Related Sections 
 
. NET Framework Class Library 
 
Provides a reference to the classes, interfaces, and value types included in the 
Microsoft .NET Framework SDK.  
 
Common Language Runtime 
 
Describes the run-time environment that manages the execution of code and 
provides application development services.  
 
Cross-Language Interoperability 
 
The common language runtime provides built-in support for language 
interoperability. However, this support does not guarantee that developers using 
another programming language can use code you write. To ensure that you can 



develop managed code that can be fully used by developers using any 
programming language, a set of language features and rules for using them called 
the Common Language Specification (CLS) has been defined. Components that 
follow these rules and expose only CLS features are considered CLS-compliant. 
 
This section describes the common language runtime's built-in support for 
language interoperability and explains the role that the CLS plays in enabling 
guaranteed cross-language interoperability. CLS features and rules are identified 
and CLS compliance is discussed. 
 
In This Section 
 
Language Interoperability  
 
Describes built-in support for cross-language interoperability and introduces the 
Common Language Specification.  
 
What is the Common Language Specification? 
 
Explains the need for a set of features common to all languages and identifies CLS 
rules and features.  
 
Writing CLS-Compliant Code 
 
Discusses the meaning of CLS compliance for components and identifies levels of 
CLS compliance for tools.  
 
Common Type System 
 
Describes how types are declared, used, and managed by the common language 
runtime.  
 
Metadata and Self-Describing Components 
 
Explains the common language runtime's mechanism for describing a type and 
storing that information with the type itself.  
 
. NET Framework Class Library 
 



The .NET Framework class library is a collection of reusable types that tightly 
integrate with the common language runtime. The class library is object oriented, 
providing types from which your own managed code can derive functionality. This 
not only makes the .NET Framework types easy to use, but also reduces the time 
associated with learning new features of the .NET Framework. In addition, 
third-party components can integrate seamlessly with classes in the .NET 
Framework. 
 
For example, the .NET Framework collection classes implement a set of interfaces 
that you can use to develop your own collection classes. Your collection classes 
will blend seamlessly with the classes in the .NET Framework. 
 
As you would expect from an object-oriented class library, the .NET Framework 
types enable you to accomplish a range of common programming tasks, including 
tasks such as string management, data collection, database connectivity, and file 
access. In addition to these common tasks, the class library includes types that 
support a variety of specialized development scenarios. For example, you can use 
the .NET Framework to develop the following types of applications and services:  
 

▪​ Console applications.  
▪​ Scripted or hosted applications.  
▪​ Windows GUI applications (Windows Forms).  
▪​ ASP.NET applications.  
▪​ XML Web services.  
▪​ Windows services.  
 

For example, the Windows Forms classes are a comprehensive set of reusable 
types that vastly simplify Windows GUI development. If you write an ASP.NET 
Web Form application, you can use the Web Forms classes. 
 
Client Application Development 
 
Client applications are the closest to a traditional style of application in 
Windows-based programming. These are the types of applications that display 
windows or forms on the desktop, enabling a user to perform a task. Client 
applications include applications such as word processors and spreadsheets, as well 
as custom business applications such as data-entry tools, reporting tools, and so on. 
Client applications usually employ windows, menus, buttons, and other GUI 



elements, and they likely access local resources such as the file system and 
peripherals such as printers. 
Another kind of client application is the traditional ActiveX control (now replaced 
by the managed Windows Forms control) deployed over the Internet as a Web 
page. This application is much like other client applications: it is executed natively, 
has access to local resources, and includes graphical elements. 
 
In the past, developers created such applications using C/C++ in conjunction with 
the Microsoft Foundation Classes (MFC) or with a rapid application development 
(RAD) environment such as Microsoft® Visual Basic®. The .NET Framework 
incorporates aspects of these existing products into a single, consistent 
development environment that drastically simplifies the development of client 
applications. 
 
The Windows Forms classes contained in the .NET Framework are designed to be 
used for GUI development. You can easily create command windows, buttons, 
menus, toolbars, and other screen elements with the flexibility necessary to 
accommodate shifting business needs. 
 
For example, the .NET Framework provides simple properties to adjust visual 
attributes associated with forms. In some cases the underlying operating system 
does not support changing these attributes directly, and in these cases the .NET 
Framework automatically recreates the forms. This is one of many ways in which 
the .NET Framework integrates the developer interface, making coding simpler 
and more consistent. 
 
Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a 
user's computer. This means that binary or natively executing code can access 
some of the resources on the user's system (such as GUI elements and limited file 
access) without being able to access or compromise other resources. Because of 
code access security, many applications that once needed to be installed on a user's 
system can now be safely deployed through the Web. Your applications can 
implement the features of a local application while being deployed like a Web 
page. 
 
Managed Execution Process 
 
The managed execution process includes the following steps:  
 



Choosing a Complier 
 
To obtain the benefits provided by the common language runtime, you must use 
one or more language compilers that target the runtime.  
Compiling your code to Microsoft Intermediate Language (MSIL) 
 
Compiling translates your source code into MSIL and generates the required 
metadata.  
 
Compiling MSIL to native code 
 
At execution time, a just-in-time (JIT) compiler translates the MSIL into native 
code. During this compilation, code must pass a verification process that examines 
the MSIL and metadata to find out whether the code can be determined to be type 
safe.  
 
Executing your code  
 
The common language runtime provides the infrastructure that enables execution 
to take place as well as a variety of services that can be used during execution.  
 
Assemblies Overview 
 
Assemblies are a fundamental part of programming with the .NET Framework. An 
assembly performs the following functions:  
It contains code that the common language runtime executes. Microsoft 
intermediate language (MSIL) code in a portable executable (PE) file will not be 
executed if it does not have an associated assembly manifest. Note that each 
assembly can have only one entry point (that is, DllMain, WinMain, or Main).  
 
It forms a security boundary. An assembly is the unit at which permissions are 
requested and granted. For more information about security boundaries as they 
apply to assemblies, see Assembly Security Considerations  
It forms a type boundary. Every type's identity includes the name of the assembly 
in which it resides. A type called MyType loaded in the scope of one assembly is 
not the same as a type called MyType loaded in the scope of another assembly.  
 
It forms a reference scope boundary. The assembly's manifest contains assembly 
metadata that is used for resolving types and satisfying resource requests. It 



specifies the types and resources that are exposed outside the assembly. The 
manifest also enumerates other assemblies on which it depends.  
 
It forms a version boundary. The assembly is the smallest versionable unit in the 
common language runtime; all types and resources in the same assembly are 
versioned as a unit. The assembly's manifest describes the version dependencies 
you specify for any dependent assemblies. For more information about versioning, 
see Assembly Versioning 
 
It forms a deployment unit. When an application starts, only the assemblies that the 
application initially calls must be present. Other assemblies, such as localization 
resources or assemblies containing utility classes, can be retrieved on demand. This 
allows applications to be kept simple and thin when first downloaded. For more 
information about deploying assemblies, see Deploying Applications 
 
It is the unit at which side-by-side execution is supported. For more information 
about running multiple versions of the same assembly, see Side-by-Side Execution 
 
Assemblies can be static or dynamic. Static assemblies can include .NET 
Framework types (interfaces and classes), as well as resources for the assembly 
(bitmaps, JPEG files, resource files, and so on). Static assemblies are stored on 
disk in PE files. You can also use the .NET Framework to create dynamic 
assemblies, which are run directly from memory and are not saved to disk before 
execution. You can save dynamic assemblies to disk after they have executed. 
 
There are several ways to create assemblies. You can use development tools, such 
as Visual Studio .NET, that you have used in the past to create .dll or .exe files. 
You can use tools provided in the .NET Framework SDK to create assemblies with 
modules created in other development environments. You can also use common 
language runtime APIs, such as Reflection. Emit, to create dynamic assemblies. 
 
 
 
 
 
 

ASP.NET 
 
Server Application Development 



 
Server-side applications in the managed world are implemented through runtime 
hosts. Unmanaged applications host the common language runtime, which allows 
your custom managed code to control the behavior of the server. This model 
provides you with all the features of the common language runtime and class 
library while gaining the performance and scalability of the host server. 
 
The following illustration shows a basic network schema with managed code 
running in different server environments. Servers such as IIS and SQL Server can 
perform standard operations while your application logic executes through the 
managed code. 
 
Server-side managed code 
 
ASP.NET is the hosting environment that enables developers to use the .NET 
Framework to target Web-based applications. However, ASP.NET is more than just 
a runtime host; it is a complete architecture for developing Web sites and 
Internet-distributed objects using managed code. Both Web Forms and XML Web 
services use IIS and ASP.NET as the publishing mechanism for applications, and 
both have a collection of supporting classes in the .NET Framework. 
 
XML Web services, an important evolution in Web-based technology, are 
distributed, server-side application components similar to common Web sites. 
However, unlike Web-based applications, XML Web services components have no 
UI and are not targeted for browsers such as Internet Explorer and Netscape 
Navigator. Instead, XML Web services consist of reusable software components 
designed to be consumed by other  
applications, such as traditional client applications, Web-based applications, or 
even other XML Web services. As a result, XML Web services technology is 
rapidly moving application development and deployment into the highly 
distributed environment of the Internet. 
 
If you have used earlier versions of ASP technology, you will immediately notice 
the improvements that ASP.NET and Web Forms offers. For example, you can 
develop Web Forms pages in any language that supports the .NET Framework. In 
addition, your code no longer needs to share the same file with your HTTP text 
(although it can continue to do so if you prefer). Web Forms pages execute in 
native machine language because, like any other managed application, they take 
full advantage of the runtime. In contrast, unmanaged ASP pages are always 



scripted and interpreted. ASP.NET pages are faster, more functional, and easier to 
develop than unmanaged ASP pages because they interact with the runtime like 
any managed application. 
The .NET Framework also provides a collection of classes and tools to aid in 
development and consumption of XML Web services applications. XML Web 
services are built on standards such as SOAP (a remote procedure-call protocol), 
XML (an extensible data format), and WSDL (the Web Services Description 
Language). The .NET Framework is built on these standards to promote 
interoperability with non-Microsoft solutions. 
 
For example, the Web Services Description Language tool included with the .NET 
Framework SDK can query an XML Web service published on the Web, parse its 
WSDL description, and produce C# or Visual Basic source code that your 
application can use to become a client of the XML Web service. The source code 
can create classes derived from classes in the class library that handle all the 
underlying communication using SOAP and XML parsing. Although you can use 
the class library to consume XML Web services directly, the Web Services 
Description Language tool and the other tools contained in the SDK facilitate your 
development efforts with the .NET Framework. 
 
If you develop and publish your own XML Web service, the .NET Framework 
provides a set of classes that conform to all the underlying communication 
standards, such as SOAP, WSDL, and XML. Using those classes enables you to 
focus on the logic of your service, without concerning yourself with the 
communications infrastructure required by distributed software development. 
 
Finally, like Web Forms pages in the managed environment, your XML Web 
service will run with the speed of native machine language using the scalable 
communication of IIS. 
 
 
 
 
Programming with the .NET Framework 
 
This section describes the programming essentials you need to build .NET 
applications, from creating assemblies from your code to securing your application. 
Many of the fundamentals covered in this section are used to create any application 



using the .NET Framework. This section provides conceptual information about 
key programming concepts, as well as code samples and detailed explanations. 
 
 
 
Accessing Data with ADO.NET 
 
Describes the ADO.NET architecture and how to use the ADO.NET classes to 
manage application data and interact with data sources including Microsoft SQL 
Server, OLE DB data sources, and XML.  
Accessing Objects in Other Application Domains using .NET Remoting 
Describes the various communications methods available in the .NET Framework 
for remote communications.  
 
Accessing the Internet 
 
Shows how to use Internet access classes to implement both Web- and 
Internet-based applications.  
 
Creating Active Directory Components  
 
Discusses using the Active Directory Services Interfaces.  
 
Creating Scheduled Server Tasks  
 
Discusses how to create events that are raised on reoccurring intervals.  
 
Developing Components 
 
Provides an overview of component programming and explains how those 
concepts work with the .NET Framework.  
 
Developing World-Ready Applications 
 
Explains the extensive support the .NET Framework provides for developing 
international applications.  
 
Discovering Type Information at Runtime 
 



Explains how to get access to type information at run time by using reflection.  
 
Drawing and Editing Images 
Discusses using GDI+ with the .NET Framework.  
Emitting Dynamic Assemblies  
Describes the set of managed types in the System.Reflection.Emit namespace.  
 
Employing XML in the .NET Framework 
 
Provides an overview to a comprehensive and integrated set of classes that work 
with XML documents and data in the .NET Framework.  
 
Extending Metadata Using Attributes 
 
Describes how you can use attributes to customize metadata.  
Generating and Compiling Source Code Dynamically in Multiple Languages 
Explains the .NET Framework SDK mechanism called the Code Document Object 
Model (CodeDOM) that enables the output of source code in multiple 
programming languages.  
 
Grouping Data in Collections 
 
Discusses the various collection types available in the .NET Framework, including 
stacks, queues, lists, arrays, and structs.  
 
Handling and Raising Events 
 
Provides an overview of the event model in the .NET Framework.  
 
 
 
 
 
Handling and Throwing Exceptions 
 
Describes error handling provided by the .NET Framework and the fundamentals 
of handling exceptions.                                                             
 



 
Microsoft SQL Server 2005 Storage Engine 
 
Introduction 
 
SQL Server™ 2005 a scalable, reliable, and easy-to-use product that will provide a 
solid foundation for application design for the next 20 years. 
 
Storage Engine Design Goals 
 
Database applications can now be deployed widely due to intelligent, automated 
storage engine operations. Sophisticated yet simplified architecture improves 
performance, reliability, and scalability. 
Feature Description and Benefits 

Reliability Concurrency, scalability, and reliability are improved with 
simplified data structures and algorithms. Run-time checks of 
critical data structures make the database much more robust, 
minimizing the need for consistency checks. 

Scalability The new disk format and storage subsystem provide storage that is 
scalable from very small to very large databases. Specific changes 
include: 
Simplified mapping of database objects to files eases management 
and enables tuning flexibility. DB objects can be mapped to 
specific disks for load balancing. 
More efficient space management including increasing page size 
from 2 KB to 8 KB, 64 KB I/O, variable length character fields up 
to 8 KB, and the ability to delete columns from existing tables 
without an unload/reload of the data. 
Redesigned utilities support terabyte-sized databases efficiently. 

Ease of Use DBA intervention is eliminated for standard operations—enabling 
branch office automation and desktop and mobile database 
applications. Many complex server operations are automated. 

 



Storage Engine Features 
Feature Description and Benefits 

Data Type Sizes Maximum size of character and binary data types is 
dramatically increased. 

Databases and 
Files 

Databases creation is simplified, now residing on operating 
system files instead of logical devices. 

Dynamic 
Memory 

Improves performance by optimizing memory allocation and 
usage. Simplified design minimizes contention with other 
resource managers. 

Dynamic 
Row-Level 
Locking 

Full row-level locking is implemented for both data rows and 
index entries. Dynamic locking automatically chooses the 
optimal level of lock (row, page, multiple page, table) for all 
database operations. This feature provides improved 
concurrency with no tuning. The database also supports the use 
of "hints" to force a particular level of locking. 

Dynamic Space 
Management 

A database can automatically grow and shrink within 
configurable limits, minimizing the need for DBA intervention. 
It is no longer necessary to pre allocate space and manage data 
structures. 

Evolution The new architecture is designed for extensibility, with a 
foundation for object-relational features. 

Large Memory 
Support 

SQL Server 7.0 Enterprise Edition will support memory 
addressing greater than 4 GB, in conjunction with Windows NT 
Server 5.0, Alpha processor-based systems, and other 
techniques. 

Unicode Native Unicode, with ODBC and OLE DB Unicode APIs, 
improves multilingual support. 

 
Storage Engine Architectural Overview 
 
Overview 
 
The original code was inherited from Sybase and designed for eight-megabyte 
Unix systems in 1983.These new formats improve manageability and scalability 



and allow the server to easily scale from low-end to high-end systems, improving 
performance and manageability. 
Benefits 
There are many benefits of the new on-disk layout, including: 
 

▪​ Improved scalability and integration with Windows NT Server 
▪​ Better performance with larger I/Os 
▪​ Stable record locators allow more indexes 
▪​ More indexes speed decision support queries 
▪​ Simpler data structures provide better quality 
▪​ Greater extensibility, so that subsequent releases will have a cleaner 

development process and new features are faster to implement 
 
Storage Engine Subsystems 

 
Most relational database products are divided into relational engine and storage 
engine components. This document focuses on the storage engine, which has a 
variety of subsystems: 
 

▪​ Mechanisms that store data in files and find pages, files, and extents. 
▪​ Record management for accessing the records on pages. 
▪​ Access methods using b-trees that are used to quickly find records using 

record identifiers. 
▪​ Concurrency control for locking,used to implement the physical lock 

manager and locking protocols for page- or record-level locking. 
▪​ I/O buffer management. 
▪​ Logging and recovery. 
▪​ Utilities for backup and restore, consistency checking, and bulk data 

loading. 
 

Databases, Files, and File groups 
 
Overview 
 
SQL Server 2005 is much more integrated with Windows NT Server than any of its 
predecessors. Databases are now stored directly in Windows NT Server files .SQL 
Server is being stretched towards both the high and low end. 
 
Files 



 
SQL Server 7.0 creates a database using a set of operating system files, with a 
separate file used for each database. Multiple databases can no longer share the 
same file. There are several important benefits to this simplification. Files can now 
grow and shrink, and space management is greatly simplified. All data and objects 
in the database, such as tables, stored procedures, triggers, and views, are stored 
only within these operating system files: 
File Type Description 

Primary data 
file 

This file is the starting point of the database. Every database has 
only one primary data file and all system tables are always stored in 
the primary data file. 

Secondary 
data files 

These files are optional and can hold all data and objects that are 
not on the primary data file. Some databases may not have any 
secondary data files, while others have multiple secondary data 
files. 

Log files These files hold all of the transaction log information used to 
recover the database. Every database has at least one log file. 

 
When a database is created, all the files that comprise the database are zeroed out 
(filled with zeros) to overwrite any existing data left on the disk by previously 
deleted files. This improves the performance of day-to-day operations. 
 
File groups 
 
A database now consists of one or more data files and one or more log files. The 
data files can be grouped together into user-defined filegroups. Tables and indexes 
can then be mapped to different filegroups to control data placement on physical 
disks. Filegroups are a convenient unit of administration, greatly improving 
flexibility. SQL Server 7.0 will allow you to back up a different portion of the 
database each night on a rotating schedule by choosing which filegroups to back 
up. Filegroups work well for sophisticated users who know where they want to 
place indexes and tables. SQL Server 7.0 can work quite effectively without 
filegroups. 
 
Log files are never a part of a file group. Log space is managed separately from 
data space. 
 



Using Files and File groups 
 
Using files and file groups improves database performance by allowing a database 
to be created across multiple disks, multiple disk controllers, or redundant array of 
inexpensive disks (RAID) systems. For example, if your computer has four disks, 
you can create a database that comprises three data files and one log file, with one 
file on each disk. As data is accessed, four read/write heads can simultaneously 
access the data in parallel, which speeds up database operations. Additionally, files 
and file groups allow better data placement because a table can be created in a 
specific file group. This improves performance because all I/O for a specific table 
can be directed at a specific disk. For example, a heavily used table can be placed 
on one file in one file group and located on one disk. The other less heavily 
accessed tables in the database can be placed on other files in another file group, 
located on a second disk. 
 
Space Management 
 
There are many improvements in the allocations of space and the management of 
space within files. The data structures that keep track of page-to-object 
relationships were redesigned. Instead of linked lists of pages, bitmaps are used 
because they are cleaner and simpler and facilitate parallel scans. Now each file is 
more autonomous; it has more data about itself, within itself. This works well for 
copying or mailing database files. 
 
SQL Server now has a much more efficient system for tracking table space. The 
changes enable 
 

▪​ Growing and shrinking files 
▪​ Better support for large I/O 
▪​ Row space management within a table 
▪​ Less expensive extent allocations 
 

SQL Server is very effective at quickly allocating pages to objects and reusing 
space freed by deleted rows. These operations are internal to the system and use 
data structures not visible to users, yet are occasionally referenced in SQL Server 
messages. 
 
File Shrink 
 



The server checks the space usage in each database periodically. If a database is 
found to have a lot of empty space, the size of the files in the database will be 
reduced. Both data and log files can be shrunk. This activity occurs in the 
background and does not affect any user activity within the database. You can also 
use the SQL Server Enterprise Manager or DBCC to shrink files as individually or 
as a group, or use the DBCC commands SHRINKDATABASE or SHRINKFILE. 
 
SQL Server shrinks files by moving rows from pages at the end of the file to pages 
allocated earlier in the file. In an index, nodes are moved from the end of the file to 
pages at the beginning of the file. In both cases pages are freed at the end of files 
and then returned to the file system. Databases can only be shrunk to the point that 
no free space is remaining; there is no data compression. 
 
File Grow 
 
Automated file growth greatly reduces the need for database management and 
eliminates many problems that occur when logs or databases run out of space. 
When creating a database, an initial size for the file must be given. SQL Server 
creates the data files based on the size provided by the database creator and data is 
added to the database these files fill. By default, data files are allowed to grow as 
much as necessary until disk space is exhausted. Alternatively, data files can be 
configured to grow automatically, but only to a predefined maximum size. This 
prevents disk drives from running out of space. 
 
Allowing files to grow automatically can cause fragmentation of those files if a 
large number of files share the same disk. Therefore, it is recommended that files 
or filegroups be created on as many different local physical disks as available. 
Place objects that compete heavily for space in different filegroups. 
 
Physical Database Architecture 
 
Microsoft SQL Server version 7.0 introduces significant improvements in the way 
data is stored physically. These changes are largely transparent to general users, but 
do affect the setup and administration of SQL Server databases. 
 
Pages and Extents 
 
The fundamental unit of data storage in SQL Server is the page. In SQL Server 
version 7.0, the size of a page is 8 KB, increased from 2 KB. The start of each page 



is a 96-byte header used to store system information, such as the type of page, the 
amount of free space on the page, and the object ID of the object owning the page. 
There are seven types of pages in the data files of a SQL Server 7.0 database. 
Page Type Contains 

Data Data rows with all data except text, ntext, and image. 

Index Index entries 

Log Log records recording data changes for use in recovery 

Text/Image Text, ntext, and image data 

Global Allocation Map Information about allocated extents 

Page Free Space Information about free space available on pages 

Index Allocation Map Information about extents used by a table or index. 
 
 
 
Torn Page Detection 
 
Torn page detection helps insure database consistency. In SQL Server 7.0, pages 
are 8 KB, while Windows NT does I/O in 512-byte segments. This discrepancy 
makes it possible for a page to be partially written. This could happen if there is a 
power failure or other problem between the time when the first 512-byte segment 
is written and the completion of the 8 KB of I/O. 
There are several ways to deal with this. One way is to use battery-backed cached 
I/O devices that guarantee all-or-nothing I/O. If you have one of these systems, 
torn page detection is unnecessary. 
In SQL Server 7.0, you can enable torn page detection for a particular database by 
turning on a database option. 
 
Locking Enhancements 
 
Row-Level Locking 
 
SQL Server 6.5 introduced a limited version of row locking on inserts. SQL Server 
7.0 now supports full row-level locking for both data rows and index entries. 
Transactions can update individual records without locking entire pages. Many 



OLTP applications can experience increased concurrency, especially when 
applications append rows to tables and indexes. 
 
Dynamic Locking 
 
SQL Server 7.0 has a superior locking mechanism that is unique in the database 
industry. At run time, the storage engine dynamically cooperates with the query 
processor to choose the lowest-cost locking strategy, based on the characteristics of 
the schema and query. 
 
Dynamic locking has the following advantages: 
 

▪​ Simplified database administration, because database administrators no 
longer need to be concerned with adjusting lock escalation thresholds. 

▪​ Increased performance, because SQL Server minimizes system overhead by 
using locks appropriate to the task. 

▪​ Application developers can concentrate on development, because SQL 
Server adjusts locking automatically. 

Multigranular locking allows different types of resources to be locked by a 
transaction. To minimize the cost of locking, SQL Server automatically locks 
resources at a level appropriate to the task. Locking at a smaller granularity, such 
as rows, increases concurrency but has a higher overhead because more locks must 
be held if many rows are locked. Locking at a larger granularity, such as tables, is 
expensive in terms of concurrency. However, locking a larger unit of data has a 
lower overhead because fewer locks are being maintained. 
 
Lock Modes 
 
SQL Server locks resources using different lock modes that determine how the 
resources can be accessed by concurrent transactions. 
SQL Server uses several resource lock modes: 
Lock mode Description 

Shared Used for operations that do not change or update data 
(read-only operations), such as a SELECT statement. 

Update Used on resources that can be updated. Prevents a common 
form of deadlock that occurs when multiple sessions are 
reading, locking, and then potentially updating resources later. 



Exclusive Used for data-modification operations, such as UPDATE, 
INSERT, or DELETE. Ensures that multiple updates cannot be 
made to the same resource at the same time. 

Intent Used to establish a lock hierarchy. 

Schema Used when an operation dependent on the schema of a table is 
executing. There are two types of schema locks: schema 
stability and schema modification. 

 
 
 
Table and Index Architecture 
 
Overview 
 
Fundamental changes were made in table organization. This new organization 
allows the query processor to make use of more nonclustered indexes, greatly 
improving performance for decision support applications. The query optimizer has 
a wide set of execution strategies and many of the optimization limitations of 
earlier versions of SQL Server have been removed. In particular, SQL Server 7.0 is 
less sensitive to index-selection issues, resulting in less tuning work. 
 
Table Organization 
 
The data for each table is now stored in a collection of 8-KB data pages. Each data 
page has a 96-byte header containing system information such as the ID of the 
table that owns the page and pointers to the next and previous pages for pages 
linked in a list. A row-offset table is at the end of the page. Data rows fill the rest 
of the page. 
 
SQL Server 7.0 tables use one of two methods to organize their data pages: 
 

▪​ Clustered tables are tables that have a clustered index. The data rows are 
stored in order based on the clustered index key. The data pages are linked in 
a doubly linked list. The index is implemented as a b-tree index structure 
that supports fast retrieval of the rows based on their clustered index key 
values. 



▪​ Heaps are tables that have no clustered index. There is no particular order to 
the sequence of the data pages and the data pages are not linked in a linked 
list. 

 
Table Indexes 
 
A SQL Server index is a structure associated with a table that speeds retrieval of 
the rows in the table. An index contains keys built from one or more columns in 
the table. These keys are stored in a structure that allows SQL Server to quickly 
and efficiently find the row or rows associated with the key values. This structure 
is called a heap. The two types of SQL Server indexes are clustered and 
nonclustered indexes 
 
Clustered Indexes 
 
A clustered index is one in which the order of the values in the index is the same as 
the order of the data stored in the table. 
The clustered index contains a hierarchical tree. When searching for data based on 
a clustered index value, SQL Server quickly isolates the page with the specified 
value and then searches the page for the record or records with the specified value. 
The lowest level, or leaf node, of the index tree is the page that contains the data. 
 
Nonclustered Indexes 
 
A nonclustered index is analogous to an index in a textbook. The data is stored in 
one place; the index is stored in another, with pointers to the storage location of the 
indexed items in the data. The lowest level, or leaf node, of a nonclustered index is 
the Row Identifier of the index entry, which gives SQL Server the location of the 
actual data row. The Row Identifier can have one of two forms. If the table has a 
clustered index, the identifier of the row is the clustered index key. If the table is a 
heap, the Row Identifier is the actual location of the data row, indicated with a 
page number and offset on the page. Therefore, a nonclustered index, in 
comparison with a clustered index, has an extra level between the index structure 
and the data itself. 
When SQL Server searches for data based on a nonclustered index, it searches the 
index for the specified value to obtain the location of the rows of data and then 
retrieves the data from their storage locations. This makes nonclustered indexes the 
optimal choice for exact-match queries. 



Some books contain multiple indexes. Since nonclustered indexes frequently store 
clustered index keys as their pointers to data rows, it is important to keep clustered 
index keys as small as possible. 
 
SQL Server supports up to 249 nonclustered indexes on each table. The 
nonclustered indexes have a b-tree index structure similar to the one in clustered 
indexes. The difference is that nonclustered indexes have no effect on the order of 
the data rows. The collection of data pages for a heap is not affected if 
nonclustered indexes are defined for the table. 
 
Data Type Changes 
 
Unicode Data 
 
SQL Server now supports Unicode data types, which makes it easier to store data 
in multiple languages within one database by eliminating the problem of 
converting characters and installing multiple code pages. Unicode stores character 
data using two bytes for each character rather than one byte. There are 65,536 
different bit patterns in two bytes, so Unicode can use one standard set of bit 
patterns to encode each character in all languages, including languages such as 
Chinese that have large numbers of characters. Many programming languages also 
support Unicode data types. 
The new data types that support Unicode are ntext, nchar, and nvarchar. They are 
the same as text, char, and varchar, except for the wider range of characters 
supported and the increased storage space used. 
 
Improved Data Storage 
 
Data storage flexibility is greatly improved with the expansion of the maximum 
limits for char, varchar, binary, and varbinary data types to 8,000 bytes, increased 
from 255 bytes. It is no longer necessary to use text and image data types for data 
storage for anything but very large data values. The Transact-SQL string functions 
also support these very long char and varchar values, and the SUBSTRING 
function can be used to process text and image columns. The handling of Nulls and 
empty strings has been improved. A new unique identifier data type is provided for 
storing a globally unique identifier (GUID). 
 
Normalization 
 



Normalization is the concept of analyzing the “inherent” or normal relationships 
between the various elements of a database. Data is normalized in different forms. 
 
First normal form: Data is in first normal form if data of the tables is moved in to 
separate tables where data in each table is of a similar type, giving each table a 
primary key – a unique label or an identifier. This eliminates repeating groups of 
data. 
 
Second normal form: Involves taking out data that is only dependent on part of 
key. 
 
Third normal form: Involves removing the transitive dependencies. This means 
getting rid of any thing in the tables that doesn’t depend Solely on the primary key. 
Thus, through normalization, effective data storage can be achieved eliminating 
redundancies and repeating groups. 
 
SQL 
 
The structured query language is used to manipulate data in the oracle database. It 
is also called SEQUEL. 
 
 
 
SQL *plus- the user – friendly interface: 
 
SQL *plus Is a superset of the standard SQL .it conforms to the standards of an 
SQL – compliant language and it has some specific oracle add – ones, leading to its 
name SQL and plus. SQL *plus was always called UFI (user –friendly interface). 
The oracle server only understands statements worded using SQL. Other front-end 
tools interact with the oracle database using the SQL statements. Oracle’s 
implementation of SQL through SQL *plus is compliant with ANSI (American 
national standard institute) and the ISO (international standards organization) 
standards. Almost all oracle tools support identical SQL syntax 
 
Data can be manipulated upon by using the Data Manipulation Language  (DML). 
The DML statements provided by SQL are select, update, and delete. SQL *plus 
3.3 can be accessed only by giving the valid username and password. This is one of 
the security features imposed by oracle to restrict unauthorized data accessed. SQL 
allows provides commands for creating new users, granting privileges etc. 



 
All such features of SQL*plus make it a power data access tool especially for 
oracle products. 
 

 
 
 

3.4 SYSTEM MODEL 
 

       3.4.1 SCENARIOS: 
1. Scenario for the usecase ‘Myprofile’ : 
 
 
Scenario name                           :   ProfileRegistration 
 
Participating actors instance   :   Likit :Client 
 
Flow of events                            :  
                                                  1)  After successful login , Likit 
                                                        goes to the Home page   
 
                                                  2)   Likit clicks on Myprofile  and       
                                                         enters the details as follows in                               
                                                         the corresponding fields 
                                                    
                                                      Fmane        :   
                                           
​ Mname       : 
 
​ Lname        : 
                                                      Gender​   ​ Male​ Female   
 
​ SSN               
 
                                                      City 
 



                                                      State 
 
​ Zip 
​  

                                                        Email     
 
                                               Occupation 
​  
                                              Marital status            married             unmarried 
 
​   
​ 3)  After entering all the details, Likit  
                                                 presses the submit button 
 
                                           4)  The details are stored in the database 
 
 
2.  A Scenario for the use case ‘ Schedule Interview ‘ 
 
Scenario name                           :   AssigningInterviews  
 
Participating actors instance   :   Mr. Rao : Admin 
 
Flow of events                            :  
                                                  1)  After successful login , Mr. Rao 
                                                        goes to the Home page   

 
                                            2)  Mr. Rao clicks on the Register  
                                                  and see who are all the new clients 
                                                   requesting for the Interveiw 
                                             
                                          3)  Mr. Rao assign a staff member for the  
                                                respective client who has requested                            
                                                for the interview on a particular day 
                                                or if possible he arranges the                                      



                                                interview on the same day that was  
                                                requested by client 
  
                                         4)   Mr. Rao presses the schedule button                     
                                                and assign the interviewer as follows        
                              
                                               Client name               :  Anil                       
 
​           ClientScheduleDate  : 05/21/2008 
 
                                                Admin given date      : 05/25/2008 
 
                                                Assign to                     : Sudha 
 
                                         5)   Finally Mr. Rao sends interview date    
                                               and interviewer  to Anil through mail. 
 
 
 
 
 
 
 

 
 
3.4.2  USE CASE MODEL: 
 
 
 
 
 
 
 



 
 
 
                                                                                                                    

                                                                                         CLIENT 
 
 
  
 

   ADMIN​         Tax information System 
 
 
 
 
 
                                                                                           TAX  
                                                                                 PREPARER  
                                               
 
 
 
 
 
 
 
 
 

 
                  USE CASE DIAGRAM FOR TIS 

 
 
​ TIS 
 



 
​ Login 
 

                                              
​ Register​ 

 
 

                                Assign interview 
 

ADMIN 
​    Myprofile​     CLIENT​             

 
                                          
                                        Documents 

 
 
 

​                             Tax Summary​                                    TAX                           
                                                                                 PREPARER 
                               
                               Acknowledgement 

 
 

                              Schedule Interview​                                             
                                     

                       ​  
                              Change Password 
    
 
INCLUDE RELATIONSHIP 
 
 
 



 
 
        MYPROFILE 
 
​  

 
                                                                    REISTER 

 
 
        CHANGE  
     PASSWORD 
 
 

 
EXTEND RELATIONSHIP 

 
 

 
 
 

 
        DOCUMENT 
 
​  

 
                                                             CONNUCTION DOWN 

 
 
 TAX SUMMARY 
 
 
USE CASE MODEL 
 

 



     Usecase name                                    :  Tax Summary 
 
Participating Actor instance           :  Calculated by Tax Preparer  
                                                                      Details are submitted by Admin  
                                                                       to Client     
 
Entry condition​                                : Tax Preparer takes the details that                              
                                                                     are submitted my client 
 
Flow of events                                   :  
                                                               1)  Tax preparer invokes the  
                                                                     TaxCalculation use case 
                                                              
                                                               2)   He enters the details that are  
                                                                      submitted by client  
  
                                                               3)  The documents submitted by the      
                                                                     Client consist of  Field, Rental,  
                                                                      Insurance, Share, Mutual Fund. 
 
                                                                4)  The amount coated by the client 
                                                                      for Field, Rental, Insurance,  
                                                                      Share, Mutual Fund is deducted  
                                                                      from the actual income of the  
                                                                      client and for the remaining 
                                                                      amount Tax is calculated that is 
                                                                      10% of remaining amount  
                                                                          

                                                         5)  Tax preparer foreword this to  
                      Admin 

 
                                                                     6)   Admin mail the details to Client 
 
      ​                                                               7)   Tax calculation is done only when                           

                                                                      to the client pays the tax 
                                                                      calculation  Admin 
 
 
Exit Condition​                                         :  Client is acknowledge by receiving  



                   mail 
 

 
3.5  OBJECT MODEL: 
     3.5.1  DATA DICTIONARY 

 
TABLE NAME    :  TAXREGISTRATION 
FIELS NAME                DATATYPE 
taxid                                varchar 
fname                              varchar 
mname                             varchar 
lname                               varchar 
phone                               int 
userid                               varchar 
pwd                                  varchar 
 

 
TABLE NAME    :  ITINDEPENDENT 
FIELS NAME                DATATYPE 
taxid                                varchar 
fname                              varchar 
mname                             varchar 
lname                               varchar 
phone                               int 
pedate                              datetime 
vnumber                           int 
vdate                                datetime 
pbirth                               varchar 
addressinp                        varchar 
dateentryusa                     datetime 

 
 
TABLE NAME    :  ITINSPOUSE 
FIELS NAME                DATATYPE 
taxid                                varchar 
fname                              varchar 
mname                             varchar 
lname                               varchar 



phone                               int 
pedate                              datetime 
vnumber                           int 
vdate                                datetime 
pbirth                               varchar 
addressinp                        varchar 
dateentryusa                     datetime 
   
TABLE NAME    :  DOCUMENT 
FIELS NAME                DATATYPE 
taxid                                varchar 
dtype                               varchar                           
dife                                  varchar 
status                               varchar 
 
 
 
TABLE NAME    :  SPOUSE 
FIELS NAME                DATATYPE 
taxid                                varchar 
fname                              varchar 
mname                             varchar 
lname                               varchar 
dob                                  datetime 
occupation                       varchar 
ssnitin                              varchar 
 
 
TABLE NAME    :  DEPENDENT 
FIELS NAME                DATATYPE 
taxid                                varchar 
fname                              varchar 
mname                             varchar 
lname                               varchar 
relation                             varchar 
other                                 varchar 
dob                                   datetime 
ssnitin                               varchar 



noofyearsinusa                 int 
 
 
 
 
TABLE NAME    :  INTERVIEW 
FIELS NAME                DATATYPE 
userid                             varchar 
pwd                                varchar 
 
 
TABLE NAME    :  VEHICLE  
FIELS NAME                DATATYPE 
make                               varchar 
model                              varchar 
pdate                               varchar 
bmileage                         varchar 
taxid                                varchar  
 
 
TABLE NAME    :  BANK 
FIELS NAME                DATATYPE 
bname                             varchar 
anumber                          int 
rnumber                           int 
atype                                varchar 
taxid                                 varchar 
 
 
TABLE NAME    :  COMPOSE 
FIELS NAME                DATATYPE 
email                               varchar 
subject                             varchar 
attachments                      varchar 
date                                  datetime 
body                                 varchar 
 
 



 
TABLE NAME    :  PAYMENT 
FIELS NAME                DATATYPE 
taxid                                varchar 
bank                                 varchar 
number                             int 
expdate                             datetime 
 
 
 
TABLE NAME    :  SCHEDULE 
FIELS NAME                DATATYPE 
taxid                                varchar 
sdate                                datetime 
statusconfirmation           varchar 
assign                               varchar 
 
 

     TABLE NAME    :  MYPROFILE 
FIELS NAME                DATATYPE 
taxid                                varchar 
fname                              varchar 
mname                             varchar 
lname                               varchar 
gendr                                varcha 
dob                                   datetime 
ssninit                               int 
address                             varchar 
city                                   varchar 
state                                  varchar 
zip                                     int 
email                                 varchar  
 

 
     TABLE NAME    :  ADMINMAIL 

FIELS NAME                DATATYPE 
sender                              varchar     



receiver                            varchar 
subject                              varchar 
attachments                      varchar 
body                                 varchar 
senddate​ datetime 
 
 
 

 
3.5.2  CLASS DIAGRAMS 
 
CLASS DIAGRAM FOR ADMIN 
 
 
 
 
 
 

                           Documenttype  : varchar 
                                               *         Documentfile   :  varchar 
 
 
 
​ 1                                       * 
Userid : varchar 
Password:varchar                                               1 
​ 1 
 
 
 
 
 
 
 
​ 1 

                                Selectdate  :   datetime 
 
 
 



 
 
 
 
 
 
CLASS DIAGRAM FOR CLIENT 

 
 
 

                            Fname : varchar   
                            Mname : varchar    
                            lname  : varchar   
                            gender : varchar                           

                                               1                dob      : varchar 
                             ssn        : varchar 
                             address : varchar 
                              city        :varchar 
                              state       : varchar 

                       zip          : int 
                               email      : varchar 

                                 ocupation : varchar 
  

 
​ 1 
​ 1 
​                                       ​ 1 
Userid : varchar 
Password:varchar      1                                         1 
​  
document​                                   documenttype  :varchar 
                                                         documentfile    :varchar 
 
 
 
 
 
​ 1 

                                 



                                                               oldpwd         :  varchar 
                                                          newpwd       :  varchar 

                         confirmpwd  :  varchar 
 
 
 
 
 
 
3.6  DYNAMIC MODEL 
 
 
SEQUENCE DIGRAM FOR ADMIN 
 

 
                                                                                                  

 
 
  
 

ADMIN​  
         Pressbutton() 

                Accept() 
                                       Displatdata()             

                                                                             Calculate 
                                                                        Summary() 
                                                     
​ Submittaxdetails() 
 
 
                                           Pressbutton() 
 
 
​                             Updatedetails() 
 
 
 
 



 
 
 

 
 
 
                     SEQUENCE DIGRAM FOR CLIENT 

 
                                                                                                  

 
 
  
 

ADMIN​  
         Pressbutton() 

                Accept() 
                                       Displatdata()             

                                                                              
                                                                         

                                                     
Insertpersonaldetails()​  
 
 
      Pressbutton() 
 
 

                                             Submittax 
​ details() 
 
                                         Pressbutton() 
                                
​          Updatedetails() 
 
                                                                  Updateforms() 
 
 
 
​                     Filldetails() 



 
 
​               Presssubmit() 
 
 
​                                      Submitupdatedetails() 
 

 



Collabration Diagrams 
Admin 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
Client 

 
ER-Diagram 

 



 
DFDs 
 
 
 
 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
     
 
 
 
 
 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
 
   
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          
 
 
 
 
 
      
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
             
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               
 
 
 
 
 
 
 
 



 
 
 
 
 
 
        
 
           
 

 
 

 
 
                 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
                
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               
 
 
 
 
    
 
 
 
                 
 
 
 
 
 
              
 



 
 
 
 
 
 

 



 
 
 
 

 
 
 
 

System Design 
 
 
 
 
 



 
4.SYSTEM DESIGN 

 
 

DEFINITION: 
 
Design is the first step in the development phase for any engineered 
product/system. It may be defined as “The process of applying various 
techniques and principles for the purpose of defining a device, a process/a 
system in sufficient detail to permit its physical realization. 
Once the software requirements have been analyzed and specified, the 
software design involves three technical activities—Design, Code 
generation and testing, that are required to build and verify the software. 
The design activities are of main importance in this phase, because in this 
activity decisions ultimately affecting the success of the software 
implementation and its ease of maintenance are made. These decisions 
have the final bearing upon reliability and maintainability of the system. 
Design is the only way to accurately translate the customer’s requirements 
into finished software/ 
a system. 

 
                                                                                                                                              
 
4.1SUBSYSTEM DECOMPOSITION 
 
Subsystem decomposition is to find subsystem and to keep track of 
related objects together. Subsystems are merged into one subsystem, a 
complex subsystem are added to take care of new functionality. The first 
iterations over the subsystem decomposition can introduce drastic changes 
in the system design changes in the system design model. 
 
 
 
 
The subsystems identified are : 
 



TIS 
Admin 
Client 
 
 
        TIS 
 
 
 
 
 
 

 
 
 
 
     TIS 
 
 
 
 
 
 
 
 
 
 
 
        TIS 
 
 
 
 
 
 
 
 
 
 



 
              
4.1.2  PRESISTANT DATA MANAGEMENT 

 
Persistent data outlive a single execution of the system. It describes the 
persistent data stored by the system and data management infrastructure 
required for it . It includes the description if the encapsulation of database. 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
        TIS 
 
 
 
 
 
 
 
 

 
 
 
 



 
 
 
 
 

 
 
 
 
 
 
                     
                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input forms 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 



 
 
 
 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
​  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
​  
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
​  
 
 
 
 
 
 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 
 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 
 
 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 
 
 
 
 
​  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acknowledgement 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Details of interview sent to mail 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
payment 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                       ADMIN 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
​  
                                                ADMINMODULE 
 
Check.aspx.cs 

 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class admin_Check : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
       // str = Request.QueryString["taxid"].ToString(); 
        cn.Open(); 
        if (!IsPostBack) 
        { 
            FillData(); 
        } 
    } 
 
    public void FillData() 



    { 
        sql = "select m.taxid,m.fname,m.email,s.sdate from myprofile m,schedule s 
where m.taxid=s.taxid"; 
       // sql = "select m.taxid,m.fname,m.email,d.status,d.dtype,s.sdate from 
myprofile m,documents d,schedule s where m.taxid="+"'"+str+"'"; 
        SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        DataSet ds = new DataSet(); 
        da.Fill(ds); 
        GridView1.DataSource = ds; 
        GridView1.DataBind(); 
    } 
} 
 
 
checkdocument.aspx.cs 

 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class admin_CheckDocuments : System.Web.UI.Page 
{ 
    SqlConnection cn = new SqlConnection("integrated 
security=true;database=satya"); 
    string sql; 
    string str; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
        cn.Open(); 
        str = Request.QueryString["taxid"]; 
        if (!IsPostBack) 



        { 
            filldata(); 
        } 
    } 
    private void filldata() 
    { 
         
        SqlDataAdapter da = new SqlDataAdapter("select * from documents where  
taxid='"+str+"'", cn); 
        DataSet ds = new DataSet(); 
        da.Fill(ds); 
        GridView1.DataSource = ds; 
        GridView1.DataBind(); 
    } 
    protected void GridView1_SelectedIndexChanging(object sender, 
GridViewSelectEventArgs e) 
    { 
        Label lbldoc = 
(Label)GridView1.Rows[e.NewSelectedIndex].FindControl("Lable1"); 
        
        sql=" update documents set status='Document is Verified' where 
dtype='"+lbldoc.Text+"' and taxid='" + str + "'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        cmd.ExecuteNonQuery(); 
        filldata(); 
 
    } 
} 
 
 
CheckProfile.aspx.cs  
 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 



using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class admin_MyProfile : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql,str; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
        cn.Open(); 
        str = Request.QueryString["taxid"].ToString(); 
        if (!IsPostBack) 
        { 
            FillData(); 
        } 
    } 
 
    public void FillData() 
    { 
        sql = "select * from myprofile where taxid='"+str+"'"; 
        SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        DataSet ds = new DataSet(); 
        da.Fill(ds); 
        DetailsView1.DataSource = ds; 
        DetailsView1.DataBind(); 
    } 
} 
 
 
 
New.aspx.cs 

 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 



using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class admin_new : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
        cn.Open(); 
        if (!IsPostBack) 
        { 
            //FillData(); 
            FillData1(); 
        } 
             
    } 
 
    public void FillData1() 
    { 
        sql = "select taxid,count(*) as count from documents where taxid in(select 
taxid from myprofile) group by taxid"; 
        SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        DataSet ds = new DataSet(); 
        da.Fill(ds); 
        GridView2.DataSource = ds; 
        GridView2.DataBind(); 
 
    } 
 
    public void FillData() 
    { 



        //sql = "select m.taxid,m.fname,m.email,s.sdate,d.dtype,d.status from 
myprofile m,documents d,schedule s where m.taxid=s.taxid and m.taxid=d.taxid"; 
        //SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        //DataSet ds = new DataSet(); 
        //da.Fill(ds); 
        //GridView1.DataSource = ds; 
        //GridView1.DataBind(); 
    } 
} 
 
 
Schedule.aspx.cs 

 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
 
public partial class admin_Scheduled : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql; 
    static string taxid; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
        cn.Open(); 
        GridView1.Visible = false; 
        GridView2.Visible = false; 
 
       // Calendar1.Visible = false; 



        //Label1.Visible = false; 
        //Label2.Visible = false; 
        //Label3.Visible = false; 
        //Label4.Visible = false; 
        //Label5.Visible = false; 
        //Label6.Visible = false; 
        //Label7.Visible = false; 
        //TextBox2.Visible = false; 
        //DropDownList2.Visible = false; 
        //Button1.Visible = false; 
        //Button2.Visible = false; 
        if (!IsPostBack) 
        { 
            FillData(); 
            FillData1(); 
        } 
    } 
    public void FillData() 
    { 
        sql = "select distinct m.taxid, m.fname,s.sdate,s.confimdate from myprofile 
m,schedule s where m.taxid=s.taxid "; 
        SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        DataSet ds = new DataSet(); 
        da.Fill(ds); 
        GridView1.DataSource = ds; 
        GridView1.DataBind(); 
    } 
 
    public void FillData1() 
    { 
        sql = "select distinct m.taxid, m.fname,s.sdate,s.confimdate,s.assign from 
myprofile m,schedule s where m.taxid=s.taxid "; 
        SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        DataSet ds = new DataSet(); 
        da.Fill(ds); 
        GridView2.DataSource = ds; 
        GridView2.DataBind(); 
    } 
 



    protected void GridView1_SelectedIndexChanging(object sender, 
GridViewSelectEventArgs e) 
    { 
        Label 
l=(Label)GridView1.Rows[e.NewSelectedIndex].FindControl("Label1"); 
        taxid = l.Text; 
        sql = "select distinct m.taxid, m.fname,s.sdate,s.confimdate from myprofile 
m,schedule s where m.taxid="+"'"+l.Text+"'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        SqlDataReader dr = cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            Label4.Text = dr[1].ToString(); 
            Label5.Text = dr[2].ToString(); 
        } 
        dr.Close(); 
    } 
    protected void Button3_Click(object sender, EventArgs e) 
    { 
        GridView1.Visible = true; 
        Label1.Visible = true; 
        Label2.Visible = true; 
        Label3.Visible = true; 
        Label4.Visible = true; 
        Label5.Visible = true; 
        Label6.Visible = true; 
        Label7.Visible = true; 
        TextBox2.Visible = true; 
        DropDownList2.Visible = true; 
        Button1.Visible = true; 
        Button2.Visible = true; 
    } 
    protected void Button4_Click(object sender, EventArgs e) 
    { 
        GridView2.Visible = true; 
        Label1.Visible = false; 
        Label2.Visible = false; 
        Label3.Visible = false; 
        Label4.Visible = false; 



        Label5.Visible = false; 
        Label6.Visible = false; 
        Label7.Visible = false; 
        TextBox2.Visible = false; 
        DropDownList2.Visible = false; 
        Button1.Visible = false; 
        Button2.Visible = false; 
    } 
    protected void Button2_Click(object sender, EventArgs e) 
    { 
        Calendar1.Visible = true; 
    } 
    //Label l; 
    protected void Button1_Click(object sender, EventArgs e) 
    { 
 
        //for (int i = 0; i < GridView2.Rows.Count - 1; i++) 
        //{ 
        //    l = (Label)GridView2.Rows[i].FindControl("Label2"); 
        //} 
            //l = (Label)grv.FindControl("Label2"); 
        //foreach (GridViewRow gr in GridView1.Rows) 
        //{ 
        //    l=(Label)gr.FindControl(" 
        //} 
        sql = "update schedule set status='Yes',confimdate='" + TextBox2.Text + 
"',assign='" + DropDownList2.SelectedItem.Text + "' where taxid='" +taxid+ "'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        cmd.ExecuteNonQuery(); 
        FillData1(); 
    } 
    protected void Calendar1_SelectionChanged(object sender, EventArgs e) 
    { 
        if (Calendar1.SelectedDate <= DateTime.Now) 
        { 
            Label7.Text = "Your Selected Date is not Correct"; 
        } 
        else 
        { 



            TextBox2.Text = Calendar1.SelectedDate.ToString(); 
        } 
    } 
} 

 
 
 
 
 
 
 
 
                                                        CLIENT MODULE 
 
Login.aspx.cs 
 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class Login : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql,sql1; 
        
    protected void Page_Load(object sender, EventArgs e) 
    { 
        cn.Open(); 
    } 
     



    protected void btnlogin_Click(object sender, EventArgs e) 
    { 
        if ((txtuserid.Text == "admin") && (txtpwd.Text == "babu")) 
        { 
            Response.Redirect("~/admin/adminpage.aspx"); 
        } 
        else 
        { 
            sql = "select taxid from taxregistration where userid='" + txtuserid.Text + "' 
and pwd='" + txtpwd.Text + "'"; 
            SqlCommand cmd = new SqlCommand(sql, cn); 
            SqlDataReader dr = cmd.ExecuteReader(); 
            if (dr.Read()) 
            { 
                Session["taxid"] = dr[0].ToString(); 
                Response.Redirect("welcome.aspx"); 
            } 
 
            else 
            { 
                sql1 = "select userid from interviewer where userid='" + txtuserid.Text + 
"' and pwd='" + txtpwd.Text + "'"; 
                SqlCommand cmd1 = new SqlCommand(sql1, cn); 
                SqlDataReader dr1 = cmd1.ExecuteReader(); 
                if (dr1.Read()) 
                { 
                    Session["userid"] = dr1[0].ToString(); 
                    Response.Redirect("~/Interviewer/Interview.aspx"); 
                } 
                else 
                { 
                    lblmsg.Text = "Invalid UserID and Password"; 
                } 
 
                dr1.Close(); 
            } 
            dr.Close(); 
            
        } 



    } 
} 
 
 
Myprofile.aspx.cs 
 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class MyProfile : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql,sql1,sql2,sql3,str; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
         
        lbltaxid.Text = Session["taxid"].ToString(); 
        cn.Open(); 
        if (!IsPostBack) 
        { 
            FillData();  
        } 
    } 
 
    public void FillData() 
    { 
        sql = "select * from myprofile where taxid=" + "'" + Session["taxid"] + "'"; 
        ///Response.Write(sql); 
        SqlCommand cmd = new SqlCommand(sql, cn); 



        SqlDataReader dr = cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            lbltaxid.Text = dr[0].ToString(); 
            txtfname.Text = dr[1].ToString(); 
            txtmname.Text = dr[2].ToString(); 
            txtlname.Text = dr[3].ToString(); 
            radiogender.Text = dr[4].ToString(); 
            txtdob.Text = dr[5].ToString(); 
            txtssn.Text = dr[6].ToString(); 
            txtaddress.Text = dr[7].ToString(); 
            txtcity.Text = dr[8].ToString(); 
            txtstate.Text = dr[9].ToString(); 
            txtzip.Text = dr[10].ToString(); 
            txtemail.Text = dr[11].ToString(); 
            listoccuiption.Text = dr[12].ToString(); 
            radiomaritalstatus.Text = dr[13].ToString(); 
            radiodependency.Text = dr[14].ToString(); 
        } 
    } 
    protected void btnregister_Click(object sender, EventArgs e) 
    { 
        str = "New"; 
        
        //lbltaxid.Text = Session["taxid"].ToString(); 
        sql = "select taxid from myprofile where taxid=" + "'" + Session["taxid"] + 
"'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        SqlDataReader dr=cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            sql1 = "update myprofile set fname='" + txtfname.Text + "',mname='" + 
txtmname.Text + "',lname='" + txtlname.Text + "',gender='" + 
radiogender.SelectedItem.Text + "',dob='" + txtdob.Text + "',ssnitin='" + 
txtssn.Text + "',address='" + txtaddress.Text + "',city='" + txtcity.Text + "',state='" + 
txtstate.Text + "',zip='" + txtzip.Text + "',email='" + txtemail.Text + "',occuiption 
='" + listoccuiption.SelectedItem.Text + "',mstatus='" + 
radiomaritalstatus.SelectedItem.Text + "',dependency='" + 



radiodependency.SelectedItem.Text + "' where taxid=" + "'" + Session["taxid"] + 
"'"; 
            SqlCommand cmd1 = new SqlCommand(sql1, cn); 
            cmd1.ExecuteNonQuery(); 
        } 
        else if (txtssn.Text == "") 
        { 
            sql2 = "insert 
myprofile(taxid,fname,mname,lname,gender,dob,address,city,state,zip,email,occui
ption,mstatus,dependency,ctype) values('" + Session["taxid"].ToString() + "','" + 
txtfname.Text + "','" + txtmname.Text + "','" + txtlname.Text + "','" + 
radiogender.SelectedItem.Text + "','" + txtdob.Text + "','" + txtaddress.Text + "','" + 
txtcity.Text + "','" + txtstate.Text + "','" + txtzip.Text + "','" + txtemail.Text + "','" + 
listoccuiption.SelectedItem.Text + "','" + radiomaritalstatus.SelectedItem.Text + 
"','" + radiodependency.SelectedItem.Text + "','" + str + "')"; 
            //Label2.Text = sql2; 
            SqlCommand cmd2 = new SqlCommand(sql2, cn); 
            cmd2.ExecuteNonQuery(); 
            //Clear(); 
        } 
        else 
        { 
            sql3 = "insert 
myprofile(taxid,fname,mname,lname,gender,dob,ssnitin,address,city,state,zip,email
,occuiption,mstatus,dependency,ctype) values('" + Session["taxid"].ToString() + 
"','" + txtfname.Text + "','" + txtmname.Text + "','" + txtlname.Text + "','" + 
radiogender.SelectedItem.Text + "','" + txtdob.Text + "','" + txtssn.Text + "','" + 
txtaddress.Text + "','" + txtcity.Text + "','" + txtstate.Text + "','" + txtzip.Text + "','" 
+ txtemail.Text + "','" + listoccuiption.SelectedItem.Text + "','" + 
radiomaritalstatus.SelectedItem.Text + "','" + radiodependency.SelectedItem.Text + 
"','" + str + "')"; 
            //Label2.Text = sql2; 
            SqlCommand cmd3 = new SqlCommand(sql3, cn); 
            cmd3.ExecuteNonQuery(); 
        } 
        dr.Close(); 
    } 
    public void Clear() 
    { 



        txtfname.Text = ""; 
        txtmname.Text = ""; 
        txtlname.Text = ""; 
        foreach (ListItem li in radiogender.Items) 
        { 
            li.Selected = false; 
        } 
        txtdob.Text = ""; 
        txtssn.Text = ""; 
        txtaddress.Text = ""; 
        txtcity.Text = ""; 
        txtstate.Text = ""; 
        txtzip.Text = ""; 
        txtemail.Text = ""; 
        foreach (ListItem li1 in listoccuiption.Items) 
        { 
            li1.Selected = false; 
        } 
        foreach (ListItem li2 in radiomaritalstatus.Items) 
        { 
            li2.Selected  = false; 
        } 
        foreach (ListItem li3 in radiodependency.Items) 
        { 
            li3.Selected = false; 
        } 
    } 
    protected void radiomaritalstatus_SelectedIndexChanged(object sender, 
EventArgs e) 
    { 
        if (radiomaritalstatus.SelectedItem.Text == "Marrried") 
        { 
            Response.Write("<script type='text/javascript'>"); 
            Response.Write("window.open('Spouse.aspx')"); 
            Response.Write("</script>"); 
        } 
    } 
    protected void radiodependency_SelectedIndexChanged(object sender, 
EventArgs e) 



    { 
        if (radiodependency.SelectedItem.Text == "Yes") 
        { 
            Response.Write("<script type='text/javascript'>"); 
            Response.Write("window.open('Dependent.aspx')"); 
            Response.Write("</script>"); 
        } 
    } 
} 
 
 
 
 
 
Spouse.aspx.cs 
 
 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class Spouse : System.Web.UI.Page 
{ 
 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql; 
    string str; 
    protected void Page_Load(object sender, EventArgs e) 
    { 
 



        cn.Open(); 
        if (!IsPostBack) 
        { 
            FillData(); 
        } 
    } 
    public void FillData() 
    { 
        sql = "select * from spouse where taxid=" + "'" + Session["taxid"] + "'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        SqlDataReader dr = cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            txtfname.Text = dr[1].ToString(); 
            txtmname.Text = dr[2].ToString(); 
            txtlname.Text = dr[3].ToString(); 
            txtdob.Text = dr[4].ToString(); 
            occupationdropdownlist.Text = dr[5].ToString(); 
            string str = dr[6].ToString(); 
            if (str == "Yes") 
            { 
                checkssntax.Checked = true; 
            } 
            else 
                checkssntax.Checked = false; 
        } 
        
    } 
 
    protected void btnsubmit_Click(object sender, EventArgs e) 
    { 
        if (checkssntax.Checked == true) 
            str = "Yes"; 
        else 
         
            str = "No"; 
 



        sql = "insert into spouse values('" + Session["taxid"] + "','" + txtfname.Text + 
"','" + txtmname.Text + "','" + txtlname.Text + "','" + txtdob.Text + "','" + 
occupationdropdownlist.SelectedItem.Text + "','" + str + "')"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        cmd.ExecuteNonQuery(); 
 
        
 
        Response.Write("<script type='text/javascript'>"); 
        Response.Write("window.close('Spouse.aspx')"); 
        Response.Write("</script>"); 
    } 
    protected void checkssntax_CheckedChanged(object sender, EventArgs e) 
    { 
        if (checkssntax.Checked == true) 
        { 
            Response.Write("<script type='text/javascript'>"); 
            Response.Write("window.open('ITINSpouse.aspx')"); 
            Response.Write("</script>"); 
 
            Session["fname"] = txtfname.Text; 
            Session["mname"] = txtmname.Text; 
            Session["lname"] = txtlname.Text; 
        } 
    } 
    protected void txtfname_TextChanged(object sender, EventArgs e) 
    { 
 
    } 
} 
 
ITINSpouse.aspx.cs 
 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 



using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class ITIN : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    //SqlConnection cn =new SqlConnection  ("integrated 
security=true;database=satya"); 
    string sql; 
    
    protected void Page_Load(object sender, EventArgs e) 
    { 
        
 
        cn.Open(); 
        if (!IsPostBack) 
        { 
           FillData(); 
        } 
    } 
    public void FillData() 
    { 
        sql = "select * from itinspouse where taxid=" + "'" + Session["taxid"] + "'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        SqlDataReader dr = cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            txtfname.Text = dr[1].ToString(); 
            txtmname.Text = dr[2].ToString(); 
            txtlname.Text = dr[3].ToString(); 
            txtpassportno.Text = dr[4].ToString(); 
            txtpassportedate.Text = dr[5].ToString(); 
            txtvisano.Text = dr[6].ToString(); 
            txtvisaedate.Text = dr[7].ToString(); 
            txtplaceofbirth.Text = dr[8].ToString(); 



            txtaddressinthepassport.Text = dr[9].ToString(); 
            txtdateofentryusa.Text = dr[10].ToString(); 
        } 
        else 
        { 
            txtfname.Text = Session["fname"].ToString(); 
            txtmname.Text = Session["mname"].ToString(); 
            txtlname.Text = Session["lname"].ToString(); 
        } 
        dr.Close(); 
    } 
    protected void btnsubmit_Click(object sender, EventArgs e) 
    { 
        sql = "insert into itinspouse values('" + Session["taxid"] + "','" + txtfname.Text 
+ "','" + txtmname.Text + "','" + txtlname.Text + "','" + txtpassportno.Text + "','" + 
txtpassportedate.Text + "','" + txtvisano.Text + "','" + txtvisaedate.Text + "','" + 
txtplaceofbirth.Text + "','" + txtaddressinthepassport.Text + "','" + 
txtdateofentryusa.Text + "')"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        cmd.ExecuteNonQuery(); 
 
        Response.Write("<script type='text/javascript'>"); 
        Response.Write("window.close('ITINSpouse.aspx')"); 
        Response.Write("</script>"); 
    } 
} 
 
 
 
Dependent.aspx.cs 
 
 
using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 



using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class Dependent : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql,sql1,str; 
    static DataSet ds; 
    static int n; 
     
    
    protected void Page_Load(object sender, EventArgs e) 
    { 
        cn.Open(); 
        lblother.Visible = false; 
        txtother.Visible = false; 
        lblmsg3.Visible = false; 
        if (!IsPostBack) 
        { 
            FillData(); 
            FillData1(); 
        } 
    } 
 
    public void FillData1() 
    { 
        sql = "select * from dependent"; 
        SqlDataAdapter da = new SqlDataAdapter(sql, cn); 
        ds = new DataSet(); 
        da.Fill(ds, "dependent"); 
    } 
 
    private void GetRecord(int n) 
    { 
        txtfname.Text = ds.Tables[0].Rows[n].ItemArray[1].ToString(); 
        txtmname.Text = ds.Tables[0].Rows[n].ItemArray[2].ToString(); 



        txtlname.Text = ds.Tables[0].Rows[n].ItemArray[3].ToString(); 
        droprelation.Text = ds.Tables[0].Rows[n].ItemArray[4].ToString(); 
        txtother.Text = ds.Tables[0].Rows[n].ItemArray[5].ToString(); 
        txtdob.Text = ds.Tables[0].Rows[n].ItemArray[6].ToString(); 
        string str = ds.Tables[0].Rows[n].ItemArray[7].ToString(); 
        if (str == "Yes") 
        { 
            checkssntax.Checked = true; 
        } 
        else 
        { 
            checkssntax.Checked = false; 
        } 
        //checkssntax.Text = ds.Tables[0].Rows[n].ItemArray[7].ToString(); 
        txtnoofyear.Text = ds.Tables[0].Rows[n].ItemArray[8].ToString(); 
    } 
 
    public void FillData() 
    { 
        sql = "select * from dependent where taxid=" + "'" + 
Session["taxid"].ToString() + "'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        SqlDataReader dr = cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            txtfname.Text = dr[1].ToString(); 
            txtmname.Text = dr[2].ToString(); 
            txtlname.Text = dr[3].ToString(); 
            droprelation.Text = dr[4].ToString(); 
            txtother.Text = dr[5].ToString(); 
            txtdob.Text = dr[6].ToString(); 
            string str = dr[7].ToString(); 
            if (str == "Yes") 
            { 
                checkssntax.Checked = true; 
            } 
            else 
            { 
                checkssntax.Checked = false; 



            } 
            txtnoofyear.Text = dr[8].ToString(); 
        } 
    } 
    protected void btnsubmit_Click(object sender, EventArgs e) 
    { 
        if (checkssntax.Checked == true) 
            str = "Yes"; 
        else 
            str = "No"; 
 
        if (droprelation.SelectedItem.Text == "Other") 
        { 
            sql = "insert into dependent values('" + Session["taxid"] + "','" + 
txtfname.Text + "','" + txtmname.Text + "','" + txtlname.Text + "','" + 
droprelation.SelectedItem.Text + "','" + txtother.Text + "','" + txtdob.Text + "','" + 
str + "','" + txtnoofyear.Text + "')"; 
            SqlCommand cmd = new SqlCommand(sql, cn); 
            cmd.ExecuteNonQuery(); 
        } 
        else 
        { 
            sql1 = "insert into 
dependent(taxid,fname,mname,lname,relation,dob,ssnitin,noofyearsinusa) values('" 
+ Session["taxid"] + "','" + txtfname.Text + "','" + txtmname.Text + "','" + 
txtlname.Text + "','" + droprelation.SelectedItem.Text + "','" + txtdob.Text + "','" + 
str + "','" + txtnoofyear.Text + "')"; 
            SqlCommand cmd1 = new SqlCommand(sql1, cn); 
            cmd1.ExecuteNonQuery(); 
        } 
 
        Response.Write("<script type='text/javascript'>"); 
        Response.Write("window.close('Dependent.aspx')"); 
        Response.Write("</script>"); 
    } 
    protected void droprelation_SelectedIndexChanged(object sender, EventArgs e) 
    { 
        if (droprelation.SelectedItem.Text == "Other") 
        { 



            lblother.Visible = true; 
            txtother.Visible = true; 
        } 
    } 
    protected void checkssntax_CheckedChanged(object sender, EventArgs e) 
    { 
        if (checkssntax.Checked == true) 
        { 
            Response.Write("<script type='text/javascript'>"); 
            Response.Write("window.open('ITINDependent.aspx')"); 
            Response.Write("</script>"); 
             
             
                    //Session["fname"] = txtfname.Text; 
                    //Session["mname"] = txtmname.Text; 
                    //Session["lname"] = txtlname.Text; 
             
        } 
    } 
    protected void btnnext_Click(object sender, EventArgs e) 
    { 
        if (n < ds.Tables[0].Rows.Count - 1) 
        { 
            n += 1; 
            GetRecord(n); 
        } 
        else 
        { 
            lblmsg3.Visible = true; 
            lblmsg3.Text = "This is Last Record"; 
        } 
    } 
    protected void btnprevious_Click(object sender, EventArgs e) 
    { 
        if (n > 0) 
        { 
            n -= 1; 
            GetRecord(n); 
        } 



        else 
        { 
            lblmsg3.Visible = true; 
            lblmsg3.Text = "This is First Record"; 
        } 
    } 
} 

 
 
ITINDependent.aspx.cs 
 
 

using System; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.SqlClient; 
 
public partial class ITINDependent : System.Web.UI.Page 
{ 
    SqlConnection cn = new 
SqlConnection(ConfigurationManager.AppSettings["con"]); 
    string sql; 
    
    protected void Page_Load(object sender, EventArgs e) 
    { 
        
 
        cn.Open(); 
        if (!IsPostBack) 
        { 
            FillData(); 
        } 



    } 
    public void FillData() 
    { 
        sql = "select * from itindependent where taxid=" + "'" + 
Session["taxid"].ToString()+ "'"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 
        SqlDataReader dr = cmd.ExecuteReader(); 
        if (dr.Read()) 
        { 
            txtfname.Text = dr[1].ToString(); 
            txtmname.Text = dr[2].ToString(); 
            txtlname.Text = dr[3].ToString(); 
            txtpassportno.Text = dr[4].ToString(); 
            txtpassportedate.Text = dr[5].ToString(); 
            txtvisano.Text = dr[6].ToString(); 
            txtvisaedate.Text = dr[7].ToString(); 
            txtplaceofbirth.Text = dr[8].ToString(); 
            txtaddressinthepassport.Text = dr[9].ToString(); 
            txtdateofentryusa.Text = dr[10].ToString(); 
        } 
        //else 
        //{ 
        //    //if(Session["fname"].ToString()!= "") 
        //    //{ 
        //    txtfname.Text = Session["fname"].ToString(); 
        //    txtmname.Text = Session["mname"].ToString(); 
        //    txtlname.Text = Session["lname"].ToString(); 
        //    //} 
        //} 
        dr.Close(); 
    } 
    protected void btnsubmit_Click(object sender, EventArgs e) 
    { 
        sql = "insert into itindependent values('" + Session["taxid"] + "','" + 
txtfname.Text + "','" + txtmname.Text + "','" + txtlname.Text + "','" + 
txtpassportno.Text + "','" + txtpassportedate.Text + "','" + txtvisano.Text + "','" + 
txtvisaedate.Text + "','" + txtplaceofbirth.Text + "','" + txtaddressinthepassport.Text 
+ "','" + txtdateofentryusa.Text + "')"; 
        SqlCommand cmd = new SqlCommand(sql, cn); 



        cmd.ExecuteNonQuery(); 
         
         
        Response.Write("<script type='text/javascript'>"); 
        Response.Write("window.close('ITINDependent.aspx')"); 
        Response.Write("</script>"); 
    } 
} 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
          
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TEST CASE NAME :  ADMIN LOGIN 
 



  
Description 

 
Input 

 
Expected Output 

 
Actual Output 

 
Remarks 

 
User name  
 
 
Password 
 
 
 
Password  

 
Admin 
 
 
**** 
 
 
 
**** 

 
Control passes to 
password field  
 
Control passes to 
home page 
 
 
Control passes to 
home page 

 
Control passes to 
password field 
 
Control does not 
passes to home 
page 
 
Control passes to 
home page 

   
   pass 
 
 
    fail 
 
 
 
    pass 

 
 
 
 
TEST CASE NAME :  CLIENT LOGIN 
 

 
Description 

 
Input 

 
Expected Output 

 
Actual Output 

 
Remarks 

 
User name  
 
 
Password 
 
 
 
 
 
Password  

 
Britle 
 
 
**** 
 
 
 
 
 
**** 

 
Control passes to 
password field  
 
Control passes to 
home page 
 
 
 
 
Control passes to 
home page 

 
Control passes to 
password field 
 
Control does not 
passes to home 
page(user id does 
not matches with 
password) 
 
Control passes to 
home page 

   
   pass 
 
 
    fail 
 
 
 
    
 
    pass 

 
TEST CASE NAME :  MYPROFILE 
 
 



 
Description 

 
Input 

 
Expected 
Output 

 
Actual Output 

 
Remarks 

 
Taxid 
 
 
Fname 
 
 
 
Mname  
 
 
Lname 
 
 
D.O.B 
 
 
SSNtin 
 
 
Address 
 
 
City 
 
 
State 
 
 
Zip 
 

 
Anil 
 
 
Venkata 
 
 
 
Anil 
 
 
Kumar 
 
 
02/06/1984 
 
 
5569 
 
 
Vijayawada 
 
 
Hyderabad 
 
 
Andhra 
Pradesh 
 
500001 

 
Control passes 
to next field  
 
Control passes 
to next field 
 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 

 
Control passes 
to next field 
 
Control does 
not passes to 
next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 

   
   pass 
 
 
    pass 
 
 
 
    pass 
 
 
    pass 
 
 
   pass 
 
 
   pass 
 
 
    pass 
 
 
   pass 
 
 
    pass 
 
 
    pass 

 
 
 
 



 
Email 
 
 
Occupation 
 
 
Mstatus 
 
 
Dependency 
 
 
Ctype 
 
 
Bank 
 
 
Vehicle 
 
 
Pnumber 
 
 
Pexp 
 
 
Vnumber 
 
 
Vexp 
 

 
anil@gmail.com 
 
 
Software 
Engineer 
 
yes 
 
 
yes 
 
 
New 
 
 
yes 
 
 
yes 
 
 
B1758469 
 
 
02/05/2018 
 
 
ID2879340554 
 
 
06/04/2020 

 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 

 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control goes 
tonext page 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control goes to 
next page 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 
Control passes 
to next field 
 

     
  pass      
 
 

pass 
 
  
   pass 
 
 
  pass 
 
 
   pass 
 
 
   pass 
 
 
   pass 
 
 
    pass 
 
 
   pass 
 
 
   pass 
 
 
  pass 

 
 
 
 
TEST CASE NAME :  BANK 

mailto:anil@gmail.com


 
 
 
Description 

 
Input 

 
Expected Output 

 
Actual Output 

 
Remarks 

 
Bankname 
 
 
Accountno 
 
 
 
Routingno  
 

 
SBI 
 
 
SBI586 
 
 
 
5894 
 
 
 

 
Control passes to 
next field  
 
Control passes to 
next field 
 
 
Control passes to 
next field 

 
Control passes to 
next field 
 
Control passes to 
next field 
 
 
Control passes to 
next field 

   
   pass 
 
 
    pass 
 
 
 
    pass 

 
 
 
 
 
TEST CASE NAME :  VEHICLE 
 
 
 
Description 

 
Input 

 
Expected Output 

 
Actual Output 

 
Remarks 

 
Make 
 
 
Model 
 
 
 
Purchasedate 
 
 
 

 
Ford 
 
 
Fiesta 
 
 
 
08/06/2007 
 
 
 

 
Control passes to 
next field  
 
Control passes to 
next field 
 
 
Control passes to 
next field 
 
 

 
Control passes 
to next field 
 
Control passes 
to next field 
 
 
Control passes 
to next field 
 
 

   
   pass 
 
 
    pass 
 
 
 
    pass 
 
 
 



 
 
Beginning 
mileage date  
 
 
Ending 
mileage date 

 
 
11/08/2007 
 
 
 
 
12/05/2008 

 
 
Control passes to 
next field 
 
 
 
Control passes to 
next field 
 

 
 
Control passes 
to next field 
 
 
 
Control passes 
to next field 
 

 
 
   pass 
 
 
 
 
   pass 

 
 
 
 
 
 
TEST CASE NAME :  CHANGE PASSWORD 
 
 
 
Description 

 
Input 

 
Expected Output 

 
Actual Output 

 
Remarks 

 
Old  
password 
 
 
New 
password 
 
 
 
Confirm  
Password  
 

 
 
***** 
 
 
 
*** 
 
 
 
*** 
 
 
 

 
Control passes to 
next field  
 
 
Control passes to 
next field 
 
 
 
Control passes to 
next field 

 
Control passes to 
next field 
 
 
Control passes to 
next field 
 
 
 
Control passes to 
next field 

   
   pass 
 
 
     
   pass 
 
 
 
   
  pass 

 
 
 



 
 
TEST CASE NAME :  PAYMENT 
 
 
 
 
Description 

 
Input 

 
Expected Output 

 
Actual Output 

 
Remarks 

 
Bank number 
 
 
Debit/Credit 
number 
 
 
Validity Date 
 

 
SBI435 
 
 
JI259 
 
 
 
05/09/2010 
 
 
 

 
Control passes to 
next field  
 
Control passes to 
next field 
 
 
Control passes to 
next field 

 
Control passes 
to next field 
 
Control passes 
to next field 
 
 
Control passes 
to next field 

   
   pass 
 
 
   pass 
 
 
 
  pass 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
CONCLUSIONS AND RECOMMENDATIONS 

 
 
 
 
 
The entire project has been developed and deployed as per the 
requirements stated by the user, it is found to be bug free as per the 
testing standards that are implemented.  Any specification-untraced 
errors will be concentrated in the coming versions, which are planned to 
be developed in near future. The system at present does not take care off 
the money payment methods, as the consolidated constructs need SSL 
standards and are critically to be initiated in the first face, the application 
of the credit card transactions is applied as a developmental phase in the 
coming days. The system needs more elaborative technicality for its 
inception and evolution. 
 
 



 
 
 
 

BIBLIOGRAPHY 
 
 
 
References for the Project Development Were Taken From the 
following Books and Web Sites. 
 
SQL Server 
  
Mastering SQL Server 2000 by Gunderloy,Jorden BPB  
 
Publications 
 
Beginning SQL Server 2000 by Thearon Willis wrox publications 
 
C# .NET 
 
Programming Visual Basic .NET, Mircrosoft Press 
 
C# .NET by Mc Donald, Microsoft Press 
 


