
HAMI: An Open-Source Solution for Fine-Grained GPU
Scheduling and Heterogeneous Resource Management in
Kubernetes
1. Introduction: The Need for Advanced GPU Scheduling in
Kubernetes
The proliferation of Artificial Intelligence (AI) and Machine Learning (ML) workloads has
positioned Graphics Processing Units (GPUs) as indispensable resources within
modern computing infrastructure. Kubernetes has emerged as the de facto standard for
orchestrating containerized applications, including these GPU-accelerated workloads.1
However, traditional Kubernetes scheduling mechanisms, primarily designed for CPU
and memory, often fall short in efficiently managing the unique characteristics of GPUs.3
Standard schedulers typically treat GPUs as opaque, indivisible resources, leading to
underutilization, increased costs, and challenges in supporting diverse AI/ML tasks that
may not require an entire GPU.3

This limitation has spurred the development of specialized GPU scheduling solutions.
Among these is HAMi (Heterogeneous AI Computing Virtualization Middleware),
formerly known as k8s-vgpu-scheduler. HAMi is an open-source project, accepted as a
Cloud Native Computing Foundation (CNCF) Sandbox project on August 21, 2024.5 It
aims to provide fine-grained GPU sharing, resource isolation, and management of
diverse heterogeneous computing devices within Kubernetes clusters.5

This report provides a comprehensive analysis of HAMI, delving into its architecture,
core functionalities, installation, configuration, and its position within the broader
ecosystem of Kubernetes GPU scheduling solutions. It explores how HAMI addresses
the challenges of GPU sharing, supports various hardware accelerators, and integrates
with other scheduling frameworks. The objective is to offer a deep understanding of
HAMI's capabilities, its practical implications for developers and MLOps engineers, and
its potential to enhance GPU resource management in Kubernetes environments.

2. Understanding HAMI: Core Concepts and Architecture
HAMI is designed as a middleware solution to bridge the gap between Kubernetes and
the underlying heterogeneous hardware, primarily focusing on GPUs but extending to
other AI accelerators. Its core design revolves around enabling device sharing and
virtualization at a software level, aiming to improve resource utilization and flexibility
without requiring modifications to user applications.5

2.1. HAMI's Architectural Components

HAMI's architecture comprises several key components that work in concert to deliver
its GPU sharing and scheduling capabilities 5:

●​ Unified Mutating Webhook: This component intercepts pod creation and
modification requests. If a pod requests HAMI-managed resources (e.g., fractional
GPUs), the webhook can modify the pod specification, for instance, by injecting
necessary configurations or directing the pod to HAMI's custom scheduler.5

●​ Unified Scheduler Extender (or Custom Scheduler Logic): HAMI implements
custom scheduling logic, often as a Kubernetes scheduler extender. This logic is
responsible for making fine-grained decisions about where to place pods based on
the availability of fractional GPU resources and defined scheduling policies (e.g.,
binpack, spread).5

●​ Device Plugins: HAMI utilizes Kubernetes device plugins for various supported
hardware types. These plugins advertise virtualized device resources (e.g., vGPUs
with specific memory/core allocations) to the Kubelet, making them discoverable
and requestable by pods.5

●​ HAMi-core (In-Container Control Component): This is arguably the most critical
component for HAMI's virtualization capabilities. HAMi-core is a user-space library
(often libvgpu.so for NVIDIA GPUs) that operates within the container. It intercepts
CUDA API calls (or similar APIs for other hardware) between the application and
the native device driver.13 This interception allows HAMi-core to enforce resource
limits (memory, compute) and manage the virtualized view of the GPU presented to
the application.

The interplay between these components allows HAMI to present a virtualized GPU
environment to workloads. The webhook and scheduler ensure pods are matched with
appropriate virtual resources, while the device plugin and HAMi-core enforce these
allocations at the node and container level. This modular design, separating scheduling
logic from device-level control, provides a flexible framework for managing
heterogeneous resources.

Table 2.1: HAMi Core Architectural Components

Component Primary Function Key Interactions Relevant Snippets

Mutating Webhook Intercepts and
modifies pod
specifications for
HAMI-managed
resources.

Kubernetes API
Server, HAMI
Scheduler

5

Scheduler
Extender/Logic

Makes fine-grained
scheduling decisions
based on virtual
resource availability
and policies.

Kubernetes
Scheduler, HAMI
Device Plugins, Pod
Specifications

5

Device Plugins Advertise virtualized
device resources to
Kubelet; manage
device allocation on
the node.

Kubelet, HAMi-core,
HAMI Scheduler

5

HAMi-core (e.g.,
libvgpu.so)

User-space library in
container; intercepts
device API calls to
enforce resource
limits and
virtualization.

Application, Native
Device Drivers

13

2.2. GPU Sharing Mechanism: CUDA API Interception

The cornerstone of HAMI's GPU sharing for NVIDIA devices is its HAMi-core
component, which employs a technique of CUDA API interception.13 This user-space
approach differentiates HAMI from hardware-based partitioning methods like NVIDIA
MIG or kernel-level virtualization.

The mechanism typically involves the following steps:

1.​ LD_PRELOAD Hijacking: The HAMi-core library (e.g., libvgpu.so) is preloaded
into the application's environment within the container. This allows it to intercept
calls made by the application to the CUDA runtime library (libcudart.so) before they
reach the actual CUDA driver (libcuda.so).14

2.​ Memory Limiting: When an application attempts to allocate GPU memory (e.g.,
via cuMemAlloc* calls), HAMi-core intercepts this call. It checks the requested
allocation against the virtual GPU memory quota assigned to the container
(tracked, for example, in shared memory). If the request exceeds the quota, the
allocation is denied. Furthermore, API calls that query GPU memory information
(e.g., cuMemGetInfo_v2) are "faked" to return values reflecting the virtual quota,
not the total physical GPU memory.14 This creates the illusion for the application
that it has exclusive access to a smaller, dedicated GPU.

3.​ Compute Limiting (Core Utilization): HAMI implements a form of compute
limiting, often described as a "soft" limit. For NVIDIA GPUs, this might involve a
background thread that periodically polls actual GPU utilization (e.g., via NVML)

and adjusts a token-based system representing "virtual CUDA cores." When an
application launches a CUDA kernel, it consumes tokens; if insufficient tokens are
available, the launch might be delayed or throttled.15 This mechanism aims to
ensure that, over time, the application's compute usage adheres to its assigned
percentage.

4.​ Device Visibility: HAMI, in conjunction with the device plugin, controls which
physical GPU(s) or parts of a GPU are visible to the container, often by setting
environment variables like NVIDIA_VISIBLE_DEVICES appropriately for the
virtualized context.

This API interception method allows HAMI to offer fine-grained control over GPU
memory and compute resources without requiring custom drivers or kernel
modifications, aiming for "zero code changes" for existing applications.9 However, being
a user-space software solution, the robustness of isolation and potential performance
overhead are important considerations compared to hardware-enforced mechanisms.18

2.3. Resource Isolation Capabilities

HAMI aims to provide resource isolation for shared devices, a critical feature for
multi-tenancy and predictable performance.5

●​ Memory Isolation: HAMI asserts "hard isolation" of memory resources for NVIDIA
GPUs and some other supported devices.8 As described above, this is achieved by
intercepting memory allocation APIs and ensuring a container cannot allocate more
GPU memory than it has been assigned. For example, if a pod requests
nvidia.com/gpumem: 3000, it will only see 3GB of GPU memory available.9

●​ Compute Isolation: For NVIDIA GPUs and Hygon DCUs, HAMI supports compute
isolation, typically through the percentage-based core utilization control managed
by HAMi-core.7 This is generally a "soft" isolation, meaning it controls average
utilization over time rather than providing strict, instantaneous compute partitioning
like MIG. For Cambricon MLUs, compute isolation was listed as not supported or in
development in some documents.7

●​ Fault Isolation: The documentation does not extensively detail fault isolation.
User-space API interception methods generally offer less fault isolation than
hardware partitioning (like MIG) or full hypervisor-based virtualization. A crash in
one process sharing a GPU via HAMI could potentially affect other processes on
the same physical GPU if the issue occurs at the driver or hardware level below
HAMI's interception layer. This is a common characteristic of software-based
sharing solutions like NVIDIA MPS as well.14

The effectiveness of these isolation mechanisms is a key differentiator for HAMI. While
"hard memory isolation" through API call denial is a strong claim, the overall isolation

boundary is at the software level within the container, which differs from the
hardware-level boundaries provided by technologies like NVIDIA MIG.

2.4. Heterogeneous Device Support

A significant aspect of HAMI's design is its goal to manage a diverse range of
heterogeneous computing devices beyond just NVIDIA GPUs, providing a unified
interface for users.5

Table 2.2: Supported Heterogeneous Devices in HAMI (with Isolation Features, as
of early-mid 2025)

Product Manufacture
r

Memory
Isolation

Compute
Isolation

Multi-GPU
Support
(within a
single pod
for one task)

Key
Snippet(s)

GPU NVIDIA Yes (Hard
limit via API
interception)

Yes (Soft
limit,
percentage-b
ased core
control)

Yes 7

MLU Cambricon Yes No / In
Development

No / In
Development

7

DCU Hygon Yes Yes No / In
Development

7

Ascend NPU Huawei Yes (with
templates/gr
anularity) / In
Development

Yes (with
templates/gr
anularity) / In
Development

No / In
Development

7

Iluvatar GPU Iluvatar
CoreX

In
Development

In
Development

No / In
Development

7

Mthreads Mthreads Supported Supported Supported 5

GPU (details vary) (details vary) (details vary)

Metax GPU MetaX Supported
(details vary)

Supported
(details vary)

Supported
(details vary)

12

Intel GPU Intel Planned Planned Planned 7

AMD GPU AMD Planned Planned Planned 7

Note: "In Development" or "Planned" statuses are based on information available up to
early-mid 2025 and may have changed. Multi-GPU support refers to a single task using
multiple virtual devices that might span physical devices.

This multi-vendor support is achieved by having specific device plugin implementations
and potentially different in-container control components tailored for each hardware
type, all while aiming to expose them through a consistent set of resource requests and
scheduling policies at the Kubernetes level.5 This ambition to provide a common
management layer across diverse AI accelerators is a key differentiator for HAMI in the
open-source ecosystem. However, the maturity and feature parity (e.g., compute
isolation, dynamic sharing capabilities) can vary between different supported hardware
types.

3. Deploying and Utilizing HAMI
Deploying and configuring HAMI involves several steps, from preparing the Kubernetes
nodes to defining pod specifications that request shared GPU resources. Understanding
these aspects is crucial for effectively leveraging HAMI's capabilities.

3.1. Prerequisites for HAMI Installation

Before installing HAMI, certain prerequisites must be met on the Kubernetes cluster and
its nodes, particularly those equipped with GPUs 5:

Table 3.1: HAMI Installation Prerequisites

Category Requirement Notes Key Snippet(s)

Kubernetes Version ≥1.16 (some Ensure compatibility
with HAMI

5

docs mention ≥1.18) components.

NVIDIA GPUs NVIDIA drivers ≥440 Essential for GPU
operation.

5

nvidia-docker version
> 2.0 (or
nvidia-container-toolki
t)

Enables containers to
access NVIDIA
GPUs.

5

Default container
runtime (Docker,
containerd, CRI-O)
configured to use
nvidia as the default
runtime.

Ensures
GPU-enabled
containers are
correctly launched.

5

System Libs glibc ≥2.17 & glibc <
2.30 (or < 2.3 for
some docs)

Runtime library
dependency.

5

Kernel Version ≥3.10 Minimum kernel
version.

5

Tooling Helm > 3.0 HAMI is typically
installed via a Helm
chart.

5

Node Labeling GPU nodes must be
labeled (e.g., gpu=on)
for HAMI's scheduler
to manage them.

kubectl label nodes
{nodeid} gpu=on

5

Meeting these prerequisites, especially the NVIDIA driver and runtime configurations on
each GPU node, is fundamental. The node labeling step is also critical for HAMI's
scheduler to identify and manage GPU-equipped nodes. The dependency on specific
glibc versions suggests potential compatibility considerations on different Linux
distributions.

3.2. Installation Process via Helm

HAMI is typically installed using Helm, which simplifies the deployment of its various
components 5:

1.​ Add HAMI Helm Repository:​
Bash​
helm repo add hami-charts https://project-hami.github.io/HAMi/​
helm repo update​
​
This command adds the official HAMI chart repository to the local Helm
configuration.5

2.​ Determine Kubernetes Server Version:​
Bash​
kubectl version​
​
The Kubernetes server version is needed because some HAMI components,
particularly the scheduler, might have images tagged according to the Kubernetes
version they are compatible with.9

3.​ Install HAMI Chart:​
Bash​
helm install hami hami-charts/hami \​
 --set scheduler.kubeScheduler.imageTag=vX.Y.Z \ # Replace vX.Y.Z with your K8s server
version, e.g., v1.25.0​
 -n kube-system # Or another namespace like hami-system​
​
This command installs HAMI. The scheduler.kubeScheduler.imageTag should be
set according to the cluster's Kubernetes version. Various other configuration
parameters can be set using --set flags or by providing a custom values file.7

4.​ Verify Installation:​
After installation, check the status of HAMI pods (typically hami-device-plugin or
vgpu-device-plugin, and hami-scheduler or vgpu-scheduler):​
Bash​
kubectl get pods -n kube-system # Or the namespace used for installation​
​
The pods should be in the Running state.9

The Helm-based installation streamlines deployment, but careful attention to
prerequisites and version compatibility (especially for the scheduler image) is
necessary. For production environments, reviewing and customizing the Helm chart's
values.yaml or using --set for specific configurations (like default scheduling policies,
resource names, or device-specific parameters) is recommended.11

3.3. Core Configuration Parameters

HAMI's behavior is controlled through a combination of a central ConfigMap
(hami-scheduler-device), Helm chart values, and pod annotations. These configurations
dictate GPU sharing parameters, scheduling policies, and device-specific settings.11

Table 3.2: Key HAMI Configuration Parameters (via ConfigMap & Helm)

Parameter
Name

Scope Type Default
Value

Description Key
Snippet(s)

nvidia.device
MemoryScali
ng

ConfigMap Float 1.0 Ratio for
NVIDIA GPU
memory
scaling. >1
enables
virtual device
memory
(experimenta
l). S * M total
vGPU
memory for
physical M
memory if set
to S.

11

nvidia.device
SplitCount

ConfigMap Integer 10 Maximum
number of
tasks
(vGPUs) that
can be
assigned to a
single
physical
NVIDIA
GPU.

11

nvidia.migStr
ategy

ConfigMap String "none" Strategy for
NVIDIA MIG.
"none"
ignores MIG;
"mixed"
allows
allocating
MIG devices

11

as separate
resources.

nvidia.disabl
eCoreLimit

ConfigMap String "false" If "true",
disables
GPU core
utilization
limiting for
NVIDIA
GPUs.

11

nvidia.default
Mem

ConfigMap Integer 0 (MB) Default GPU
memory (in
MB) for a
task if not
specified. 0
means use
100% of
available
device
memory for
the vGPU.

11

nvidia.default
Cores

ConfigMap Integer 0 (%) Default GPU
core
percentage
for a task if
not specified.
0 allows
fitting into
any GPU
with enough
memory; 100
implies
exclusive
use of a
physical
GPU's cores.

11

nvidia.default
GPUNum

ConfigMap Integer 1 Default
number of
vGPUs if
nvidia.com/g
pu is not set

11

but fractional
resources
are. 0 means
ineffective.

nvidia.resour
ceCountNam
e

ConfigMap String "nvidia.com/g
pu"

Resource
name for
requesting
vGPU count.

11

nvidia.resour
ceMemoryNa
me

ConfigMap String "nvidia.com/g
pumem"

Resource
name for
requesting
vGPU
memory in
MiB.

11

nvidia.resour
ceMemoryPe
rcentageNa
me

ConfigMap String "nvidia.com/g
pumem-perc
entage"

Resource
name for
requesting
vGPU
memory as a
percentage.

11

nvidia.resour
ceCoreName

ConfigMap String "nvidia.com/g
pucores" (or
"nvidia.com/c
ores")

Resource
name for
requesting
vGPU core
percentage.

11

devicePlugin.
service.sche
dulerPort

Helm Integer 31998 NodePort for
the
scheduler
webhook
service.

11

scheduler.def
aultSchedule
rPolicy.node
SchedulerPol
icy

ConfigMap/H
elm

String "binpack" Default
node-level
scheduling
policy:
"binpack"
(consolidate

11

on fewer
nodes) or
"spread"
(distribute
across
nodes).

scheduler.def
aultSchedule
rPolicy.gpuS
chedulerPoli
cy

ConfigMap/H
elm

String "spread" Default
GPU-level
scheduling
policy within
a node:
"binpack"
(consolidate
on fewer
GPUs) or
"spread"
(distribute
across
GPUs).

11

scheduler.pat
ch.enabled

Helm Boolean true If true, Helm
uses
kube-webho
ok-certgen to
generate
TLS
certificates
for the
webhook.

11

These parameters provide administrators with significant control over how GPU
resources are virtualized and scheduled. The deviceMemoryScaling option, for
instance, allows for memory oversubscription, a powerful but potentially risky feature if
not managed carefully. The distinction between node-level and GPU-level scheduling
policies (nodeSchedulerPolicy vs. gpuSchedulerPolicy) offers nuanced control over
workload placement, catering to different optimization goals like maximizing utilization
(binpack) or improving fault tolerance (spread). The ability to customize resource names
offers compatibility with existing conventions or user preferences.

3.4. Requesting Shared GPU Resources in Pods

Users request HAMI-virtualized GPU resources through standard Kubernetes pod
specifications, using specific resource names and annotations to define their
requirements and influence scheduling.

Table 3.3: HAMI Pod Annotations and Resource Requests

Annotation/
Resource
Key

Type Purpose Example
Value(s)

Notes/Impac
t

Key
Snippet(s)

nvidia.com/g
pu

Resource
Limit

Number of
virtual GPUs
(vGPUs) to
allocate.

"1", "2" For HAMI,
this typically
refers to
vGPU count.
The total
physical
memory/core
s are further
divided
based on
other
requests.

5

nvidia.com/g
pumem

Resource
Limit

Amount of
GPU
memory per
vGPU in MiB.

"3000" (for
3000MiB)

Enforces
memory limit
for the
vGPU.

9

nvidia.com/g
pumem-perc
entage

Resource
Limit

Amount of
GPU
memory per
vGPU as a
percentage
of physical
GPU
memory.

"50" (for
50%)

Alternative to
absolute
memory
request.
Cannot be
used with
nvidia.com/g
pumem.

11

nvidia.com/g
pucores

Resource
Limit

Percentage
of GPU
compute
cores per
vGPU.

"30" (for
30%)

Controls
compute
share. 100
can mean
exclusive
core usage.

11

hami.io/node Pod Overrides "binpack", Allows 7

-scheduler-p
olicy

Annotation default
node-level
scheduling
policy for this
pod.

"spread" per-pod
customizatio
n of node
selection
strategy.

hami.io/gpu-
scheduler-po
licy

Pod
Annotation

Overrides
default
GPU-level
(within-node)
scheduling
policy for this
pod.

"binpack",
"spread"

Allows
per-pod
customizatio
n of GPU
selection
strategy on a
node.

7

nvidia.com/u
se-gputype

Pod
Annotation

Specifies a
comma-sepa
rated list of
allowed
NVIDIA GPU
models.

"Tesla
V100-PCIE-3
2GB,NVIDIA
A10"

Pod will only
be scheduled
on nodes
with one of
these GPU
types.

7

nvidia.com/n
ouse-gputyp
e

Pod
Annotation

Specifies a
comma-sepa
rated list of
disallowed
NVIDIA GPU
models.

"Tesla K80" Pod will not
be scheduled
on nodes
with these
GPU types.

7

nvidia.com/u
se-gpuuuid

Pod
Annotation

Specifies a
comma-sepa
rated list of
allowed
NVIDIA GPU
UUIDs.

"GPU-AAA,G
PU-BBB"

Pod must
use one of
the specified
physical
GPUs.

7

nvidia.com/n
ouse-gpuuui
d

Pod
Annotation

Specifies a
comma-sepa
rated list of
disallowed
NVIDIA GPU
UUIDs.

"GPU-CCC" Pod will not
use any of
the specified
physical
GPUs.

7

nvidia.com/v
gpu-mode

Pod
Annotation

Instructs
HAMI on the
virtualization
mode to use.

"mig",
"hami-core"

Used for
features like
dynamic
MIG,
directing
HAMI to
provision a
MIG instance
or a standard
HAMi-core
vGPU.

11

cambricon.co
m/mlunum

Resource
Limit

Number of
Cambricon
MLUs.

"1" For
requesting
Cambricon
devices.

62

cambricon.co
m/mlumem

Resource
Limit

Cambricon
MLU memory
in MiB.

"10240" For
requesting
specific
memory on
Cambricon
MLUs.

62

hygon.com/d
cunum

Resource
Limit

Number of
Hygon
DCUs.

"1" For
requesting
Hygon DCU
devices.

64

hygon.com/d
cumem

Resource
Limit

Hygon DCU
memory in
MiB.

"2000" For
requesting
specific
memory on
Hygon
DCUs.

64

hygon.com/d
cucores

Resource
Limit

Hygon DCU
cores.

"15" For
requesting
specific core
count on
Hygon
DCUs.

64

huawei.com/
Ascend910A
-memory
(example)

Resource
Limit

Huawei
Ascend NPU
memory
(resource
name may
vary by
model/templ
ate).

"2184" Example for
Ascend
NPU, actual
names
depend on
HAMI's
Ascend
plugin
configuration
and
templates.

66

Example Pod Specifications:

●​ NVIDIA GPU Sharing (HAMi-core):​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
 name: hami-nvidia-sharing-example​
 annotations:​
 hami.io/gpu-scheduler-policy: "binpack" # Optional: override default GPU policy​
spec:​
 schedulerName: hami-scheduler # Or ensure webhook directs to HAMI logic​
 containers:​
 - name: cuda-app​
 image: nvidia/cuda:11.8.0-base-ubuntu22.04 # Or any CUDA-enabled image​
 resources:​
 limits:​
 nvidia.com/gpu: "1" # Number of vGPUs​
 nvidia.com/gpumem: "3000" # Request 3000MiB GPU memory​
 nvidia.com/gpucores: "30" # Request 30% of GPU core compute​
 env:​
 - name: GPU_CORE_UTILIZATION_POLICY ​
 value: "force" # or "default", "disable" [11]​

●​ NVIDIA Dynamic MIG: 26​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
 name: hami-dynamic-mig-example​
 annotations:​

 nvidia.com/vgpu-mode: "mig" # Instructs HAMI to use a MIG instance​
spec:​
 schedulerName: hami-scheduler​
 containers:​
 - name: mig-container​
 image: nvidia/cuda:11.8.0-base-ubuntu22.04​
 resources:​
 limits:​
 nvidia.com/gpu: "1" # Number of MIG instances​
 nvidia.com/gpumem: "10000" # Request 10GB, HAMI will find suitable MIG profile​

●​ Cambricon MLU: 5​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
 name: hami-cambricon-example​
spec:​
 schedulerName: hami-scheduler​
 containers:​
 - name: mlu-container​
 image: cambricon-image # Replace with actual Cambricon image​
 resources:​
 limits:​
 cambricon.com/mlunum: "1" ​
 cambricon.com/mlumem: "10240" # Request 10GB MLU memory​
 # cambricon.com/mlu.smlu.vcore: "50" # If core sharing supported by specific HAMI version
for MLU​

●​ Hygon DCU: 5​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
 name: hami-hygon-example​
spec:​
 schedulerName: hami-scheduler​
 containers:​
 - name: dcu-container​
 image: image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310 #
Example image​
 resources:​

 limits:​
 hygon.com/dcunum: "1"​
 hygon.com/dcumem: "2000" # Request 2000MiB DCU memory​
 hygon.com/dcucores: "15" # Request 15 DCU cores​

●​ Huawei Ascend NPU: 5​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
 name: hami-ascend-example​
 annotations:​
 hami.io/use-Ascend910B-uuid: "device-uuid-1" # Optional: specify NPU UUID​
spec:​
 schedulerName: hami-scheduler​
 containers:​
 - name: ascend-container​
 image: ascendhub.huawei.com/public-ascendhub/ascend-mindspore:23.0.RC3 # Example image​
 resources:​
 limits:​
 # Actual resource names depend on HAMI's Ascend plugin configuration and NPU model
templates.​
 # Example based on 'vir02' template for Ascend910A from [66]:​
 huawei.com/Ascend910A-memory: "2184" ​
 # huawei.com/Ascend910A-aicore: "2" ​

Important Notes from Documentation:
It is consistently advised to avoid using privileged: true in pod security contexts and to avoid
setting spec.nodeName directly. Instead, nodeSelector or node affinity/anti-affinity rules should
be used for targeting specific nodes.5 Using privileged: true can bypass HAMI's controls and
expose all GPUs, while nodeName bypasses the scheduler.
The flexibility in requesting resources (absolute memory, percentage memory, core
percentage) alongside the ability to influence scheduling via annotations provides a
powerful toolkit for users. However, this also necessitates clear understanding and
documentation to prevent misconfigurations. For instance, the dual meaning of
nvidia.com/gpu (vGPU count for HAMI vs. physical GPU count in other contexts) could
be a source of confusion if not properly clarified for users.5 The introduction of distinct
resource names for different hardware vendors (e.g., cambricon.com/mlunum,
hygon.com/dcunum) is logical but requires users to be aware of the correct names for
the specific hardware they are targeting.

3.5. Monitoring and Observability with HAMI

Effective monitoring is essential for understanding resource utilization and the behavior
of shared GPU workloads. HAMI provides mechanisms for exposing metrics and
integrating with common observability tools.5

●​ Metrics Exposure: HAMI automatically enables metrics exposure after installation.
Cluster-wide scheduler metrics are available via an HTTP endpoint, typically
http://{scheduler_ip}:{monitorPort}/metrics. The default monitorPort is 31993 and
can be customized during Helm installation using devicePlugin.service.httpPort.5 It's
noted that vGPU status on a node is typically collected only after a vGPU has been
actively used on that node.17

●​ Prometheus and Grafana Integration: HAMI's metrics are designed to be scraped
by Prometheus. The official documentation and community resources often point to
using NVIDIA DCGM Exporter in conjunction with HAMI's own metrics to provide a
comprehensive view of both physical GPU health/performance and vGPU
allocation.22 A publicly available Grafana dashboard (ID: 22043 on grafana.com,
titled "hami-vgpu-metrics-dashboard") is specifically designed for visualizing these
combined metrics.22

●​ HAMi-WebUI: For a more direct visualization and management interface, the
Project-HAMi organization provides HAMi-WebUI. This open-source tool offers an
intuitive web interface to see GPU resource allocation and usage across nodes,
with detailed views for tasks and individual GPUs.24

●​ Specific Metrics: While a complete, exhaustive list of all HAMI-specific metrics is
not fully detailed in one place across the snippets, various pieces of information
point to the types of metrics available:
○​ MIG Instance Metrics: When using dynamic MIG, nodeGPUMigInstance (a

gauge) provides details about active MIG instances on a node.26
○​ Volcano Integration Metrics: When HAMI is integrated with the Volcano

scheduler, Volcano exposes metrics like volcano_vgpu_device_allocated_cores
and volcano_vgpu_device_allocated_memory via its own metrics endpoint
({volcano_scheduler_ip}:8080/metrics).27 The volcano-vgpu-device-plugin itself
also exposes metrics related to GPU utilization, memory usage, and
pod-specific limits/usage on port 9394 of the device plugin pod.28

○​ General vGPU Allocation Metrics: The HAMI scheduler itself tracks vGPU
allocations, which form the basis of its metrics.

○​ Combined with DCGM: For NVIDIA GPUs, DCGM provides a rich set of
hardware-level metrics (utilization, memory, temperature, power) 1, which are
essential for a complete picture and are leveraged by the recommended
Grafana dashboard.

●​ Potential Monitoring Challenges: An open issue on GitHub mentioned problems
with vGPUmonitor being unable to obtain metrics.10 This highlights that, as with any

complex system, ensuring reliable and comprehensive metrics collection can
sometimes present challenges that need to be addressed by the project.

The monitoring strategy of HAMI, relying on its own metrics for vGPU allocation and
encouraging the use of standard tools like Prometheus/Grafana alongside
vendor-specific exporters like DCGM, is a practical approach. It allows users to leverage
familiar observability stacks. The HAMi-WebUI offers a more tailored experience for
users focused specifically on HAMI's state. The key to effective monitoring is to combine
HAMI's vGPU allocation data with actual physical GPU utilization and health metrics to
get a true sense of efficiency and performance.

Table 3.4: Key HAMI Monitoring Metrics (Illustrative)

Metric Name
(Conceptual or
Actual)

Source
Example

Description Typical Use
Case

Key Snippet(s)

nodeGPUMigIns
tance

HAMI Scheduler
(for MIG)

Gauge indicating
active MIG
instances, their
profiles, and
associated
physical device.

Monitoring
dynamic MIG
configurations
and availability.

26

volcano_vgpu_d
evice_allocated_
cores

Volcano
Scheduler (with
HAMI
integration)

Percentage of
GPU compute
cores allocated
to vGPUs on a
specific physical
GPU.

Tracking vGPU
core allocation
by Volcano.

27

volcano_vgpu_d
evice_allocated_
memory

Volcano
Scheduler (with
HAMI
integration)

Amount of GPU
memory (e.g., in
MiB) allocated to
vGPUs on a
specific physical
GPU.

Tracking vGPU
memory
allocation by
Volcano.

27

Pod GPU
Memory

Volcano Device
Plugin (with
HAMI

Actual GPU
memory used by
a pod vs. its

Identifying
memory
overruns or

28

Usage/Limit integration) allocated vGPU
memory limit.

underutilization
at the pod level.

Pod GPU Core
Utilization

Volcano Device
Plugin / DCGM
via HAMI
Dashboard

Actual GPU core
utilization by a
pod.

Assessing if a
pod is effectively
using its
allocated vGPU
compute
resources.

1

Physical GPU
Utilization

DCGM via HAMI
Dashboard

Overall
utilization of the
physical GPU
(compute,
memory
bandwidth,
encoder/decoder
).

Understanding
the load on the
physical
hardware
supporting the
vGPUs.

1

Physical GPU
Memory
Used/Total

DCGM via HAMI
Dashboard

Total memory
used and
available on the
physical GPU.

Assessing
overall memory
pressure on the
physical GPU.

1

HAMI Scheduler
Metrics

HAMI Scheduler
(/metrics
endpoint)

General metrics
about scheduler
operations,
vGPU
allocations, node
status from
HAMI's
perspective.

Monitoring the
health and
activity of the
HAMI scheduling
components.

5

4. HAMI within the Open-Source GPU Scheduling Ecosystem
HAMI does not operate in a vacuum; it is part of a larger ecosystem of tools and
schedulers aimed at optimizing GPU usage in Kubernetes. Its ability to integrate with
other schedulers and its comparative strengths and weaknesses define its role.

4.1. Integration with Kubernetes Schedulers

HAMI's architecture allows it to work alongside or in conjunction with other Kubernetes
scheduling components, offering flexibility in how its GPU sharing capabilities are
leveraged.

●​ Koordinator: Koordinator, a QoS-based scheduler for Kubernetes, explicitly
integrates with HAMI to provide an end-to-end GPU sharing solution. Koordinator
utilizes HAMi-core for its GPU isolation capabilities at the node level.13 Pods signal
their intent to use HAMi-managed shared GPUs by including the label
koordinator.sh/gpu-isolation-provider: HAMi-core. Koordinator then handles the
scheduling of these pods, taking into account the fractional GPU resources defined
(e.g., koordinator.sh/gpu-core, koordinator.sh/gpu-memory-ratio), while HAMi-core
enforces these limits within the container.13 The Koordinator v1.6 release further
enhanced this by improving device topology awareness with HAMI, supporting
more GPU models, and enabling joint allocation of GPU and RDMA resources.31
This collaboration allows users to benefit from Koordinator's advanced scheduling
features (like load-aware scheduling and co-location) while using HAMI for the
underlying GPU virtualization.

●​ Volcano Scheduler: Volcano, a batch scheduling system designed for
high-performance computing and AI/ML workloads, also integrates with HAMI.
Project-HAMi provides a dedicated volcano-vgpu-device-plugin that leverages
HAMi-core to enable hard resource isolation and device sharing for NVIDIA GPUs
scheduled by Volcano.27 This integration requires Volcano version 1.9 or newer. To
enable this, the Volcano scheduler's ConfigMap must be updated to include and
enable the deviceshare plugin with deviceshare.VGPUEnable: true.28 Pods then
request vGPU resources using Volcano-specific annotations such as
volcano.sh/vgpu-number, volcano.sh/vgpu-memory, and volcano.sh/vgpu-cores.28
This setup allows organizations to use Volcano's gang scheduling and other
batch-oriented features in conjunction with HAMI's fine-grained GPU sharing. Some
adopters explicitly use HAMI with Volcano for managing automatic training
pipelines.34 Community discussions also reflect interest in using Volcano's
scheduling capabilities for non-NVIDIA devices managed by HAMI, aiming to
consolidate on a single advanced scheduler.35

●​ NVIDIA KAI Scheduler: As of early-mid 2025, there is no official, documented
direct integration between HAMI and the NVIDIA KAI Scheduler. KAI is a
comprehensive Kubernetes scheduler open-sourced by NVIDIA (formerly from
Run:ai), designed for AI/ML workloads. It features its own mechanisms for GPU
sharing (often described as time-slicing like, using a reservation pod system, and
currently lacking hard isolation), along with advanced features like hierarchical
queues, fairness policies, and batch scheduling.36 While KAI aims to improve GPU
utilization, its current sharing model does not provide the same level of resource
isolation that HAMI targets with HAMi-core.38 Community discussions indicate an
interest in combining KAI's sophisticated scheduling and resource governance with
HAMI's hard isolation capabilities, recognizing that HAMI already provides this layer
for projects like Volcano and Koordinator.39 HAMI's roadmap does include plans for

NVIDIA GPU Operator integration 9, which is a prerequisite for installing KAI
Scheduler.37 This future integration might open pathways for closer collaboration or
interoperability, but currently, they represent distinct approaches to GPU sharing
and scheduling.

●​ Default Kubernetes Scheduler: HAMI can also function with the default
Kubernetes scheduler (kube-scheduler). Its architecture, including a scheduler
extender and mutating webhook, allows it to influence scheduling decisions for
pods requesting HAMI-managed vGPU resources.5 The webhook can identify pods
requiring vGPUs and ensure they are handled by HAMI's scheduling logic, which
then filters and scores nodes based on vGPU availability and defined policies.

This ability for HAMI to provide its core GPU virtualization (HAMi-core) as a foundational
layer for various established schedlers is a notable strategic aspect. It allows HAMI to
focus on the complexities of device-level sharing and isolation while users can leverage
the advanced scheduling algorithms and features of systems like Koordinator or
Volcano. This modularity enhances HAMI's adoption potential within diverse Kubernetes
ecosystems. However, the variation in resource request syntax (e.g., koordinator.sh/*,
volcano.sh/*, nvidia.com/*) when using HAMI through different schedulers can introduce
a layer of complexity for users operating in environments with multiple scheduling
solutions.

4.2. Comparative Analysis

HAMI's approach to GPU sharing and scheduling can be better understood when
compared to native NVIDIA solutions and other open-source alternatives.

Table 4.1: Comparison of GPU Sharing Techniques: HAMI vs. Native NVIDIA

Feature HAMI (via
HAMi-core)

NVIDIA MIG
(Multi-Instance
GPU)

NVIDIA
Time-Slicing

NVIDIA MPS
(Multi-Process
Service)

Sharing
Granularity

Fine-grained
(Memory in
MB/%, Cores in
%)

Fixed,
predefined
hardware
partitions (e.g.,
1g.5gb)

GPU time
shared among
multiple
containers

Multiple
processes share
a single GPU
context

Memory
Isolation

Aims for hard
isolation (via API

Strong
(Hardware-level)

None (shared
memory space)

None (shared
memory space)

interception)

Compute
Isolation

Soft isolation
(percentage-bas
ed core control)

Strong
(Hardware-level)

None (compete
for compute
cycles)

Limited (kernels
can interleave,
shared compute)

Fault Isolation Limited
(software-level;
driver/HW faults
can impact)

Strong
(Hardware-level)

None (a
crashing pod
can affect
others)

Poor (MPS
daemon failure
affects all
clients)

Hardware
Support

Broad (NVIDIA,
other vendors
planned/support
ed)

Newer NVIDIA
GPUs (A100,
H100, etc.) 43

Most NVIDIA
GPUs
supporting
device plugin
extensions

NVIDIA GPUs
(Volta and later)
19

Performance
Overhead

Potential from
API interception,
context
switching 18

Minimal
(hardware
partitioning)

Context
switching
overhead 19

Lower context
switching than
time-slicing for
some loads 19

Ease of
Use/Config

"Zero code
changes"; Helm
install;
ConfigMap/anno
tations

Can be complex
to
configure/manag
e MIG profiles 43

Simpler
ConfigMap
configuration via
device plugin

Simpler setup,
managed by
device plugin

Key Snippet(s) 9 69 4 59

Table 4.2: HAMI vs. Selected Open-Source GPU Schedulers/Sharing Solutions

Feature/Aspect HAMI NVIDIA KAI
Scheduler

TensorFusion Aliyun
gpushare-sche
duler

Primary Goal Fine-grained
GPU sharing,
isolation,

Advanced AI/ML
workload
scheduling,

Fractional GPU,
GPU pooling,
remote GPU,

GPU memory
sharing for

heterogeneous
device mgmt.

fairness, GPU
sharing (soft
isolation).

VRAM
expansion,
advanced
autoscaling.

NVIDIA GPUs.

Sharing
Mechanism

User-space API
interception
(HAMi-core),
vGPU concept.

Fractional
requests via
annotations,
reservation pod,
time-slicing-like.

GPU
virtualization &
remoting,
TFlops-based
fractional GPU.

Scheduler
extender, device
plugin for
memory sharing.

Isolation
Strength

Hard memory
(claimed), soft
compute.

Soft/None for
memory &
compute in its
sharing
mechanism.

Claims isolation
(details of
mechanism
vary).

Primarily
memory
accounting,
limited isolation.

Heterogeneous
Support

Yes (NVIDIA,
Cambricon,
Hygon, Ascend,
etc.
planned/support
ed).

Primarily NVIDIA
(supports DRA
for other vendors
if drivers exist).

NVIDIA (AMD
WIP).

NVIDIA only.

Scheduler
Integration

Own scheduler
logic (extender),
integrates with
Koordinator,
Volcano.

Full standalone
scheduler, runs
alongside
default.

Webhook-only
(no
device/scheduler
plugin needed).

Scheduler
extender for
default K8s
scheduler.

Key
Differentiators

HAMi-core
virtualization,
broad vendor
support, CNCF
Sandbox.

Hierarchical
queues, DRF
fairness, batch
scheduling,
Run:ai heritage.

Rich enterprise
features (VRAM
expansion,
remote GPU),
simpler
deployment
arch.

Early
open-source
GPU sharing
solution.

Community/Mat
urity

CNCF Sandbox,
active
development,
growing

Recently
open-sourced by
NVIDIA, backed
by

Commercial
offering with
open-source
components,

Mature, but
perhaps less
active
development

adoption (esp. in
Asia).

NVIDIA/Run:ai. newer. than newer
solutions.

Key Snippet(s) 5 36 71 72

This comparative analysis reveals that the Kubernetes GPU sharing and scheduling
landscape is diverse. HAMI carves out a distinct position by focusing on
software-based, fine-grained virtualization with an emphasis on strong memory isolation
and broad heterogeneous hardware support. While NVIDIA's native solutions like MIG
offer robust hardware isolation, they can be less flexible. Other open-source projects
like KAI Scheduler prioritize advanced scheduling policies and fairness for AI workloads,
with a simpler sharing model that currently lacks HAMI's isolation strengths.
TensorFusion presents itself as a more feature-rich platform with a different architectural
approach to virtualization.

The choice of solution is therefore not straightforward and depends heavily on specific
requirements:

●​ For strong, hardware-enforced isolation on compatible NVIDIA hardware, MIG is
the standard.

●​ For basic sharing on NVIDIA GPUs where isolation is less critical, Time-Slicing or
MPS might suffice.

●​ For sophisticated AI/ML scheduling with queueing and fairness on NVIDIA
hardware, KAI Scheduler is a strong contender, though its current GPU sharing
lacks hard isolation.

●​ For fine-grained, software-enforced memory isolation and broad support for
heterogeneous hardware (including non-NVIDIA), HAMI offers a compelling
open-source option.

●​ For a platform with features like remote GPU sharing or VRAM expansion,
TensorFusion is an alternative.

HAMI's user-space API interception is a key technological choice. While it enables
flexibility and broad hardware compatibility without kernel modifications, it inherently
differs from hardware-level partitioning (like MIG) in terms of the "hardness" of isolation
and potential performance characteristics. For environments demanding the utmost
security or predictable, low-latency performance for co-located tenants, this distinction is
vital.

5. Gaining Insights: How HAMI Enhances GPU Resource
Management

HAMI's features and architecture translate into tangible benefits for managing GPU
resources in Kubernetes, particularly in scenarios demanding high utilization,
multi-tenancy, and support for diverse hardware.

5.1. Achieving Fine-Grained Resource Control and Improved Utilization

A primary driver for adopting solutions like HAMI is the need to move beyond
whole-GPU allocation. HAMI allows users to request GPU resources with a high degree
of granularity:

●​ GPU Memory: Can be specified in absolute terms (e.g., megabytes) or as a
percentage of the physical GPU's memory.5

●​ GPU Compute Cores: Can be requested as a percentage of the GPU's total
compute capability.9

This fine-grained control means that multiple workloads, each potentially requiring only
a fraction of a GPU's total capacity, can be co-located on a single physical GPU. This
directly addresses the common problem of underutilization where, for example, an
inference task might only use 10-20% of a powerful GPU if allocated the entire device.8
By enabling such sharing, HAMI helps organizations maximize the return on their
expensive GPU investments. Real-world use cases have reported significant
improvements, with GPU utilization increasing from below 20% to over 60% in some
instances.14 This efficient packing of workloads is crucial for cost optimization, especially
as AI/ML computational demands continue to grow.

5.2. Enabling Multi-Tenancy and Diverse Workload Co-existence

HAMI's resource isolation capabilities, particularly its claim of hard memory isolation for
NVIDIA GPUs 8, are designed to support multi-tenant environments. Different users,
teams, or applications can share physical GPUs with greater confidence that one
workload will not unduly interfere with another's memory space. This is vital for:

●​ R&D Platforms: Where multiple researchers or developers need simultaneous
access to limited GPU resources for experimentation (e.g., Jupyter notebooks).14

●​ Educational Settings: Providing fractional GPU access to many students from a
smaller pool of physical GPUs.9

●​ Cloud Providers: Offering more affordable, fractional GPU instances to customers,
thereby increasing the monetization potential of each physical GPU.14

●​ Mixed Workload Environments: Co-locating different types of AI/ML tasks, such
as model training and inference serving, on the same hardware. For example,
SNOW (Korea) successfully used HAMI to run training and inference workloads
concurrently on NVIDIA A100 GPUs, a scenario where MIG's fixed partitions were
too rigid and MPS lacked sufficient isolation.14

The ability to assign different GPU tiers or resource profiles to different user groups,
coupled with features like idle GPU reclamation based on container-level metrics (as
reported in some use cases 14), further enhances HAMI's utility in shared environments.

5.3. Facilitating Management of Diverse Hardware Accelerators

One of HAMI's strategic aims is to provide a unified management layer for
heterogeneous AI accelerators from various vendors.5 As organizations increasingly
deploy a mix of hardware (e.g., NVIDIA GPUs alongside specialized NPUs from
Cambricon, Huawei Ascend, or Hygon DCUs), the complexity of managing these
diverse resources grows. HAMI seeks to abstract some of this complexity by offering:

●​ Support for multiple device types through a common architectural framework
(device plugins, scheduler logic).

●​ The goal of a consistent way to request these resources in pod specifications, even
if the underlying resource names differ per vendor.

●​ Unified scheduling policies that can apply across different types of accelerators.

A reported use case involved a major bank using HAMI to manage a combination of
domestic (non-NVIDIA) GPUs and NVIDIA GPUs under a single scheduling system.14
This capability simplifies operations and allows for more flexible workload placement in
environments with a diverse hardware portfolio. However, it is important to note that the
level of feature support (e.g., compute isolation, dynamic sharing) may vary across
different supported device types, as indicated in HAMI's documentation.7

5.4. Real-World Use Cases and Reported Benefits

The practical impact of HAMI is best illustrated by its adoption in various real-world
scenarios:

●​ Banking Sector (Dynamic Inference): A major bank running numerous lightweight
inference tasks with cyclical peak/off-peak demand patterns experienced low GPU
utilization (<20%) when dedicating full GPUs per task. By implementing HAMI and
enabling features like memory oversubscription and priority-based preemption, they
reportedly increased average GPU utilization to over 60%, while still meeting
service level agreements (SLAs). HAMI also facilitated the management of a mixed
fleet of domestic and NVIDIA GPUs.14 This demonstrates HAMI's potential for
significant cost savings and operational efficiency in environments with bursty,
low-footprint GPU workloads.

●​ R&D (Securities & Autonomous Driving): In research environments
characterized by many users and relatively few GPUs (e.g., internal Kubeflow
platforms where Jupyter Notebooks would occupy full GPUs even if idle), HAMI's
virtual GPU support, card-type-based scheduling, and container-level monitoring
enabled more effective sharing. Idle GPUs could be automatically reclaimed based

on real-time usage metrics, leading to improved overall resource utilization.14 This
highlights HAMI's value in democratizing access to scarce GPU resources.

●​ GPU Cloud Provider (Monetizing GPU Slices): A cloud vendor leveraged HAMI
to transition from offering whole-card GPU instances (e.g., an H800 at $2/hr) to
providing more granular, fractional GPU offerings (e.g., 3GB slices at $0.26/hr).
This strategy drastically improved affordability for end-users and reportedly tripled
the revenue per physical card for the provider, by allowing up to 26 concurrent
users on a single H800 GPU.14 This case underscores the economic benefits HAMI
can unlock by enabling new service models.

●​ SNOW (Korea - AI Workload Migration to Kubernetes): When migrating AI
workloads to Kubernetes, SNOW faced the challenge of co-locating training and
inference tasks on the same NVIDIA A100 GPUs. They found NVIDIA MIG too
inflexible due to its fixed partitions, NVIDIA MPS lacking necessary memory
isolation, and full Kubeflow too heavyweight for their needs. HAMI provided a
solution that allowed them to share full GPUs safely among different tasks without
requiring application code changes, facilitating a smoother infrastructure migration
for hundreds of A100 GPUs.14 This illustrates HAMI's role as a practical enabler for
complex workload consolidation.

These use cases collectively suggest that HAMI's value lies in its ability to improve GPU
utilization, enable cost-effective multi-tenancy, and simplify the management of diverse
workloads on shared GPU infrastructure. The "zero code changes" aspect is frequently
highlighted as a key enabler for adoption, as it minimizes the friction of migrating
existing AI/ML applications.5

5.5. Performance Considerations

While HAMI offers significant benefits in terms of resource sharing and utilization, it is
essential to consider the potential performance implications of its user-space API
interception mechanism.

●​ Overhead of API Interception: HAMi-core operates by hijacking CUDA API calls
in user space.14 This software layer, while enabling flexibility, can introduce latency
or computational overhead compared to direct hardware access or kernel-level
virtualization techniques.8 The magnitude of this overhead is workload-dependent
and influenced by the frequency and type of intercepted API calls. For
compute-intensive tasks with infrequent API interactions, the overhead might be
negligible. However, for workloads with many fine-grained CUDA calls, the
cumulative impact could be more noticeable.

●​ Context Switching Costs: GPU context switching is inherently more expensive
than CPU context switching due to the larger state that needs to be saved and
restored.19 Sharing mechanisms that lead to frequent context switches between

virtualized GPU instances can impact overall performance. HAMI's compute
limiting, which may involve regulating kernel launches, could incur such costs,
similar to time-slicing approaches.

●​ Benchmarking Data: Specific, comprehensive, and independent benchmarks
comparing HAMI's performance against other sharing solutions (MIG, MPS,
time-slicing) or whole-GPU allocation are not extensively detailed within the
provided research snippets. While general GPU sharing benchmarks exist 44, and
academic reviews discuss the complexities of GPU virtualization performance
analysis 45, dedicated HAMI performance studies are less visible in this material.
The RiseUnion blog on HAMI mentions fine-grained allocation and isolation 8 but
does not quantify the performance overhead. This lack of readily available, detailed
performance benchmarks for HAMI across various workloads and hardware types
represents an area where more public data would be beneficial for potential
adopters.

The "soft" nature of HAMI's compute limiting (based on polling and token accounting 15)
might also lead to performance variability for highly sensitive applications, as it aims to
control average utilization rather than providing instantaneous, hard caps on compute
cycles. This is a common characteristic of software-based sharing mechanisms.
Therefore, users considering HAMI for performance-critical applications should conduct
their own thorough testing and benchmarking to validate its suitability for their specific
workloads and performance SLAs.

6. The Future Trajectory: HAMI's Roadmap and GPU Scheduling
Trends
The landscape of GPU resource management in Kubernetes is continuously evolving.
HAMI's development roadmap and the broader trends in the ecosystem indicate a move
towards more sophisticated, efficient, and standardized solutions.

6.1. HAMI's Official and Discussed Development Plans

HAMI, as a CNCF Sandbox project, has a publicly visible direction, with several key
areas targeted for future development, reflecting its ambition to become a more
comprehensive and versatile solution:

●​ Broader Hardware Support: A core tenet of HAMI is its heterogeneous nature.
Explicit plans include adding support for Intel GPU devices and AMD GPU
devices.7 This expansion is critical for users with mixed-vendor environments and
aligns with HAMI's goal of providing a unified management interface.

●​ Dynamic Resource Allocation (DRA) Support: HAMI plans to integrate with
Kubernetes' Dynamic Resource Allocation (DRA) framework.7 DRA is a
significant Kubernetes enhancement designed to provide a more flexible and

extensible way for workloads to request and consume specialized hardware
resources beyond the traditional device plugin model.2 Adopting DRA would align
HAMI with the future direction of Kubernetes resource management.

●​ NUMA Affinity Scheduling: The roadmap includes support for more flexible
scheduling policies, specifically mentioning NUMA (Non-Uniform Memory
Access) affinity.7 This is crucial for optimizing performance on multi-socket servers
with multiple GPUs, as ensuring that pods are scheduled on NUMA nodes with
local access to their assigned GPUs can significantly reduce memory access
latency.48 This was also highlighted as a topic in a KubeCon presentation involving
HAMI contributors.50

●​ NVIDIA GPU Operator Integration: Integration with the NVIDIA GPU Operator is
planned.7 The NVIDIA GPU Operator automates the deployment and lifecycle
management of NVIDIA drivers and related software components.1 This integration
could simplify the setup of NVIDIA prerequisites for HAMI users.

●​ Richer Observability Capabilities: Continuous improvements in monitoring and
observability are a stated goal 7, likely involving more detailed metrics and easier
integration with monitoring stacks.

●​ Video Encoding/Decoding Processing Support: Targeting support for specific
workload types like video encoding/decoding indicates an effort to cater to a
broader range of GPU-accelerated applications.7

●​ NVLink Topology-Aware Scheduling: A maintainer comment on Reddit
mentioned NVLink topology-aware scheduling as a work in progress.14 This
would allow HAMI to make more intelligent scheduling decisions based on the
high-bandwidth interconnects between NVIDIA GPUs.

●​ General Roadmap Maintenance and Standardization: The project acknowledges
the ongoing need for regular roadmap updates and adherence to versioning
standards like SemVer v2 52, which is important for project maturity and user trust.

These roadmap items suggest HAMI is aiming to enhance its core virtualization
capabilities, broaden its hardware compatibility, align with Kubernetes advancements
like DRA, and improve operational aspects like installation and observability. The
successful execution of this roadmap will depend on sustained community involvement
and development effort.

6.2. Emerging Trends in Kubernetes GPU Management

HAMI's development occurs within a dynamic field. Several broader trends are shaping
how GPUs and other specialized hardware are managed in Kubernetes:

●​ Dominance of Dynamic Resource Allocation (DRA): DRA is emerging as the
next-generation framework in Kubernetes for handling specialized hardware. Driven
by Google and the wider community, DRA provides a more extensible and

standardized API for resource discovery, advertisement, and allocation compared to
the original device plugin framework.2 This allows for more sophisticated resource
claims and lifecycle management, crucial for complex devices like GPUs. HAMI's
plan to support DRA is a strategic alignment with this pivotal trend.

●​ Rise of AI-Specific Schedulers: The unique demands of AI/ML workloads (e.g.,
gang scheduling for distributed training, batch processing, awareness of data
locality and accelerator topology) are driving the development of specialized
schedulers.2 Solutions like NVIDIA's KAI Scheduler 36 and Volcano 56 exemplify this,
offering features beyond what the default Kubernetes scheduler provides. This
trend underscores the need for schedulers that are not just resource brokers but
also understand the semantics of AI/ML jobs.

●​ Push for Standardization and Vendor Neutrality: While hardware vendors like
NVIDIA provide powerful, integrated toolchains (e.g., NVIDIA GPU Operator,
CUDA, various device plugins) 1, there is a persistent community desire for more
standardized and vendor-neutral approaches to resource management. DRA
contributes to this by offering a common API framework. Projects like HAMI, with
their explicit goal of supporting multiple hardware vendors, also reflect this trend.

●​ Intensified Focus on Efficiency and Cost Optimization: The high cost of GPUs
and the massive computational requirements of modern AI models (especially
LLMs) make resource efficiency and cost optimization paramount.60 This fuels the
demand for solutions that enable GPU sharing (like HAMI, KAI's sharing features,
MIG), improve utilization, and provide better cost visibility and control.

●​ Increasing Importance of NUMA and Topology Awareness: For
performance-critical applications, especially distributed training across multiple
GPUs or nodes, the physical topology of the system (NUMA nodes, CPU-GPU
affinity, inter-GPU connectivity like NVLink) significantly impacts performance.48
Schedulers and resource managers are increasingly expected to be
topology-aware to make optimal placement decisions.

HAMI's roadmap aligns well with several of these trends, particularly DRA support,
NUMA awareness, and broader hardware support. Its integration with the NVIDIA GPU
Operator, while potentially simplifying setup for NVIDIA users, will need careful
implementation to maintain its vendor-neutral appeal. The evolution of Kubernetes itself,
with DRA becoming more mainstream, might also influence HAMI's long-term
architecture. It's conceivable that as Kubernetes and specialized schedulers become
more adept at handling complex resource requests and scheduling paradigms, HAMI's
unique value will increasingly center on its HAMi-core virtualization engine, serving as a
pluggable isolation and sharing layer for various DRA-compliant resource drivers or
advanced schedulers.

7. Conclusion and Strategic Recommendations

HAMI (Heterogeneous AI Computing Virtualization Middleware) emerges as a
significant open-source contribution to the Kubernetes ecosystem, addressing the
critical need for more efficient and flexible management of GPUs and other AI
accelerators. Its core value proposition lies in enabling fine-grained resource sharing
through a user-space virtualization technology, HAMi-core, which aims to provide strong
memory isolation and configurable compute sharing for a variety of hardware.

Key Strengths of HAMI:

●​ Fine-Grained Resource Allocation: Allows requests for GPU memory by specific
amounts (MB) or ratios (%), and GPU compute cores by percentage, facilitating
much higher utilization than whole-GPU allocation.

●​ Resource Isolation: Claims hard memory isolation (via API interception for NVIDIA
GPUs) and provides mechanisms for compute limiting, crucial for multi-tenant
environments.

●​ Heterogeneous Device Support: Actively supports and plans to expand support
for a wide range of AI accelerators beyond NVIDIA, including devices from
Cambricon, Hygon, Huawei Ascend, and with future plans for Intel and AMD GPUs.
This is a key differentiator.

●​ Flexibility: Offers various scheduling policies (binpack, spread at node and GPU
levels), dynamic MIG support for NVIDIA GPUs, and integration capabilities with
other Kubernetes schedulers like Koordinator and Volcano.

●​ Open Source and Community: As a CNCF Sandbox project, HAMI benefits from
open governance and community contributions, fostering transparency and broader
adoption.

●​ Improved GPU Utilization and Cost Savings: Real-world use cases demonstrate
HAMI's potential to significantly increase GPU utilization (e.g., from <20% to >60%)
and enable new, cost-effective service models like fractional GPU offerings.

Current Limitations and Considerations:

●​ Performance Overhead: The user-space API interception mechanism (HAMi-core)
may introduce performance overhead compared to hardware-level virtualization or
direct device access. Thorough benchmarking for specific workloads is advisable.

●​ Isolation Robustness: While HAMI aims for strong isolation, software-based
methods are inherently different from hardware-enforced isolation (like NVIDIA
MIG) and may have different security and fault isolation characteristics.

●​ Driver and API Compatibility: Maintaining HAMi-core's compatibility with rapidly
evolving vendor drivers and APIs (especially CUDA) is an ongoing challenge for
any software-based virtualization layer.

●​ Feature Parity Across Devices: The maturity and feature completeness (e.g.,
compute isolation, dynamic sharing) can vary for different supported non-NVIDIA

devices.
●​ Documentation and Global Engagement: As acknowledged by maintainers,

continuous improvement in documentation and broader international community
engagement are areas for development.

●​ Configuration Complexity: The extensive range of configuration options and
potentially varying resource naming conventions across different integrations can
present a learning curve.

When HAMI is a Suitable Solution:
HAMI is particularly well-suited for:
●​ Environments with a diverse portfolio of AI accelerators from multiple vendors,

where a unified management approach is desired.
●​ Use cases requiring more granular GPU sharing than what NVIDIA MIG offers, or

where MIG is unavailable (e.g., on older or non-MIG-capable cards) or its fixed
partitions are too restrictive.

●​ Development, testing, and educational environments where maximizing the
utilization of a limited pool of GPUs is a primary concern.

●​ Production inference workloads that are numerous, individually lightweight, and
can benefit from sharing a physical GPU among multiple instances, provided the
isolation and performance characteristics meet requirements.

●​ Organizations that are comfortable adopting and potentially contributing to
open-source solutions and are prepared to manage the operational aspects of
such a system.

HAMI's Contribution to "Vast Insight" into GPU Scheduling:
HAMI offers valuable insights into the GPU scheduling landscape in several ways:
1.​ It demonstrates a practical, alternative approach (user-space API interception)

to GPU virtualization and sharing. This provides a deeper understanding of the
complexities, trade-offs (flexibility vs. overhead, software vs. hardware isolation),
and possibilities beyond native hardware partitioning or basic time-slicing.

2.​ Its existence and adoption underscore the significant real-world demand for
more flexible and efficient GPU resource management than what is often
provided by standard Kubernetes or default vendor tools. The documented use
cases highlight tangible economic and operational benefits.

3.​ By actively pursuing heterogeneous device support, HAMI provides a unique
lens into the challenges and potential solutions for unifying the management of
diverse AI accelerators under the Kubernetes umbrella, moving beyond a
single-vendor ecosystem.

4.​ Its integrations with advanced schedulers like Koordinator and Volcano
showcase how specialized device virtualization can complement and enhance
sophisticated scheduling systems, creating powerful combined solutions.

Final Thoughts:
The field of GPU management in Kubernetes is dynamic and rapidly evolving. Trends point
towards increased standardization (e.g., Dynamic Resource Allocation - DRA), greater
scheduler intelligence for AI/ML workloads, and a relentless pursuit of efficiency and broader
hardware compatibility. HAMI is a noteworthy and impactful project within this landscape,
pushing the boundaries of software-based GPU virtualization and sharing. Its commitment to
open source, heterogeneous support, and fine-grained control makes it a valuable tool for many
organizations.
Future success for HAMI will likely depend on continued robust development, active
community engagement, clear and comprehensive documentation, and transparent
demonstration of its performance and isolation characteristics across an expanding
range of hardware and demanding workloads. As Kubernetes and its ecosystem
mature, HAMI's core virtualization technology (HAMi-core) may become an even more
critical building block, potentially integrating with DRA-compliant resource drivers and
next-generation schedulers to deliver the flexible, efficient, and multi-vendor GPU
management that modern AI infrastructure demands.

Works cited

1.​ Accelerate AI Workloads on Kubernetes | Portworx, accessed May 30, 2025,
https://portworx.com/knowledge-hub/kubernetes-ai/

2.​ Transforming Kubernetes and GKE into the leading platform for AI/ML, accessed
May 30, 2025,
https://opensource.googleblog.com/2025/05/transforming-kubernetes-and-gke-into
-the-leading-platform-for-aiml.html

3.​ Dynamic GPU-Aware Scheduling for Distributed Data Science Workloads in
Kubernetes - EA Journals, accessed May 30, 2025,
https://eajournals.org/ejcsit/wp-content/uploads/sites/21/2025/05/Dynamic-GPU.p
df

4.​ Troubleshooting GPU Scheduling Issues in Amazon EKS, accessed May 30,
2025,
https://www.cloudkeeper.com/insights/blog/troubleshooting-gpu-scheduling-issues
-amazon-eks

5.​ Project-HAMi/HAMi: Heterogeneous AI Computing Virtualization Middleware -
GitHub, accessed May 30, 2025, https://github.com/Project-HAMi/HAMi

6.​ hami | CNCF, accessed May 30, 2025, https://www.cncf.io/projects/hami/
7.​ HAMi - DaoCloud Enterprise, accessed May 30, 2025,

https://docs.daocloud.io/en/community/hami/
8.​ How HAMi(GPU Virtualization Technology) Can Save You Money! - RiseUnion,

accessed May 30, 2025, https://www.theriseunion.com/blog/HAMi-vgpu-intro.html
9.​ HAMi - DaoCloud Enterprise, accessed May 30, 2025,

https://docs.daocloud.io/en/community/hami
10.​HAMi/README.md at master · Project-HAMi/HAMi · GitHub, accessed May 30,

2025, https://github.com/Project-HAMi/HAMi/blob/master/README.md
11.​HAMi/docs/config.md at master · Project-HAMi/HAMi · GitHub, accessed May 30,

https://portworx.com/knowledge-hub/kubernetes-ai/
https://opensource.googleblog.com/2025/05/transforming-kubernetes-and-gke-into-the-leading-platform-for-aiml.html
https://opensource.googleblog.com/2025/05/transforming-kubernetes-and-gke-into-the-leading-platform-for-aiml.html
https://eajournals.org/ejcsit/wp-content/uploads/sites/21/2025/05/Dynamic-GPU.pdf
https://eajournals.org/ejcsit/wp-content/uploads/sites/21/2025/05/Dynamic-GPU.pdf
https://www.cloudkeeper.com/insights/blog/troubleshooting-gpu-scheduling-issues-amazon-eks
https://www.cloudkeeper.com/insights/blog/troubleshooting-gpu-scheduling-issues-amazon-eks
https://github.com/Project-HAMi/HAMi
https://www.cncf.io/projects/hami/
https://docs.daocloud.io/en/community/hami/
https://www.theriseunion.com/blog/HAMi-vgpu-intro.html
https://docs.daocloud.io/en/community/hami
https://github.com/Project-HAMi/HAMi/blob/master/README.md

2025, https://github.com/Project-HAMi/HAMi/blob/master/docs/config.md
12.​HAMi Source Code Analysis: Device Management and Scheduling - RiseUnion,

accessed May 30, 2025,
https://www.theriseunion.com/blog/HAMi-code-analyst-1.html

13.​Device Scheduling - GPU Share With HAMi | Koordinator, accessed May 30,
2025,
https://koordinator.sh/docs/next/user-manuals/device-scheduling-gpu-share-with-h
ami/

14.​[Seeking Advice] CNCF Sandbox project HAMi – Why aren't more global users
adopting our open-source fine-grained GPU sharing solution? : r/kubernetes -
Reddit, accessed May 30, 2025,
https://www.reddit.com/r/kubernetes/comments/1kvy06i/seeking_advice_cncf_san
dbox_project_hami_why/

15.​[Seeking Advice] CNCF Sandbox project HAMi – Why aren't more global users
adopting our open-source fine-grained GPU sharing solution? : r/mlops - Reddit,
accessed May 30, 2025,
https://www.reddit.com/r/mlops/comments/1kvy17n/seeking_advice_cncf_sandbox
_project_hami_why/

16.​HAMi-core design | HAMi, accessed May 30, 2025,
https://project-hami.io/docs/developers/hami-core-design/

17.​HAMi: Open Source GPU Virtualization for AI Computing - RiseUnion, accessed
May 30, 2025, https://www.theriseunion.com/blog/Project-HAMi.html

18.​How does GPU virtualization impact performance in HPC workloads? - Massed
Compute, accessed May 30, 2025,
https://massedcompute.com/faq-answers/?question=How%20does%20GPU%20vi
rtualization%20impact%20performance%20in%20HPC%20workloads?

19.​How to Efficiently Share GPU Resources? - ZStack, accessed May 30, 2025,
https://www.zstack-cloud.com/blog/how-to-efficiently-share-gpu-resources/

20.​chaunceyjiang/k8s-vgpu-scheduler: OpenAIOS vGPU scheduler for Kubernetes is
originated from the OpenAIOS project to virtualize GPU device memory. - GitHub,
accessed May 30, 2025, https://github.com/chaunceyjiang/k8s-vgpu-scheduler

21.​HAMi Configuration Guide: GPU Resource Pool Management - RiseUnion,
accessed May 30, 2025,
https://www.theriseunion.com/blog/HAMi-code-analyst-how-to-start.html

22.​HAMi/docs/dashboard.md at master - GitHub, accessed May 30, 2025,
https://github.com/Project-HAMi/HAMi/blob/master/docs/dashboard.md

23.​hami-vgpu-metrics-dashboard | Grafana Labs, accessed May 30, 2025,
https://grafana.com/grafana/dashboards/22043-hami-vgpu-metrics-dashboard/

24.​Project-HAMi/HAMi-WebUI - GitHub, accessed May 30, 2025,
https://github.com/Project-HAMi/HAMi-WebUI

25.​Project-HAMi - GitHub, accessed May 30, 2025, https://github.com/Project-HAMi
26.​HAMi/docs/dynamic-mig-support.md at master · Project-HAMi/HAMi ..., accessed

May 30, 2025,
https://github.com/Project-HAMi/HAMi/blob/master/docs/dynamic-mig-support.md

27.​Monitor volcano-vgpu | HAMi, accessed May 30, 2025,
https://project-hami.io/docs/v1.3.0/userguide/volcano-vgpu/nvidia%20gpu/monitor/

https://github.com/Project-HAMi/HAMi/blob/master/docs/config.md
https://www.theriseunion.com/blog/HAMi-code-analyst-1.html
https://koordinator.sh/docs/next/user-manuals/device-scheduling-gpu-share-with-hami/
https://koordinator.sh/docs/next/user-manuals/device-scheduling-gpu-share-with-hami/
https://www.reddit.com/r/kubernetes/comments/1kvy06i/seeking_advice_cncf_sandbox_project_hami_why/
https://www.reddit.com/r/kubernetes/comments/1kvy06i/seeking_advice_cncf_sandbox_project_hami_why/
https://www.reddit.com/r/mlops/comments/1kvy17n/seeking_advice_cncf_sandbox_project_hami_why/
https://www.reddit.com/r/mlops/comments/1kvy17n/seeking_advice_cncf_sandbox_project_hami_why/
https://project-hami.io/docs/developers/hami-core-design/
https://www.theriseunion.com/blog/Project-HAMi.html
https://massedcompute.com/faq-answers/?question=How+does+GPU+virtualization+impact+performance+in+HPC+workloads?
https://massedcompute.com/faq-answers/?question=How+does+GPU+virtualization+impact+performance+in+HPC+workloads?
https://www.zstack-cloud.com/blog/how-to-efficiently-share-gpu-resources/
https://github.com/chaunceyjiang/k8s-vgpu-scheduler
https://www.theriseunion.com/blog/HAMi-code-analyst-how-to-start.html
https://github.com/Project-HAMi/HAMi/blob/master/docs/dashboard.md
https://grafana.com/grafana/dashboards/22043-hami-vgpu-metrics-dashboard/
https://github.com/Project-HAMi/HAMi-WebUI
https://github.com/Project-HAMi
https://github.com/Project-HAMi/HAMi/blob/master/docs/dynamic-mig-support.md
https://project-hami.io/docs/v1.3.0/userguide/volcano-vgpu/nvidia%20gpu/monitor/

28.​README.md - Project-HAMi/volcano-vgpu-device-plugin - GitHub, accessed May
30, 2025,
https://github.com/Project-HAMi/volcano-vgpu-device-plugin/blob/main/README.
md

29.​The real-world guide to the NVIDIA GPU Operator for K8s AI - Spectro Cloud,
accessed May 30, 2025,
https://www.spectrocloud.com/blog/the-real-world-guide-to-the-nvidia-gpu-operator
-for-kubernetes-ai

30.​Support for scheduling GPU workloads (e.g., for Ascend devices) based on actual
memory usage on the device · Issue #1081 · Project-HAMi/HAMi - GitHub,
accessed May 30, 2025, https://github.com/Project-HAMi/HAMi/issues/1081

31.​Koordinator v1.6: Supports Heterogeneous Resource Scheduling in AI/ML
Scenarios, accessed May 30, 2025,
https://www.alibabacloud.com/blog/koordinator-v1-6-supports-heterogeneous-reso
urce-scheduling-in-aiml-scenarios_602051

32.​Blog | Koordinator, accessed May 30, 2025, https://koordinator.sh/blog/
33.​How to use volcano vgpu | HAMi, accessed May 30, 2025,

https://project-hami.io/docs/userguide/volcano-vgpu/NVIDIA%20GPU/how-to-use-
volcano-vgpu

34.​HAMi Adopters, accessed May 30, 2025, https://project-hami.io/adopters/
35.​volcano schedule · Issue #453 · Project-HAMi/HAMi - GitHub, accessed May 30,

2025, https://github.com/Project-HAMi/HAMi/issues/453
36.​KAI Scheduler: NVIDIA open-sources Kubernetes GPU scheduler - Developer

Tech News, accessed May 30, 2025,
https://www.developer-tech.com/news/kai-scheduler-nvidia-open-sources-kuberne
tes-gpu-scheduler/

37.​NVIDIA/KAI-Scheduler: KAI Scheduler is an open source Kubernetes Native
scheduler for AI workloads at large scale - GitHub, accessed May 30, 2025,
https://github.com/NVIDIA/KAI-Scheduler

38.​Exploring GPU Sharing in Kubernetes with NVIDIA KAI Scheduler and Exostellar
SDG, accessed May 30, 2025,
https://exostellar.io/2025/04/08/gpu-sharing-in-kubernetes-nvidia-kai-vs-exostellar-
sdg/

39.​Deep Dive: How KAI-Scheduler Enables GPU Sharing on Kubernetes
(Reservation Pod Mechanism & Soft Isolation) - Reddit, accessed May 30, 2025,
https://www.reddit.com/r/kubernetes/comments/1jsx0n3/deep_dive_how_kaisched
uler_enables_gpu_sharing_on/

40.​NVIDIA KAI Scheduler: Optimize GPU Usage in ZenML Pipelines, accessed May
30, 2025,
https://www.zenml.io/blog/nvidia-kai-scheduler-optimize-gpu-usage-in-zenml-pipeli
nes

41.​Trending Go repositories on GitHub today, accessed May 30, 2025,
https://github.com/trending/go

42.​GPU Sharing in Kubernetes: Nvidia Kai vs. Exostellar SDG - Hacker News,
accessed May 30, 2025, https://news.ycombinator.com/item?id=43622647

43.​Boost GPU efficiency in Kubernetes with NVIDIA Multi-Instance GPU ..., accessed

https://github.com/Project-HAMi/volcano-vgpu-device-plugin/blob/main/README.md
https://github.com/Project-HAMi/volcano-vgpu-device-plugin/blob/main/README.md
https://www.spectrocloud.com/blog/the-real-world-guide-to-the-nvidia-gpu-operator-for-kubernetes-ai
https://www.spectrocloud.com/blog/the-real-world-guide-to-the-nvidia-gpu-operator-for-kubernetes-ai
https://github.com/Project-HAMi/HAMi/issues/1081
https://www.alibabacloud.com/blog/koordinator-v1-6-supports-heterogeneous-resource-scheduling-in-aiml-scenarios_602051
https://www.alibabacloud.com/blog/koordinator-v1-6-supports-heterogeneous-resource-scheduling-in-aiml-scenarios_602051
https://koordinator.sh/blog/
https://project-hami.io/docs/userguide/volcano-vgpu/NVIDIA%20GPU/how-to-use-volcano-vgpu
https://project-hami.io/docs/userguide/volcano-vgpu/NVIDIA%20GPU/how-to-use-volcano-vgpu
https://project-hami.io/adopters/
https://github.com/Project-HAMi/HAMi/issues/453
https://www.developer-tech.com/news/kai-scheduler-nvidia-open-sources-kubernetes-gpu-scheduler/
https://www.developer-tech.com/news/kai-scheduler-nvidia-open-sources-kubernetes-gpu-scheduler/
https://github.com/NVIDIA/KAI-Scheduler
https://exostellar.io/2025/04/08/gpu-sharing-in-kubernetes-nvidia-kai-vs-exostellar-sdg/
https://exostellar.io/2025/04/08/gpu-sharing-in-kubernetes-nvidia-kai-vs-exostellar-sdg/
https://www.reddit.com/r/kubernetes/comments/1jsx0n3/deep_dive_how_kaischeduler_enables_gpu_sharing_on/
https://www.reddit.com/r/kubernetes/comments/1jsx0n3/deep_dive_how_kaischeduler_enables_gpu_sharing_on/
https://www.zenml.io/blog/nvidia-kai-scheduler-optimize-gpu-usage-in-zenml-pipelines
https://www.zenml.io/blog/nvidia-kai-scheduler-optimize-gpu-usage-in-zenml-pipelines
https://github.com/trending/go
https://news.ycombinator.com/item?id=43622647

May 30, 2025,
https://developers.redhat.com/articles/2025/05/27/boost-gpu-efficiency-kubernetes
-nvidia-mig

44.​Benchmarking GPU sharing strategies in Kubernetes - Weblog - Ronan Quigley,
accessed May 30, 2025,
https://ronanquigley.com/blog/benchmarking-gpu-sharing-strategies-in-kubernetes
/

45.​Analyzing GPU Performance in Virtualized Environments: A Case Study - MDPI,
accessed May 30, 2025, https://www.mdpi.com/1999-5903/16/3/72

46.​Kubernetes v1.33: An Insider Perspective - Komodor, accessed May 30, 2025,
https://komodor.com/blog/kubernetes-v133-an-insiders-perspective/

47.​Dynamic Resource Allocation for better device usage efficiency, accessed May 30,
2025,
https://srujanpakanati.com/dynamic-resource-allocation-for-better-device-usage-ef
ficiency

48.​Container Service for Kubernetes:Enable NUMA topology-aware scheduling -
Alibaba Cloud, accessed May 30, 2025,
http://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-g
uide/enable-numa-topology-aware-scheduling

49.​Enable Metax GPU topology-aware scheduling - HAMi, accessed May 30, 2025,
https://project-hami.io/docs/userguide/metax-device/enable-metax-gpu-schedule/

50.​Unlocking Heterogeneous AI Infrastructure K8s Cluster: Leveraging the...- Xiao
Zhang & Mengxuan Li - YouTube, accessed May 30, 2025,
https://www.youtube.com/watch?v=kcGXnp_QShs

51.​Introduction — NVIDIA AI Enterprise: OpenShift on VMware vSphere ..., accessed
May 30, 2025,
https://docs.nvidia.com/ai-enterprise/deployment/openshift-on-vmware/latest/intro
duction.html

52.​HAMi SANDBOX PROJECT ONBOARDING task list · Issue #476, accessed May
30, 2025, https://github.com/Project-HAMi/HAMi/issues/476

53.​Incubating Preperations · Issue #1057 · Project-HAMi/HAMi - GitHub, accessed
May 30, 2025, https://github.com/Project-HAMi/HAMi/issues/1057

54.​NVIDIA Open Sources Run:ai Scheduler to Foster Community Collaboration,
accessed May 30, 2025,
https://developer.nvidia.com/blog/nvidia-open-sources-runai-scheduler-to-foster-co
mmunity-collaboration/

55.​Batch Scheduling on Kubernetes: Comparing Apache YuniKorn, Volcano.sh, and
Kueue, accessed May 30, 2025,
https://www.infracloud.io/blogs/batch-scheduling-on-kubernetes/

56.​Practical Tips for Preventing GPU Fragmentation for Volcano Scheduler - NVIDIA
Developer, accessed May 30, 2025,
https://developer.nvidia.com/blog/practical-tips-for-preventing-gpu-fragmentation-f
or-volcano-scheduler/

57.​Batch Scheduling on Kubernetes: Comparing Apache YuniKorn, Volcano.sh, and
Kueue, accessed May 30, 2025,
https://dev.to/infracloud/batch-scheduling-on-kubernetes-comparing-apache-yunik

https://developers.redhat.com/articles/2025/05/27/boost-gpu-efficiency-kubernetes-nvidia-mig
https://developers.redhat.com/articles/2025/05/27/boost-gpu-efficiency-kubernetes-nvidia-mig
https://ronanquigley.com/blog/benchmarking-gpu-sharing-strategies-in-kubernetes/
https://ronanquigley.com/blog/benchmarking-gpu-sharing-strategies-in-kubernetes/
https://www.mdpi.com/1999-5903/16/3/72
https://komodor.com/blog/kubernetes-v133-an-insiders-perspective/
https://srujanpakanati.com/dynamic-resource-allocation-for-better-device-usage-efficiency
https://srujanpakanati.com/dynamic-resource-allocation-for-better-device-usage-efficiency
http://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/enable-numa-topology-aware-scheduling
http://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/enable-numa-topology-aware-scheduling
https://project-hami.io/docs/userguide/metax-device/enable-metax-gpu-schedule/
https://www.youtube.com/watch?v=kcGXnp_QShs
https://docs.nvidia.com/ai-enterprise/deployment/openshift-on-vmware/latest/introduction.html
https://docs.nvidia.com/ai-enterprise/deployment/openshift-on-vmware/latest/introduction.html
https://github.com/Project-HAMi/HAMi/issues/476
https://github.com/Project-HAMi/HAMi/issues/1057
https://developer.nvidia.com/blog/nvidia-open-sources-runai-scheduler-to-foster-community-collaboration/
https://developer.nvidia.com/blog/nvidia-open-sources-runai-scheduler-to-foster-community-collaboration/
https://www.infracloud.io/blogs/batch-scheduling-on-kubernetes/
https://developer.nvidia.com/blog/practical-tips-for-preventing-gpu-fragmentation-for-volcano-scheduler/
https://developer.nvidia.com/blog/practical-tips-for-preventing-gpu-fragmentation-for-volcano-scheduler/
https://dev.to/infracloud/batch-scheduling-on-kubernetes-comparing-apache-yunikorn-volcanosh-and-kueue-5b1g

orn-volcanosh-and-kueue-5b1g
58.​Practical Tips for Preventing GPU Fragmentation for Volcano Scheduler -

Technical Blog, accessed May 30, 2025,
https://forums.developer.nvidia.com/t/practical-tips-for-preventing-gpu-fragmentati
on-for-volcano-scheduler/328845

59.​NVIDIA/k8s-device-plugin: NVIDIA device plugin for ... - GitHub, accessed May
30, 2025, https://github.com/NVIDIA/k8s-device-plugin

60.​Optimizing GPU Utilization for AI Workloads on AWS EKS - | World Journal of
Advanced Research and Reviews, accessed May 30, 2025,
https://journalwjarr.com/sites/default/files/fulltext_pdf/WJARR-2025-1233.pdf

61.​2025 Kubernetes Cost Benchmark Report, accessed May 30, 2025,
https://430224.fs1.hubspotusercontent-na1.net/hubfs/430224/Cast%20AI%20202
5%20Kubernetes%20Cost%20Benchmark%20Report.pdf

62.​k8s-vgpu-scheduler/docs/cambricon-mlu-support.md at master - GitHub,
accessed May 30, 2025,
https://github.com/chaunceyjiang/k8s-vgpu-scheduler/blob/master/docs/cambricon
-mlu-support.md

63.​k8s-vgpu-scheduler/docs/cambricon-mlu-support.md at master - GitHub,
accessed May 30, 2025,
https://github.com/warmchang/k8s-vgpu-scheduler/blob/master/docs/cambricon-m
lu-support.md

64.​Allocate device core and memory resource - HAMi, accessed May 30, 2025,
https://project-hami.io/docs/next/userguide/hygon-device/examples/allocate-core-a
nd-memory/

65.​Allocate exclusive device - HAMi, accessed May 30, 2025,
https://project-hami.io/docs/userguide/hygon-device/examples/allocate-exclusive/

66.​Ascend NPU Virtualization Guide: 910 Series & 310P Best Practices - RiseUnion,
accessed May 30, 2025,
https://www.theriseunion.com/blog/HAMi-ascend-910b-support.html

67.​What is HAMi?, accessed May 30, 2025, https://project-hami.io/docs/
68.​HAMi/CHANGELOG.md at master - GitHub, accessed May 30, 2025,

https://github.com/Project-HAMi/HAMi/blob/master/CHANGELOG.md
69.​Time-Slicing GPUs in Kubernetes — NVIDIA GPU Operator, accessed May 30,

2025,
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.ht
ml

70.​Optimizing AI Workloads with NVIDIA GPUs, Time Slicing, and Karpenter (Part 2),
accessed May 30, 2025,
https://blogs.cisco.com/developer/optimizing-ai-workloads-with-nvidia-gpus-time-sl
icing-and-karpenter-part-2

71.​Compare with HAMi | Maximize your GPU usage, powered by GPU ..., accessed
May 30, 2025, https://tensor-fusion.ai/guide/comparison/compare-with-hami

72.​AliyunContainerService/gpushare-scheduler-extender ... - GitHub, accessed May
30, 2025, https://github.com/AliyunContainerService/gpushare-scheduler-extender

73.​GPU Sharing Scheduler Extender Now Supports Fine-Grained Kubernetes
Clusters, accessed May 30, 2025,

https://dev.to/infracloud/batch-scheduling-on-kubernetes-comparing-apache-yunikorn-volcanosh-and-kueue-5b1g
https://forums.developer.nvidia.com/t/practical-tips-for-preventing-gpu-fragmentation-for-volcano-scheduler/328845
https://forums.developer.nvidia.com/t/practical-tips-for-preventing-gpu-fragmentation-for-volcano-scheduler/328845
https://github.com/NVIDIA/k8s-device-plugin
https://journalwjarr.com/sites/default/files/fulltext_pdf/WJARR-2025-1233.pdf
https://430224.fs1.hubspotusercontent-na1.net/hubfs/430224/Cast%20AI%202025%20Kubernetes%20Cost%20Benchmark%20Report.pdf
https://430224.fs1.hubspotusercontent-na1.net/hubfs/430224/Cast%20AI%202025%20Kubernetes%20Cost%20Benchmark%20Report.pdf
https://github.com/chaunceyjiang/k8s-vgpu-scheduler/blob/master/docs/cambricon-mlu-support.md
https://github.com/chaunceyjiang/k8s-vgpu-scheduler/blob/master/docs/cambricon-mlu-support.md
https://github.com/warmchang/k8s-vgpu-scheduler/blob/master/docs/cambricon-mlu-support.md
https://github.com/warmchang/k8s-vgpu-scheduler/blob/master/docs/cambricon-mlu-support.md
https://project-hami.io/docs/next/userguide/hygon-device/examples/allocate-core-and-memory/
https://project-hami.io/docs/next/userguide/hygon-device/examples/allocate-core-and-memory/
https://project-hami.io/docs/userguide/hygon-device/examples/allocate-exclusive/
https://www.theriseunion.com/blog/HAMi-ascend-910b-support.html
https://project-hami.io/docs/
https://github.com/Project-HAMi/HAMi/blob/master/CHANGELOG.md
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://blogs.cisco.com/developer/optimizing-ai-workloads-with-nvidia-gpus-time-slicing-and-karpenter-part-2
https://blogs.cisco.com/developer/optimizing-ai-workloads-with-nvidia-gpus-time-slicing-and-karpenter-part-2
https://tensor-fusion.ai/guide/comparison/compare-with-hami
https://github.com/AliyunContainerService/gpushare-scheduler-extender

https://www.alibabacloud.com/blog/gpu-sharing-scheduler-extender-now-supports-
fine-grained-kubernetes-clusters_594926

74.​Implementing Fractional GPUs in Kubernetes with Aliyun Scheduler - Hugging
Face, accessed May 30, 2025,
https://huggingface.co/blog/NileshInfer/implementing-fractional-gpus-in-kubernete
s

https://www.alibabacloud.com/blog/gpu-sharing-scheduler-extender-now-supports-fine-grained-kubernetes-clusters_594926
https://www.alibabacloud.com/blog/gpu-sharing-scheduler-extender-now-supports-fine-grained-kubernetes-clusters_594926
https://huggingface.co/blog/NileshInfer/implementing-fractional-gpus-in-kubernetes
https://huggingface.co/blog/NileshInfer/implementing-fractional-gpus-in-kubernetes

	HAMI: An Open-Source Solution for Fine-Grained GPU Scheduling and Heterogeneous Resource Management in Kubernetes
	1. Introduction: The Need for Advanced GPU Scheduling in Kubernetes
	2. Understanding HAMI: Core Concepts and Architecture
	2.1. HAMI's Architectural Components
	2.2. GPU Sharing Mechanism: CUDA API Interception
	2.3. Resource Isolation Capabilities
	2.4. Heterogeneous Device Support

	3. Deploying and Utilizing HAMI
	3.1. Prerequisites for HAMI Installation
	3.2. Installation Process via Helm
	3.3. Core Configuration Parameters
	3.4. Requesting Shared GPU Resources in Pods
	3.5. Monitoring and Observability with HAMI

	4. HAMI within the Open-Source GPU Scheduling Ecosystem
	4.1. Integration with Kubernetes Schedulers
	4.2. Comparative Analysis

	5. Gaining Insights: How HAMI Enhances GPU Resource Management
	5.1. Achieving Fine-Grained Resource Control and Improved Utilization
	5.2. Enabling Multi-Tenancy and Diverse Workload Co-existence
	5.3. Facilitating Management of Diverse Hardware Accelerators
	5.4. Real-World Use Cases and Reported Benefits
	5.5. Performance Considerations

	6. The Future Trajectory: HAMI's Roadmap and GPU Scheduling Trends
	6.1. HAMI's Official and Discussed Development Plans
	6.2. Emerging Trends in Kubernetes GPU Management

	7. Conclusion and Strategic Recommendations
	Works cited

