
HAMI: An Open-Source Solution for Fine-Grained GPU 
Scheduling and Heterogeneous Resource Management in 
Kubernetes 
1. Introduction: The Need for Advanced GPU Scheduling in 
Kubernetes 
The proliferation of Artificial Intelligence (AI) and Machine Learning (ML) workloads has 
positioned Graphics Processing Units (GPUs) as indispensable resources within 
modern computing infrastructure. Kubernetes has emerged as the de facto standard for 
orchestrating containerized applications, including these GPU-accelerated workloads.1 
However, traditional Kubernetes scheduling mechanisms, primarily designed for CPU 
and memory, often fall short in efficiently managing the unique characteristics of GPUs.3 
Standard schedulers typically treat GPUs as opaque, indivisible resources, leading to 
underutilization, increased costs, and challenges in supporting diverse AI/ML tasks that 
may not require an entire GPU.3 

This limitation has spurred the development of specialized GPU scheduling solutions. 
Among these is HAMi (Heterogeneous AI Computing Virtualization Middleware), 
formerly known as k8s-vgpu-scheduler. HAMi is an open-source project, accepted as a 
Cloud Native Computing Foundation (CNCF) Sandbox project on August 21, 2024.5 It 
aims to provide fine-grained GPU sharing, resource isolation, and management of 
diverse heterogeneous computing devices within Kubernetes clusters.5 

This report provides a comprehensive analysis of HAMI, delving into its architecture, 
core functionalities, installation, configuration, and its position within the broader 
ecosystem of Kubernetes GPU scheduling solutions. It explores how HAMI addresses 
the challenges of GPU sharing, supports various hardware accelerators, and integrates 
with other scheduling frameworks. The objective is to offer a deep understanding of 
HAMI's capabilities, its practical implications for developers and MLOps engineers, and 
its potential to enhance GPU resource management in Kubernetes environments. 

2. Understanding HAMI: Core Concepts and Architecture 
HAMI is designed as a middleware solution to bridge the gap between Kubernetes and 
the underlying heterogeneous hardware, primarily focusing on GPUs but extending to 
other AI accelerators. Its core design revolves around enabling device sharing and 
virtualization at a software level, aiming to improve resource utilization and flexibility 
without requiring modifications to user applications.5 

2.1. HAMI's Architectural Components 



HAMI's architecture comprises several key components that work in concert to deliver 
its GPU sharing and scheduling capabilities 5: 

●​ Unified Mutating Webhook: This component intercepts pod creation and 
modification requests. If a pod requests HAMI-managed resources (e.g., fractional 
GPUs), the webhook can modify the pod specification, for instance, by injecting 
necessary configurations or directing the pod to HAMI's custom scheduler.5 

●​ Unified Scheduler Extender (or Custom Scheduler Logic): HAMI implements 
custom scheduling logic, often as a Kubernetes scheduler extender. This logic is 
responsible for making fine-grained decisions about where to place pods based on 
the availability of fractional GPU resources and defined scheduling policies (e.g., 
binpack, spread).5 

●​ Device Plugins: HAMI utilizes Kubernetes device plugins for various supported 
hardware types. These plugins advertise virtualized device resources (e.g., vGPUs 
with specific memory/core allocations) to the Kubelet, making them discoverable 
and requestable by pods.5 

●​ HAMi-core (In-Container Control Component): This is arguably the most critical 
component for HAMI's virtualization capabilities. HAMi-core is a user-space library 
(often libvgpu.so for NVIDIA GPUs) that operates within the container. It intercepts 
CUDA API calls (or similar APIs for other hardware) between the application and 
the native device driver.13 This interception allows HAMi-core to enforce resource 
limits (memory, compute) and manage the virtualized view of the GPU presented to 
the application. 

The interplay between these components allows HAMI to present a virtualized GPU 
environment to workloads. The webhook and scheduler ensure pods are matched with 
appropriate virtual resources, while the device plugin and HAMi-core enforce these 
allocations at the node and container level. This modular design, separating scheduling 
logic from device-level control, provides a flexible framework for managing 
heterogeneous resources. 

Table 2.1: HAMi Core Architectural Components 

 

Component Primary Function Key Interactions Relevant Snippets 

Mutating Webhook Intercepts and 
modifies pod 
specifications for 
HAMI-managed 
resources. 

Kubernetes API 
Server, HAMI 
Scheduler 

5 



Scheduler 
Extender/Logic 

Makes fine-grained 
scheduling decisions 
based on virtual 
resource availability 
and policies. 

Kubernetes 
Scheduler, HAMI 
Device Plugins, Pod 
Specifications 

5 

Device Plugins Advertise virtualized 
device resources to 
Kubelet; manage 
device allocation on 
the node. 

Kubelet, HAMi-core, 
HAMI Scheduler 

5 

HAMi-core (e.g., 
libvgpu.so) 

User-space library in 
container; intercepts 
device API calls to 
enforce resource 
limits and 
virtualization. 

Application, Native 
Device Drivers 

13 

2.2. GPU Sharing Mechanism: CUDA API Interception 

The cornerstone of HAMI's GPU sharing for NVIDIA devices is its HAMi-core 
component, which employs a technique of CUDA API interception.13 This user-space 
approach differentiates HAMI from hardware-based partitioning methods like NVIDIA 
MIG or kernel-level virtualization. 

The mechanism typically involves the following steps: 

1.​ LD_PRELOAD Hijacking: The HAMi-core library (e.g., libvgpu.so) is preloaded 
into the application's environment within the container. This allows it to intercept 
calls made by the application to the CUDA runtime library (libcudart.so) before they 
reach the actual CUDA driver (libcuda.so).14 

2.​ Memory Limiting: When an application attempts to allocate GPU memory (e.g., 
via cuMemAlloc* calls), HAMi-core intercepts this call. It checks the requested 
allocation against the virtual GPU memory quota assigned to the container 
(tracked, for example, in shared memory). If the request exceeds the quota, the 
allocation is denied. Furthermore, API calls that query GPU memory information 
(e.g., cuMemGetInfo_v2) are "faked" to return values reflecting the virtual quota, 
not the total physical GPU memory.14 This creates the illusion for the application 
that it has exclusive access to a smaller, dedicated GPU. 

3.​ Compute Limiting (Core Utilization): HAMI implements a form of compute 
limiting, often described as a "soft" limit. For NVIDIA GPUs, this might involve a 
background thread that periodically polls actual GPU utilization (e.g., via NVML) 



and adjusts a token-based system representing "virtual CUDA cores." When an 
application launches a CUDA kernel, it consumes tokens; if insufficient tokens are 
available, the launch might be delayed or throttled.15 This mechanism aims to 
ensure that, over time, the application's compute usage adheres to its assigned 
percentage. 

4.​ Device Visibility: HAMI, in conjunction with the device plugin, controls which 
physical GPU(s) or parts of a GPU are visible to the container, often by setting 
environment variables like NVIDIA_VISIBLE_DEVICES appropriately for the 
virtualized context. 

This API interception method allows HAMI to offer fine-grained control over GPU 
memory and compute resources without requiring custom drivers or kernel 
modifications, aiming for "zero code changes" for existing applications.9 However, being 
a user-space software solution, the robustness of isolation and potential performance 
overhead are important considerations compared to hardware-enforced mechanisms.18 

2.3. Resource Isolation Capabilities 

HAMI aims to provide resource isolation for shared devices, a critical feature for 
multi-tenancy and predictable performance.5 

●​ Memory Isolation: HAMI asserts "hard isolation" of memory resources for NVIDIA 
GPUs and some other supported devices.8 As described above, this is achieved by 
intercepting memory allocation APIs and ensuring a container cannot allocate more 
GPU memory than it has been assigned. For example, if a pod requests 
nvidia.com/gpumem: 3000, it will only see 3GB of GPU memory available.9 

●​ Compute Isolation: For NVIDIA GPUs and Hygon DCUs, HAMI supports compute 
isolation, typically through the percentage-based core utilization control managed 
by HAMi-core.7 This is generally a "soft" isolation, meaning it controls average 
utilization over time rather than providing strict, instantaneous compute partitioning 
like MIG. For Cambricon MLUs, compute isolation was listed as not supported or in 
development in some documents.7 

●​ Fault Isolation: The documentation does not extensively detail fault isolation. 
User-space API interception methods generally offer less fault isolation than 
hardware partitioning (like MIG) or full hypervisor-based virtualization. A crash in 
one process sharing a GPU via HAMI could potentially affect other processes on 
the same physical GPU if the issue occurs at the driver or hardware level below 
HAMI's interception layer. This is a common characteristic of software-based 
sharing solutions like NVIDIA MPS as well.14 

The effectiveness of these isolation mechanisms is a key differentiator for HAMI. While 
"hard memory isolation" through API call denial is a strong claim, the overall isolation 



boundary is at the software level within the container, which differs from the 
hardware-level boundaries provided by technologies like NVIDIA MIG. 

2.4. Heterogeneous Device Support 

A significant aspect of HAMI's design is its goal to manage a diverse range of 
heterogeneous computing devices beyond just NVIDIA GPUs, providing a unified 
interface for users.5 

Table 2.2: Supported Heterogeneous Devices in HAMI (with Isolation Features, as 
of early-mid 2025) 

 

Product Manufacture
r 

Memory 
Isolation 

Compute 
Isolation 

Multi-GPU 
Support 
(within a 
single pod 
for one task) 

Key 
Snippet(s) 

GPU NVIDIA Yes (Hard 
limit via API 
interception) 

Yes (Soft 
limit, 
percentage-b
ased core 
control) 

Yes 7 

MLU Cambricon Yes No / In 
Development 

No / In 
Development 

7 

DCU Hygon Yes Yes No / In 
Development 

7 

Ascend NPU Huawei Yes (with 
templates/gr
anularity) / In 
Development 

Yes (with 
templates/gr
anularity) / In 
Development 

No / In 
Development 

7 

Iluvatar GPU Iluvatar 
CoreX 

In 
Development 

In 
Development 

No / In 
Development 

7 

Mthreads Mthreads Supported Supported Supported 5 



GPU (details vary) (details vary) (details vary) 

Metax GPU MetaX Supported 
(details vary) 

Supported 
(details vary) 

Supported 
(details vary) 

12 

Intel GPU Intel Planned Planned Planned 7 

AMD GPU AMD Planned Planned Planned 7 

Note: "In Development" or "Planned" statuses are based on information available up to 
early-mid 2025 and may have changed. Multi-GPU support refers to a single task using 
multiple virtual devices that might span physical devices. 

This multi-vendor support is achieved by having specific device plugin implementations 
and potentially different in-container control components tailored for each hardware 
type, all while aiming to expose them through a consistent set of resource requests and 
scheduling policies at the Kubernetes level.5 This ambition to provide a common 
management layer across diverse AI accelerators is a key differentiator for HAMI in the 
open-source ecosystem. However, the maturity and feature parity (e.g., compute 
isolation, dynamic sharing capabilities) can vary between different supported hardware 
types. 

3. Deploying and Utilizing HAMI 
Deploying and configuring HAMI involves several steps, from preparing the Kubernetes 
nodes to defining pod specifications that request shared GPU resources. Understanding 
these aspects is crucial for effectively leveraging HAMI's capabilities. 

3.1. Prerequisites for HAMI Installation 

Before installing HAMI, certain prerequisites must be met on the Kubernetes cluster and 
its nodes, particularly those equipped with GPUs 5: 

Table 3.1: HAMI Installation Prerequisites 

 

Category Requirement Notes Key Snippet(s) 

Kubernetes Version ≥1.16 (some Ensure compatibility 
with HAMI 

5 



docs mention ≥1.18) components. 

NVIDIA GPUs NVIDIA drivers ≥440 Essential for GPU 
operation. 

5 

 
nvidia-docker version 
> 2.0 (or 
nvidia-container-toolki
t) 

Enables containers to 
access NVIDIA 
GPUs. 

5 

 
Default container 
runtime (Docker, 
containerd, CRI-O) 
configured to use 
nvidia as the default 
runtime. 

Ensures 
GPU-enabled 
containers are 
correctly launched. 

5 

System Libs glibc ≥2.17 & glibc < 
2.30 (or < 2.3 for 
some docs) 

Runtime library 
dependency. 

5 

Kernel Version ≥3.10 Minimum kernel 
version. 

5 

Tooling Helm > 3.0 HAMI is typically 
installed via a Helm 
chart. 

5 

Node Labeling GPU nodes must be 
labeled (e.g., gpu=on) 
for HAMI's scheduler 
to manage them. 

kubectl label nodes 
{nodeid} gpu=on 

5 

Meeting these prerequisites, especially the NVIDIA driver and runtime configurations on 
each GPU node, is fundamental. The node labeling step is also critical for HAMI's 
scheduler to identify and manage GPU-equipped nodes. The dependency on specific 
glibc versions suggests potential compatibility considerations on different Linux 
distributions. 

3.2. Installation Process via Helm 



HAMI is typically installed using Helm, which simplifies the deployment of its various 
components 5: 

1.​ Add HAMI Helm Repository:​
Bash​
helm repo add hami-charts https://project-hami.github.io/HAMi/​
helm repo update​
​
This command adds the official HAMI chart repository to the local Helm 
configuration.5 

2.​ Determine Kubernetes Server Version:​
Bash​
kubectl version​
​
The Kubernetes server version is needed because some HAMI components, 
particularly the scheduler, might have images tagged according to the Kubernetes 
version they are compatible with.9 

3.​ Install HAMI Chart:​
Bash​
helm install hami hami-charts/hami \​
  --set scheduler.kubeScheduler.imageTag=vX.Y.Z \ # Replace vX.Y.Z with your K8s server 
version, e.g., v1.25.0​
  -n kube-system # Or another namespace like hami-system​
​
This command installs HAMI. The scheduler.kubeScheduler.imageTag should be 
set according to the cluster's Kubernetes version. Various other configuration 
parameters can be set using --set flags or by providing a custom values file.7 

4.​ Verify Installation:​
After installation, check the status of HAMI pods (typically hami-device-plugin or 
vgpu-device-plugin, and hami-scheduler or vgpu-scheduler):​
Bash​
kubectl get pods -n kube-system # Or the namespace used for installation​
​
The pods should be in the Running state.9 

The Helm-based installation streamlines deployment, but careful attention to 
prerequisites and version compatibility (especially for the scheduler image) is 
necessary. For production environments, reviewing and customizing the Helm chart's 
values.yaml or using --set for specific configurations (like default scheduling policies, 
resource names, or device-specific parameters) is recommended.11 

3.3. Core Configuration Parameters 



HAMI's behavior is controlled through a combination of a central ConfigMap 
(hami-scheduler-device), Helm chart values, and pod annotations. These configurations 
dictate GPU sharing parameters, scheduling policies, and device-specific settings.11 

Table 3.2: Key HAMI Configuration Parameters (via ConfigMap & Helm) 

 

Parameter 
Name 

Scope Type Default 
Value 

Description Key 
Snippet(s) 

nvidia.device
MemoryScali
ng 

ConfigMap Float 1.0 Ratio for 
NVIDIA GPU 
memory 
scaling. >1 
enables 
virtual device 
memory 
(experimenta
l). S * M total 
vGPU 
memory for 
physical M 
memory if set 
to S. 

11 

nvidia.device
SplitCount 

ConfigMap Integer 10 Maximum 
number of 
tasks 
(vGPUs) that 
can be 
assigned to a 
single 
physical 
NVIDIA 
GPU. 

11 

nvidia.migStr
ategy 

ConfigMap String "none" Strategy for 
NVIDIA MIG. 
"none" 
ignores MIG; 
"mixed" 
allows 
allocating 
MIG devices 

11 



as separate 
resources. 

nvidia.disabl
eCoreLimit 

ConfigMap String "false" If "true", 
disables 
GPU core 
utilization 
limiting for 
NVIDIA 
GPUs. 

11 

nvidia.default
Mem 

ConfigMap Integer 0 (MB) Default GPU 
memory (in 
MB) for a 
task if not 
specified. 0 
means use 
100% of 
available 
device 
memory for 
the vGPU. 

11 

nvidia.default
Cores 

ConfigMap Integer 0 (%) Default GPU 
core 
percentage 
for a task if 
not specified. 
0 allows 
fitting into 
any GPU 
with enough 
memory; 100 
implies 
exclusive 
use of a 
physical 
GPU's cores. 

11 

nvidia.default
GPUNum 

ConfigMap Integer 1 Default 
number of 
vGPUs if 
nvidia.com/g
pu is not set 

11 



but fractional 
resources 
are. 0 means 
ineffective. 

nvidia.resour
ceCountNam
e 

ConfigMap String "nvidia.com/g
pu" 

Resource 
name for 
requesting 
vGPU count. 

11 

nvidia.resour
ceMemoryNa
me 

ConfigMap String "nvidia.com/g
pumem" 

Resource 
name for 
requesting 
vGPU 
memory in 
MiB. 

11 

nvidia.resour
ceMemoryPe
rcentageNa
me 

ConfigMap String "nvidia.com/g
pumem-perc
entage" 

Resource 
name for 
requesting 
vGPU 
memory as a 
percentage. 

11 

nvidia.resour
ceCoreName 

ConfigMap String "nvidia.com/g
pucores" (or 
"nvidia.com/c
ores") 

Resource 
name for 
requesting 
vGPU core 
percentage. 

11 

devicePlugin.
service.sche
dulerPort 

Helm Integer 31998 NodePort for 
the 
scheduler 
webhook 
service. 

11 

scheduler.def
aultSchedule
rPolicy.node
SchedulerPol
icy 

ConfigMap/H
elm 

String "binpack" Default 
node-level 
scheduling 
policy: 
"binpack" 
(consolidate 

11 



on fewer 
nodes) or 
"spread" 
(distribute 
across 
nodes). 

scheduler.def
aultSchedule
rPolicy.gpuS
chedulerPoli
cy 

ConfigMap/H
elm 

String "spread" Default 
GPU-level 
scheduling 
policy within 
a node: 
"binpack" 
(consolidate 
on fewer 
GPUs) or 
"spread" 
(distribute 
across 
GPUs). 

11 

scheduler.pat
ch.enabled 

Helm Boolean true If true, Helm 
uses 
kube-webho
ok-certgen to 
generate 
TLS 
certificates 
for the 
webhook. 

11 

These parameters provide administrators with significant control over how GPU 
resources are virtualized and scheduled. The deviceMemoryScaling option, for 
instance, allows for memory oversubscription, a powerful but potentially risky feature if 
not managed carefully. The distinction between node-level and GPU-level scheduling 
policies (nodeSchedulerPolicy vs. gpuSchedulerPolicy) offers nuanced control over 
workload placement, catering to different optimization goals like maximizing utilization 
(binpack) or improving fault tolerance (spread). The ability to customize resource names 
offers compatibility with existing conventions or user preferences. 

3.4. Requesting Shared GPU Resources in Pods 

Users request HAMI-virtualized GPU resources through standard Kubernetes pod 
specifications, using specific resource names and annotations to define their 
requirements and influence scheduling. 



Table 3.3: HAMI Pod Annotations and Resource Requests 

 

Annotation/
Resource 
Key 

Type Purpose Example 
Value(s) 

Notes/Impac
t 

Key 
Snippet(s) 

nvidia.com/g
pu 

Resource 
Limit 

Number of 
virtual GPUs 
(vGPUs) to 
allocate. 

"1", "2" For HAMI, 
this typically 
refers to 
vGPU count. 
The total 
physical 
memory/core
s are further 
divided 
based on 
other 
requests. 

5 

nvidia.com/g
pumem 

Resource 
Limit 

Amount of 
GPU 
memory per 
vGPU in MiB. 

"3000" (for 
3000MiB) 

Enforces 
memory limit 
for the 
vGPU. 

9 

nvidia.com/g
pumem-perc
entage 

Resource 
Limit 

Amount of 
GPU 
memory per 
vGPU as a 
percentage 
of physical 
GPU 
memory. 

"50" (for 
50%) 

Alternative to 
absolute 
memory 
request. 
Cannot be 
used with 
nvidia.com/g
pumem. 

11 

nvidia.com/g
pucores 

Resource 
Limit 

Percentage 
of GPU 
compute 
cores per 
vGPU. 

"30" (for 
30%) 

Controls 
compute 
share. 100 
can mean 
exclusive 
core usage. 

11 

hami.io/node Pod Overrides "binpack", Allows 7 



-scheduler-p
olicy 

Annotation default 
node-level 
scheduling 
policy for this 
pod. 

"spread" per-pod 
customizatio
n of node 
selection 
strategy. 

hami.io/gpu-
scheduler-po
licy 

Pod 
Annotation 

Overrides 
default 
GPU-level 
(within-node) 
scheduling 
policy for this 
pod. 

"binpack", 
"spread" 

Allows 
per-pod 
customizatio
n of GPU 
selection 
strategy on a 
node. 

7 

nvidia.com/u
se-gputype 

Pod 
Annotation 

Specifies a 
comma-sepa
rated list of 
allowed 
NVIDIA GPU 
models. 

"Tesla 
V100-PCIE-3
2GB,NVIDIA 
A10" 

Pod will only 
be scheduled 
on nodes 
with one of 
these GPU 
types. 

7 

nvidia.com/n
ouse-gputyp
e 

Pod 
Annotation 

Specifies a 
comma-sepa
rated list of 
disallowed 
NVIDIA GPU 
models. 

"Tesla K80" Pod will not 
be scheduled 
on nodes 
with these 
GPU types. 

7 

nvidia.com/u
se-gpuuuid 

Pod 
Annotation 

Specifies a 
comma-sepa
rated list of 
allowed 
NVIDIA GPU 
UUIDs. 

"GPU-AAA,G
PU-BBB" 

Pod must 
use one of 
the specified 
physical 
GPUs. 

7 

nvidia.com/n
ouse-gpuuui
d 

Pod 
Annotation 

Specifies a 
comma-sepa
rated list of 
disallowed 
NVIDIA GPU 
UUIDs. 

"GPU-CCC" Pod will not 
use any of 
the specified 
physical 
GPUs. 

7 



nvidia.com/v
gpu-mode 

Pod 
Annotation 

Instructs 
HAMI on the 
virtualization 
mode to use. 

"mig", 
"hami-core" 

Used for 
features like 
dynamic 
MIG, 
directing 
HAMI to 
provision a 
MIG instance 
or a standard 
HAMi-core 
vGPU. 

11 

cambricon.co
m/mlunum 

Resource 
Limit 

Number of 
Cambricon 
MLUs. 

"1" For 
requesting 
Cambricon 
devices. 

62 

cambricon.co
m/mlumem 

Resource 
Limit 

Cambricon 
MLU memory 
in MiB. 

"10240" For 
requesting 
specific 
memory on 
Cambricon 
MLUs. 

62 

hygon.com/d
cunum 

Resource 
Limit 

Number of 
Hygon 
DCUs. 

"1" For 
requesting 
Hygon DCU 
devices. 

64 

hygon.com/d
cumem 

Resource 
Limit 

Hygon DCU 
memory in 
MiB. 

"2000" For 
requesting 
specific 
memory on 
Hygon 
DCUs. 

64 

hygon.com/d
cucores 

Resource 
Limit 

Hygon DCU 
cores. 

"15" For 
requesting 
specific core 
count on 
Hygon 
DCUs. 

64 



huawei.com/
Ascend910A
-memory 
(example) 

Resource 
Limit 

Huawei 
Ascend NPU 
memory 
(resource 
name may 
vary by 
model/templ
ate). 

"2184" Example for 
Ascend 
NPU, actual 
names 
depend on 
HAMI's 
Ascend 
plugin 
configuration 
and 
templates. 

66 

Example Pod Specifications: 

●​ NVIDIA GPU Sharing (HAMi-core):​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
  name: hami-nvidia-sharing-example​
  annotations:​
    hami.io/gpu-scheduler-policy: "binpack" # Optional: override default GPU policy​
spec:​
  schedulerName: hami-scheduler # Or ensure webhook directs to HAMI logic​
  containers:​
  - name: cuda-app​
    image: nvidia/cuda:11.8.0-base-ubuntu22.04 # Or any CUDA-enabled image​
    resources:​
      limits:​
        nvidia.com/gpu: "1" # Number of vGPUs​
        nvidia.com/gpumem: "3000" # Request 3000MiB GPU memory​
        nvidia.com/gpucores: "30" # Request 30% of GPU core compute​
    env:​
    - name: GPU_CORE_UTILIZATION_POLICY ​
      value: "force" # or "default", "disable" [11]​
 

●​ NVIDIA Dynamic MIG: 26​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
  name: hami-dynamic-mig-example​
  annotations:​



    nvidia.com/vgpu-mode: "mig" # Instructs HAMI to use a MIG instance​
spec:​
  schedulerName: hami-scheduler​
  containers:​
  - name: mig-container​
    image: nvidia/cuda:11.8.0-base-ubuntu22.04​
    resources:​
      limits:​
        nvidia.com/gpu: "1" # Number of MIG instances​
        nvidia.com/gpumem: "10000" # Request 10GB, HAMI will find suitable MIG profile​
 

●​ Cambricon MLU: 5​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
  name: hami-cambricon-example​
spec:​
  schedulerName: hami-scheduler​
  containers:​
  - name: mlu-container​
    image: cambricon-image # Replace with actual Cambricon image​
    resources:​
      limits:​
        cambricon.com/mlunum: "1" ​
        cambricon.com/mlumem: "10240" # Request 10GB MLU memory​
        # cambricon.com/mlu.smlu.vcore: "50" # If core sharing supported by specific HAMI version 
for MLU​
 

●​ Hygon DCU: 5​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
  name: hami-hygon-example​
spec:​
  schedulerName: hami-scheduler​
  containers:​
  - name: dcu-container​
    image: image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310 # 
Example image​
    resources:​



      limits:​
        hygon.com/dcunum: "1"​
        hygon.com/dcumem: "2000" # Request 2000MiB DCU memory​
        hygon.com/dcucores: "15" # Request 15 DCU cores​
 

●​ Huawei Ascend NPU: 5​
YAML​
apiVersion: v1​
kind: Pod​
metadata:​
  name: hami-ascend-example​
  annotations:​
    hami.io/use-Ascend910B-uuid: "device-uuid-1" # Optional: specify NPU UUID​
spec:​
  schedulerName: hami-scheduler​
  containers:​
  - name: ascend-container​
    image: ascendhub.huawei.com/public-ascendhub/ascend-mindspore:23.0.RC3 # Example image​
    resources:​
      limits:​
        # Actual resource names depend on HAMI's Ascend plugin configuration and NPU model 
templates.​
        # Example based on 'vir02' template for Ascend910A from [66]:​
        huawei.com/Ascend910A-memory: "2184" ​
        # huawei.com/Ascend910A-aicore: "2" ​
 

Important Notes from Documentation: 
It is consistently advised to avoid using privileged: true in pod security contexts and to avoid 
setting spec.nodeName directly. Instead, nodeSelector or node affinity/anti-affinity rules should 
be used for targeting specific nodes.5 Using privileged: true can bypass HAMI's controls and 
expose all GPUs, while nodeName bypasses the scheduler. 
The flexibility in requesting resources (absolute memory, percentage memory, core 
percentage) alongside the ability to influence scheduling via annotations provides a 
powerful toolkit for users. However, this also necessitates clear understanding and 
documentation to prevent misconfigurations. For instance, the dual meaning of 
nvidia.com/gpu (vGPU count for HAMI vs. physical GPU count in other contexts) could 
be a source of confusion if not properly clarified for users.5 The introduction of distinct 
resource names for different hardware vendors (e.g., cambricon.com/mlunum, 
hygon.com/dcunum) is logical but requires users to be aware of the correct names for 
the specific hardware they are targeting. 



3.5. Monitoring and Observability with HAMI 

Effective monitoring is essential for understanding resource utilization and the behavior 
of shared GPU workloads. HAMI provides mechanisms for exposing metrics and 
integrating with common observability tools.5 

●​ Metrics Exposure: HAMI automatically enables metrics exposure after installation. 
Cluster-wide scheduler metrics are available via an HTTP endpoint, typically 
http://{scheduler_ip}:{monitorPort}/metrics. The default monitorPort is 31993 and 
can be customized during Helm installation using devicePlugin.service.httpPort.5 It's 
noted that vGPU status on a node is typically collected only after a vGPU has been 
actively used on that node.17 

●​ Prometheus and Grafana Integration: HAMI's metrics are designed to be scraped 
by Prometheus. The official documentation and community resources often point to 
using NVIDIA DCGM Exporter in conjunction with HAMI's own metrics to provide a 
comprehensive view of both physical GPU health/performance and vGPU 
allocation.22 A publicly available Grafana dashboard (ID: 22043 on grafana.com, 
titled "hami-vgpu-metrics-dashboard") is specifically designed for visualizing these 
combined metrics.22 

●​ HAMi-WebUI: For a more direct visualization and management interface, the 
Project-HAMi organization provides HAMi-WebUI. This open-source tool offers an 
intuitive web interface to see GPU resource allocation and usage across nodes, 
with detailed views for tasks and individual GPUs.24 

●​ Specific Metrics: While a complete, exhaustive list of all HAMI-specific metrics is 
not fully detailed in one place across the snippets, various pieces of information 
point to the types of metrics available: 
○​ MIG Instance Metrics: When using dynamic MIG, nodeGPUMigInstance (a 

gauge) provides details about active MIG instances on a node.26 
○​ Volcano Integration Metrics: When HAMI is integrated with the Volcano 

scheduler, Volcano exposes metrics like volcano_vgpu_device_allocated_cores 
and volcano_vgpu_device_allocated_memory via its own metrics endpoint 
({volcano_scheduler_ip}:8080/metrics).27 The volcano-vgpu-device-plugin itself 
also exposes metrics related to GPU utilization, memory usage, and 
pod-specific limits/usage on port 9394 of the device plugin pod.28 

○​ General vGPU Allocation Metrics: The HAMI scheduler itself tracks vGPU 
allocations, which form the basis of its metrics. 

○​ Combined with DCGM: For NVIDIA GPUs, DCGM provides a rich set of 
hardware-level metrics (utilization, memory, temperature, power) 1, which are 
essential for a complete picture and are leveraged by the recommended 
Grafana dashboard. 

●​ Potential Monitoring Challenges: An open issue on GitHub mentioned problems 
with vGPUmonitor being unable to obtain metrics.10 This highlights that, as with any 



complex system, ensuring reliable and comprehensive metrics collection can 
sometimes present challenges that need to be addressed by the project. 

The monitoring strategy of HAMI, relying on its own metrics for vGPU allocation and 
encouraging the use of standard tools like Prometheus/Grafana alongside 
vendor-specific exporters like DCGM, is a practical approach. It allows users to leverage 
familiar observability stacks. The HAMi-WebUI offers a more tailored experience for 
users focused specifically on HAMI's state. The key to effective monitoring is to combine 
HAMI's vGPU allocation data with actual physical GPU utilization and health metrics to 
get a true sense of efficiency and performance. 

Table 3.4: Key HAMI Monitoring Metrics (Illustrative) 

 

Metric Name 
(Conceptual or 
Actual) 

Source 
Example 

Description Typical Use 
Case 

Key Snippet(s) 

nodeGPUMigIns
tance 

HAMI Scheduler 
(for MIG) 

Gauge indicating 
active MIG 
instances, their 
profiles, and 
associated 
physical device. 

Monitoring 
dynamic MIG 
configurations 
and availability. 

26 

volcano_vgpu_d
evice_allocated_
cores 

Volcano 
Scheduler (with 
HAMI 
integration) 

Percentage of 
GPU compute 
cores allocated 
to vGPUs on a 
specific physical 
GPU. 

Tracking vGPU 
core allocation 
by Volcano. 

27 

volcano_vgpu_d
evice_allocated_
memory 

Volcano 
Scheduler (with 
HAMI 
integration) 

Amount of GPU 
memory (e.g., in 
MiB) allocated to 
vGPUs on a 
specific physical 
GPU. 

Tracking vGPU 
memory 
allocation by 
Volcano. 

27 

Pod GPU 
Memory 

Volcano Device 
Plugin (with 
HAMI 

Actual GPU 
memory used by 
a pod vs. its 

Identifying 
memory 
overruns or 

28 



Usage/Limit integration) allocated vGPU 
memory limit. 

underutilization 
at the pod level. 

Pod GPU Core 
Utilization 

Volcano Device 
Plugin / DCGM 
via HAMI 
Dashboard 

Actual GPU core 
utilization by a 
pod. 

Assessing if a 
pod is effectively 
using its 
allocated vGPU 
compute 
resources. 

1 

Physical GPU 
Utilization 

DCGM via HAMI 
Dashboard 

Overall 
utilization of the 
physical GPU 
(compute, 
memory 
bandwidth, 
encoder/decoder
). 

Understanding 
the load on the 
physical 
hardware 
supporting the 
vGPUs. 

1 

Physical GPU 
Memory 
Used/Total 

DCGM via HAMI 
Dashboard 

Total memory 
used and 
available on the 
physical GPU. 

Assessing 
overall memory 
pressure on the 
physical GPU. 

1 

HAMI Scheduler 
Metrics 

HAMI Scheduler 
(/metrics 
endpoint) 

General metrics 
about scheduler 
operations, 
vGPU 
allocations, node 
status from 
HAMI's 
perspective. 

Monitoring the 
health and 
activity of the 
HAMI scheduling 
components. 

5 

4. HAMI within the Open-Source GPU Scheduling Ecosystem 
HAMI does not operate in a vacuum; it is part of a larger ecosystem of tools and 
schedulers aimed at optimizing GPU usage in Kubernetes. Its ability to integrate with 
other schedulers and its comparative strengths and weaknesses define its role. 

4.1. Integration with Kubernetes Schedulers 

HAMI's architecture allows it to work alongside or in conjunction with other Kubernetes 
scheduling components, offering flexibility in how its GPU sharing capabilities are 
leveraged. 



●​ Koordinator: Koordinator, a QoS-based scheduler for Kubernetes, explicitly 
integrates with HAMI to provide an end-to-end GPU sharing solution. Koordinator 
utilizes HAMi-core for its GPU isolation capabilities at the node level.13 Pods signal 
their intent to use HAMi-managed shared GPUs by including the label 
koordinator.sh/gpu-isolation-provider: HAMi-core. Koordinator then handles the 
scheduling of these pods, taking into account the fractional GPU resources defined 
(e.g., koordinator.sh/gpu-core, koordinator.sh/gpu-memory-ratio), while HAMi-core 
enforces these limits within the container.13 The Koordinator v1.6 release further 
enhanced this by improving device topology awareness with HAMI, supporting 
more GPU models, and enabling joint allocation of GPU and RDMA resources.31 
This collaboration allows users to benefit from Koordinator's advanced scheduling 
features (like load-aware scheduling and co-location) while using HAMI for the 
underlying GPU virtualization. 

●​ Volcano Scheduler: Volcano, a batch scheduling system designed for 
high-performance computing and AI/ML workloads, also integrates with HAMI. 
Project-HAMi provides a dedicated volcano-vgpu-device-plugin that leverages 
HAMi-core to enable hard resource isolation and device sharing for NVIDIA GPUs 
scheduled by Volcano.27 This integration requires Volcano version 1.9 or newer. To 
enable this, the Volcano scheduler's ConfigMap must be updated to include and 
enable the deviceshare plugin with deviceshare.VGPUEnable: true.28 Pods then 
request vGPU resources using Volcano-specific annotations such as 
volcano.sh/vgpu-number, volcano.sh/vgpu-memory, and volcano.sh/vgpu-cores.28 
This setup allows organizations to use Volcano's gang scheduling and other 
batch-oriented features in conjunction with HAMI's fine-grained GPU sharing. Some 
adopters explicitly use HAMI with Volcano for managing automatic training 
pipelines.34 Community discussions also reflect interest in using Volcano's 
scheduling capabilities for non-NVIDIA devices managed by HAMI, aiming to 
consolidate on a single advanced scheduler.35 

●​ NVIDIA KAI Scheduler: As of early-mid 2025, there is no official, documented 
direct integration between HAMI and the NVIDIA KAI Scheduler. KAI is a 
comprehensive Kubernetes scheduler open-sourced by NVIDIA (formerly from 
Run:ai), designed for AI/ML workloads. It features its own mechanisms for GPU 
sharing (often described as time-slicing like, using a reservation pod system, and 
currently lacking hard isolation), along with advanced features like hierarchical 
queues, fairness policies, and batch scheduling.36 While KAI aims to improve GPU 
utilization, its current sharing model does not provide the same level of resource 
isolation that HAMI targets with HAMi-core.38 Community discussions indicate an 
interest in combining KAI's sophisticated scheduling and resource governance with 
HAMI's hard isolation capabilities, recognizing that HAMI already provides this layer 
for projects like Volcano and Koordinator.39 HAMI's roadmap does include plans for 



NVIDIA GPU Operator integration 9, which is a prerequisite for installing KAI 
Scheduler.37 This future integration might open pathways for closer collaboration or 
interoperability, but currently, they represent distinct approaches to GPU sharing 
and scheduling. 

●​ Default Kubernetes Scheduler: HAMI can also function with the default 
Kubernetes scheduler (kube-scheduler). Its architecture, including a scheduler 
extender and mutating webhook, allows it to influence scheduling decisions for 
pods requesting HAMI-managed vGPU resources.5 The webhook can identify pods 
requiring vGPUs and ensure they are handled by HAMI's scheduling logic, which 
then filters and scores nodes based on vGPU availability and defined policies. 

This ability for HAMI to provide its core GPU virtualization (HAMi-core) as a foundational 
layer for various established schedlers is a notable strategic aspect. It allows HAMI to 
focus on the complexities of device-level sharing and isolation while users can leverage 
the advanced scheduling algorithms and features of systems like Koordinator or 
Volcano. This modularity enhances HAMI's adoption potential within diverse Kubernetes 
ecosystems. However, the variation in resource request syntax (e.g., koordinator.sh/*, 
volcano.sh/*, nvidia.com/*) when using HAMI through different schedulers can introduce 
a layer of complexity for users operating in environments with multiple scheduling 
solutions. 

4.2. Comparative Analysis 

HAMI's approach to GPU sharing and scheduling can be better understood when 
compared to native NVIDIA solutions and other open-source alternatives. 

Table 4.1: Comparison of GPU Sharing Techniques: HAMI vs. Native NVIDIA 

 

Feature HAMI (via 
HAMi-core) 

NVIDIA MIG 
(Multi-Instance 
GPU) 

NVIDIA 
Time-Slicing 

NVIDIA MPS 
(Multi-Process 
Service) 

Sharing 
Granularity 

Fine-grained 
(Memory in 
MB/%, Cores in 
%) 

Fixed, 
predefined 
hardware 
partitions (e.g., 
1g.5gb) 

GPU time 
shared among 
multiple 
containers 

Multiple 
processes share 
a single GPU 
context 

Memory 
Isolation 

Aims for hard 
isolation (via API 

Strong 
(Hardware-level) 

None (shared 
memory space) 

None (shared 
memory space) 



interception) 

Compute 
Isolation 

Soft isolation 
(percentage-bas
ed core control) 

Strong 
(Hardware-level) 

None (compete 
for compute 
cycles) 

Limited (kernels 
can interleave, 
shared compute) 

Fault Isolation Limited 
(software-level; 
driver/HW faults 
can impact) 

Strong 
(Hardware-level) 

None (a 
crashing pod 
can affect 
others) 

Poor (MPS 
daemon failure 
affects all 
clients) 

Hardware 
Support 

Broad (NVIDIA, 
other vendors 
planned/support
ed) 

Newer NVIDIA 
GPUs (A100, 
H100, etc.) 43 

Most NVIDIA 
GPUs 
supporting 
device plugin 
extensions 

NVIDIA GPUs 
(Volta and later) 
19 

Performance 
Overhead 

Potential from 
API interception, 
context 
switching 18 

Minimal 
(hardware 
partitioning) 

Context 
switching 
overhead 19 

Lower context 
switching than 
time-slicing for 
some loads 19 

Ease of 
Use/Config 

"Zero code 
changes"; Helm 
install; 
ConfigMap/anno
tations 

Can be complex 
to 
configure/manag
e MIG profiles 43 

Simpler 
ConfigMap 
configuration via 
device plugin 

Simpler setup, 
managed by 
device plugin 

Key Snippet(s) 9 69 4 59 

Table 4.2: HAMI vs. Selected Open-Source GPU Schedulers/Sharing Solutions 

 

Feature/Aspect HAMI NVIDIA KAI 
Scheduler 

TensorFusion Aliyun 
gpushare-sche
duler 

Primary Goal Fine-grained 
GPU sharing, 
isolation, 

Advanced AI/ML 
workload 
scheduling, 

Fractional GPU, 
GPU pooling, 
remote GPU, 

GPU memory 
sharing for 



heterogeneous 
device mgmt. 

fairness, GPU 
sharing (soft 
isolation). 

VRAM 
expansion, 
advanced 
autoscaling. 

NVIDIA GPUs. 

Sharing 
Mechanism 

User-space API 
interception 
(HAMi-core), 
vGPU concept. 

Fractional 
requests via 
annotations, 
reservation pod, 
time-slicing-like. 

GPU 
virtualization & 
remoting, 
TFlops-based 
fractional GPU. 

Scheduler 
extender, device 
plugin for 
memory sharing. 

Isolation 
Strength 

Hard memory 
(claimed), soft 
compute. 

Soft/None for 
memory & 
compute in its 
sharing 
mechanism. 

Claims isolation 
(details of 
mechanism 
vary). 

Primarily 
memory 
accounting, 
limited isolation. 

Heterogeneous 
Support 

Yes (NVIDIA, 
Cambricon, 
Hygon, Ascend, 
etc. 
planned/support
ed). 

Primarily NVIDIA 
(supports DRA 
for other vendors 
if drivers exist). 

NVIDIA (AMD 
WIP). 

NVIDIA only. 

Scheduler 
Integration 

Own scheduler 
logic (extender), 
integrates with 
Koordinator, 
Volcano. 

Full standalone 
scheduler, runs 
alongside 
default. 

Webhook-only 
(no 
device/scheduler 
plugin needed). 

Scheduler 
extender for 
default K8s 
scheduler. 

Key 
Differentiators 

HAMi-core 
virtualization, 
broad vendor 
support, CNCF 
Sandbox. 

Hierarchical 
queues, DRF 
fairness, batch 
scheduling, 
Run:ai heritage. 

Rich enterprise 
features (VRAM 
expansion, 
remote GPU), 
simpler 
deployment 
arch. 

Early 
open-source 
GPU sharing 
solution. 

Community/Mat
urity 

CNCF Sandbox, 
active 
development, 
growing 

Recently 
open-sourced by 
NVIDIA, backed 
by 

Commercial 
offering with 
open-source 
components, 

Mature, but 
perhaps less 
active 
development 



adoption (esp. in 
Asia). 

NVIDIA/Run:ai. newer. than newer 
solutions. 

Key Snippet(s) 5 36 71 72 

This comparative analysis reveals that the Kubernetes GPU sharing and scheduling 
landscape is diverse. HAMI carves out a distinct position by focusing on 
software-based, fine-grained virtualization with an emphasis on strong memory isolation 
and broad heterogeneous hardware support. While NVIDIA's native solutions like MIG 
offer robust hardware isolation, they can be less flexible. Other open-source projects 
like KAI Scheduler prioritize advanced scheduling policies and fairness for AI workloads, 
with a simpler sharing model that currently lacks HAMI's isolation strengths. 
TensorFusion presents itself as a more feature-rich platform with a different architectural 
approach to virtualization. 

The choice of solution is therefore not straightforward and depends heavily on specific 
requirements: 

●​ For strong, hardware-enforced isolation on compatible NVIDIA hardware, MIG is 
the standard. 

●​ For basic sharing on NVIDIA GPUs where isolation is less critical, Time-Slicing or 
MPS might suffice. 

●​ For sophisticated AI/ML scheduling with queueing and fairness on NVIDIA 
hardware, KAI Scheduler is a strong contender, though its current GPU sharing 
lacks hard isolation. 

●​ For fine-grained, software-enforced memory isolation and broad support for 
heterogeneous hardware (including non-NVIDIA), HAMI offers a compelling 
open-source option. 

●​ For a platform with features like remote GPU sharing or VRAM expansion, 
TensorFusion is an alternative. 

HAMI's user-space API interception is a key technological choice. While it enables 
flexibility and broad hardware compatibility without kernel modifications, it inherently 
differs from hardware-level partitioning (like MIG) in terms of the "hardness" of isolation 
and potential performance characteristics. For environments demanding the utmost 
security or predictable, low-latency performance for co-located tenants, this distinction is 
vital. 

5. Gaining Insights: How HAMI Enhances GPU Resource 
Management 



HAMI's features and architecture translate into tangible benefits for managing GPU 
resources in Kubernetes, particularly in scenarios demanding high utilization, 
multi-tenancy, and support for diverse hardware. 

5.1. Achieving Fine-Grained Resource Control and Improved Utilization 

A primary driver for adopting solutions like HAMI is the need to move beyond 
whole-GPU allocation. HAMI allows users to request GPU resources with a high degree 
of granularity: 

●​ GPU Memory: Can be specified in absolute terms (e.g., megabytes) or as a 
percentage of the physical GPU's memory.5 

●​ GPU Compute Cores: Can be requested as a percentage of the GPU's total 
compute capability.9 

This fine-grained control means that multiple workloads, each potentially requiring only 
a fraction of a GPU's total capacity, can be co-located on a single physical GPU. This 
directly addresses the common problem of underutilization where, for example, an 
inference task might only use 10-20% of a powerful GPU if allocated the entire device.8 
By enabling such sharing, HAMI helps organizations maximize the return on their 
expensive GPU investments. Real-world use cases have reported significant 
improvements, with GPU utilization increasing from below 20% to over 60% in some 
instances.14 This efficient packing of workloads is crucial for cost optimization, especially 
as AI/ML computational demands continue to grow. 

5.2. Enabling Multi-Tenancy and Diverse Workload Co-existence 

HAMI's resource isolation capabilities, particularly its claim of hard memory isolation for 
NVIDIA GPUs 8, are designed to support multi-tenant environments. Different users, 
teams, or applications can share physical GPUs with greater confidence that one 
workload will not unduly interfere with another's memory space. This is vital for: 

●​ R&D Platforms: Where multiple researchers or developers need simultaneous 
access to limited GPU resources for experimentation (e.g., Jupyter notebooks).14 

●​ Educational Settings: Providing fractional GPU access to many students from a 
smaller pool of physical GPUs.9 

●​ Cloud Providers: Offering more affordable, fractional GPU instances to customers, 
thereby increasing the monetization potential of each physical GPU.14 

●​ Mixed Workload Environments: Co-locating different types of AI/ML tasks, such 
as model training and inference serving, on the same hardware. For example, 
SNOW (Korea) successfully used HAMI to run training and inference workloads 
concurrently on NVIDIA A100 GPUs, a scenario where MIG's fixed partitions were 
too rigid and MPS lacked sufficient isolation.14 



The ability to assign different GPU tiers or resource profiles to different user groups, 
coupled with features like idle GPU reclamation based on container-level metrics (as 
reported in some use cases 14), further enhances HAMI's utility in shared environments. 

5.3. Facilitating Management of Diverse Hardware Accelerators 

One of HAMI's strategic aims is to provide a unified management layer for 
heterogeneous AI accelerators from various vendors.5 As organizations increasingly 
deploy a mix of hardware (e.g., NVIDIA GPUs alongside specialized NPUs from 
Cambricon, Huawei Ascend, or Hygon DCUs), the complexity of managing these 
diverse resources grows. HAMI seeks to abstract some of this complexity by offering: 

●​ Support for multiple device types through a common architectural framework 
(device plugins, scheduler logic). 

●​ The goal of a consistent way to request these resources in pod specifications, even 
if the underlying resource names differ per vendor. 

●​ Unified scheduling policies that can apply across different types of accelerators. 

A reported use case involved a major bank using HAMI to manage a combination of 
domestic (non-NVIDIA) GPUs and NVIDIA GPUs under a single scheduling system.14 
This capability simplifies operations and allows for more flexible workload placement in 
environments with a diverse hardware portfolio. However, it is important to note that the 
level of feature support (e.g., compute isolation, dynamic sharing) may vary across 
different supported device types, as indicated in HAMI's documentation.7 

5.4. Real-World Use Cases and Reported Benefits 

The practical impact of HAMI is best illustrated by its adoption in various real-world 
scenarios: 

●​ Banking Sector (Dynamic Inference): A major bank running numerous lightweight 
inference tasks with cyclical peak/off-peak demand patterns experienced low GPU 
utilization (<20%) when dedicating full GPUs per task. By implementing HAMI and 
enabling features like memory oversubscription and priority-based preemption, they 
reportedly increased average GPU utilization to over 60%, while still meeting 
service level agreements (SLAs). HAMI also facilitated the management of a mixed 
fleet of domestic and NVIDIA GPUs.14 This demonstrates HAMI's potential for 
significant cost savings and operational efficiency in environments with bursty, 
low-footprint GPU workloads. 

●​ R&D (Securities & Autonomous Driving): In research environments 
characterized by many users and relatively few GPUs (e.g., internal Kubeflow 
platforms where Jupyter Notebooks would occupy full GPUs even if idle), HAMI's 
virtual GPU support, card-type-based scheduling, and container-level monitoring 
enabled more effective sharing. Idle GPUs could be automatically reclaimed based 



on real-time usage metrics, leading to improved overall resource utilization.14 This 
highlights HAMI's value in democratizing access to scarce GPU resources. 

●​ GPU Cloud Provider (Monetizing GPU Slices): A cloud vendor leveraged HAMI 
to transition from offering whole-card GPU instances (e.g., an H800 at $2/hr) to 
providing more granular, fractional GPU offerings (e.g., 3GB slices at $0.26/hr). 
This strategy drastically improved affordability for end-users and reportedly tripled 
the revenue per physical card for the provider, by allowing up to 26 concurrent 
users on a single H800 GPU.14 This case underscores the economic benefits HAMI 
can unlock by enabling new service models. 

●​ SNOW (Korea - AI Workload Migration to Kubernetes): When migrating AI 
workloads to Kubernetes, SNOW faced the challenge of co-locating training and 
inference tasks on the same NVIDIA A100 GPUs. They found NVIDIA MIG too 
inflexible due to its fixed partitions, NVIDIA MPS lacking necessary memory 
isolation, and full Kubeflow too heavyweight for their needs. HAMI provided a 
solution that allowed them to share full GPUs safely among different tasks without 
requiring application code changes, facilitating a smoother infrastructure migration 
for hundreds of A100 GPUs.14 This illustrates HAMI's role as a practical enabler for 
complex workload consolidation. 

These use cases collectively suggest that HAMI's value lies in its ability to improve GPU 
utilization, enable cost-effective multi-tenancy, and simplify the management of diverse 
workloads on shared GPU infrastructure. The "zero code changes" aspect is frequently 
highlighted as a key enabler for adoption, as it minimizes the friction of migrating 
existing AI/ML applications.5 

5.5. Performance Considerations 

While HAMI offers significant benefits in terms of resource sharing and utilization, it is 
essential to consider the potential performance implications of its user-space API 
interception mechanism. 

●​ Overhead of API Interception: HAMi-core operates by hijacking CUDA API calls 
in user space.14 This software layer, while enabling flexibility, can introduce latency 
or computational overhead compared to direct hardware access or kernel-level 
virtualization techniques.8 The magnitude of this overhead is workload-dependent 
and influenced by the frequency and type of intercepted API calls. For 
compute-intensive tasks with infrequent API interactions, the overhead might be 
negligible. However, for workloads with many fine-grained CUDA calls, the 
cumulative impact could be more noticeable. 

●​ Context Switching Costs: GPU context switching is inherently more expensive 
than CPU context switching due to the larger state that needs to be saved and 
restored.19 Sharing mechanisms that lead to frequent context switches between 



virtualized GPU instances can impact overall performance. HAMI's compute 
limiting, which may involve regulating kernel launches, could incur such costs, 
similar to time-slicing approaches. 

●​ Benchmarking Data: Specific, comprehensive, and independent benchmarks 
comparing HAMI's performance against other sharing solutions (MIG, MPS, 
time-slicing) or whole-GPU allocation are not extensively detailed within the 
provided research snippets. While general GPU sharing benchmarks exist 44, and 
academic reviews discuss the complexities of GPU virtualization performance 
analysis 45, dedicated HAMI performance studies are less visible in this material. 
The RiseUnion blog on HAMI mentions fine-grained allocation and isolation 8 but 
does not quantify the performance overhead. This lack of readily available, detailed 
performance benchmarks for HAMI across various workloads and hardware types 
represents an area where more public data would be beneficial for potential 
adopters. 

The "soft" nature of HAMI's compute limiting (based on polling and token accounting 15) 
might also lead to performance variability for highly sensitive applications, as it aims to 
control average utilization rather than providing instantaneous, hard caps on compute 
cycles. This is a common characteristic of software-based sharing mechanisms. 
Therefore, users considering HAMI for performance-critical applications should conduct 
their own thorough testing and benchmarking to validate its suitability for their specific 
workloads and performance SLAs. 

6. The Future Trajectory: HAMI's Roadmap and GPU Scheduling 
Trends 
The landscape of GPU resource management in Kubernetes is continuously evolving. 
HAMI's development roadmap and the broader trends in the ecosystem indicate a move 
towards more sophisticated, efficient, and standardized solutions. 

6.1. HAMI's Official and Discussed Development Plans 

HAMI, as a CNCF Sandbox project, has a publicly visible direction, with several key 
areas targeted for future development, reflecting its ambition to become a more 
comprehensive and versatile solution: 

●​ Broader Hardware Support: A core tenet of HAMI is its heterogeneous nature. 
Explicit plans include adding support for Intel GPU devices and AMD GPU 
devices.7 This expansion is critical for users with mixed-vendor environments and 
aligns with HAMI's goal of providing a unified management interface. 

●​ Dynamic Resource Allocation (DRA) Support: HAMI plans to integrate with 
Kubernetes' Dynamic Resource Allocation (DRA) framework.7 DRA is a 
significant Kubernetes enhancement designed to provide a more flexible and 



extensible way for workloads to request and consume specialized hardware 
resources beyond the traditional device plugin model.2 Adopting DRA would align 
HAMI with the future direction of Kubernetes resource management. 

●​ NUMA Affinity Scheduling: The roadmap includes support for more flexible 
scheduling policies, specifically mentioning NUMA (Non-Uniform Memory 
Access) affinity.7 This is crucial for optimizing performance on multi-socket servers 
with multiple GPUs, as ensuring that pods are scheduled on NUMA nodes with 
local access to their assigned GPUs can significantly reduce memory access 
latency.48 This was also highlighted as a topic in a KubeCon presentation involving 
HAMI contributors.50 

●​ NVIDIA GPU Operator Integration: Integration with the NVIDIA GPU Operator is 
planned.7 The NVIDIA GPU Operator automates the deployment and lifecycle 
management of NVIDIA drivers and related software components.1 This integration 
could simplify the setup of NVIDIA prerequisites for HAMI users. 

●​ Richer Observability Capabilities: Continuous improvements in monitoring and 
observability are a stated goal 7, likely involving more detailed metrics and easier 
integration with monitoring stacks. 

●​ Video Encoding/Decoding Processing Support: Targeting support for specific 
workload types like video encoding/decoding indicates an effort to cater to a 
broader range of GPU-accelerated applications.7 

●​ NVLink Topology-Aware Scheduling: A maintainer comment on Reddit 
mentioned NVLink topology-aware scheduling as a work in progress.14 This 
would allow HAMI to make more intelligent scheduling decisions based on the 
high-bandwidth interconnects between NVIDIA GPUs. 

●​ General Roadmap Maintenance and Standardization: The project acknowledges 
the ongoing need for regular roadmap updates and adherence to versioning 
standards like SemVer v2 52, which is important for project maturity and user trust. 

These roadmap items suggest HAMI is aiming to enhance its core virtualization 
capabilities, broaden its hardware compatibility, align with Kubernetes advancements 
like DRA, and improve operational aspects like installation and observability. The 
successful execution of this roadmap will depend on sustained community involvement 
and development effort. 

6.2. Emerging Trends in Kubernetes GPU Management 

HAMI's development occurs within a dynamic field. Several broader trends are shaping 
how GPUs and other specialized hardware are managed in Kubernetes: 

●​ Dominance of Dynamic Resource Allocation (DRA): DRA is emerging as the 
next-generation framework in Kubernetes for handling specialized hardware. Driven 
by Google and the wider community, DRA provides a more extensible and 



standardized API for resource discovery, advertisement, and allocation compared to 
the original device plugin framework.2 This allows for more sophisticated resource 
claims and lifecycle management, crucial for complex devices like GPUs. HAMI's 
plan to support DRA is a strategic alignment with this pivotal trend. 

●​ Rise of AI-Specific Schedulers: The unique demands of AI/ML workloads (e.g., 
gang scheduling for distributed training, batch processing, awareness of data 
locality and accelerator topology) are driving the development of specialized 
schedulers.2 Solutions like NVIDIA's KAI Scheduler 36 and Volcano 56 exemplify this, 
offering features beyond what the default Kubernetes scheduler provides. This 
trend underscores the need for schedulers that are not just resource brokers but 
also understand the semantics of AI/ML jobs. 

●​ Push for Standardization and Vendor Neutrality: While hardware vendors like 
NVIDIA provide powerful, integrated toolchains (e.g., NVIDIA GPU Operator, 
CUDA, various device plugins) 1, there is a persistent community desire for more 
standardized and vendor-neutral approaches to resource management. DRA 
contributes to this by offering a common API framework. Projects like HAMI, with 
their explicit goal of supporting multiple hardware vendors, also reflect this trend. 

●​ Intensified Focus on Efficiency and Cost Optimization: The high cost of GPUs 
and the massive computational requirements of modern AI models (especially 
LLMs) make resource efficiency and cost optimization paramount.60 This fuels the 
demand for solutions that enable GPU sharing (like HAMI, KAI's sharing features, 
MIG), improve utilization, and provide better cost visibility and control. 

●​ Increasing Importance of NUMA and Topology Awareness: For 
performance-critical applications, especially distributed training across multiple 
GPUs or nodes, the physical topology of the system (NUMA nodes, CPU-GPU 
affinity, inter-GPU connectivity like NVLink) significantly impacts performance.48 
Schedulers and resource managers are increasingly expected to be 
topology-aware to make optimal placement decisions. 

HAMI's roadmap aligns well with several of these trends, particularly DRA support, 
NUMA awareness, and broader hardware support. Its integration with the NVIDIA GPU 
Operator, while potentially simplifying setup for NVIDIA users, will need careful 
implementation to maintain its vendor-neutral appeal. The evolution of Kubernetes itself, 
with DRA becoming more mainstream, might also influence HAMI's long-term 
architecture. It's conceivable that as Kubernetes and specialized schedulers become 
more adept at handling complex resource requests and scheduling paradigms, HAMI's 
unique value will increasingly center on its HAMi-core virtualization engine, serving as a 
pluggable isolation and sharing layer for various DRA-compliant resource drivers or 
advanced schedulers. 

7. Conclusion and Strategic Recommendations 



HAMI (Heterogeneous AI Computing Virtualization Middleware) emerges as a 
significant open-source contribution to the Kubernetes ecosystem, addressing the 
critical need for more efficient and flexible management of GPUs and other AI 
accelerators. Its core value proposition lies in enabling fine-grained resource sharing 
through a user-space virtualization technology, HAMi-core, which aims to provide strong 
memory isolation and configurable compute sharing for a variety of hardware. 

Key Strengths of HAMI: 

●​ Fine-Grained Resource Allocation: Allows requests for GPU memory by specific 
amounts (MB) or ratios (%), and GPU compute cores by percentage, facilitating 
much higher utilization than whole-GPU allocation. 

●​ Resource Isolation: Claims hard memory isolation (via API interception for NVIDIA 
GPUs) and provides mechanisms for compute limiting, crucial for multi-tenant 
environments. 

●​ Heterogeneous Device Support: Actively supports and plans to expand support 
for a wide range of AI accelerators beyond NVIDIA, including devices from 
Cambricon, Hygon, Huawei Ascend, and with future plans for Intel and AMD GPUs. 
This is a key differentiator. 

●​ Flexibility: Offers various scheduling policies (binpack, spread at node and GPU 
levels), dynamic MIG support for NVIDIA GPUs, and integration capabilities with 
other Kubernetes schedulers like Koordinator and Volcano. 

●​ Open Source and Community: As a CNCF Sandbox project, HAMI benefits from 
open governance and community contributions, fostering transparency and broader 
adoption. 

●​ Improved GPU Utilization and Cost Savings: Real-world use cases demonstrate 
HAMI's potential to significantly increase GPU utilization (e.g., from <20% to >60%) 
and enable new, cost-effective service models like fractional GPU offerings. 

Current Limitations and Considerations: 

●​ Performance Overhead: The user-space API interception mechanism (HAMi-core) 
may introduce performance overhead compared to hardware-level virtualization or 
direct device access. Thorough benchmarking for specific workloads is advisable. 

●​ Isolation Robustness: While HAMI aims for strong isolation, software-based 
methods are inherently different from hardware-enforced isolation (like NVIDIA 
MIG) and may have different security and fault isolation characteristics. 

●​ Driver and API Compatibility: Maintaining HAMi-core's compatibility with rapidly 
evolving vendor drivers and APIs (especially CUDA) is an ongoing challenge for 
any software-based virtualization layer. 

●​ Feature Parity Across Devices: The maturity and feature completeness (e.g., 
compute isolation, dynamic sharing) can vary for different supported non-NVIDIA 



devices. 
●​ Documentation and Global Engagement: As acknowledged by maintainers, 

continuous improvement in documentation and broader international community 
engagement are areas for development. 

●​ Configuration Complexity: The extensive range of configuration options and 
potentially varying resource naming conventions across different integrations can 
present a learning curve. 

When HAMI is a Suitable Solution: 
HAMI is particularly well-suited for: 
●​ Environments with a diverse portfolio of AI accelerators from multiple vendors, 

where a unified management approach is desired. 
●​ Use cases requiring more granular GPU sharing than what NVIDIA MIG offers, or 

where MIG is unavailable (e.g., on older or non-MIG-capable cards) or its fixed 
partitions are too restrictive. 

●​ Development, testing, and educational environments where maximizing the 
utilization of a limited pool of GPUs is a primary concern. 

●​ Production inference workloads that are numerous, individually lightweight, and 
can benefit from sharing a physical GPU among multiple instances, provided the 
isolation and performance characteristics meet requirements. 

●​ Organizations that are comfortable adopting and potentially contributing to 
open-source solutions and are prepared to manage the operational aspects of 
such a system. 

HAMI's Contribution to "Vast Insight" into GPU Scheduling: 
HAMI offers valuable insights into the GPU scheduling landscape in several ways: 
1.​ It demonstrates a practical, alternative approach (user-space API interception) 

to GPU virtualization and sharing. This provides a deeper understanding of the 
complexities, trade-offs (flexibility vs. overhead, software vs. hardware isolation), 
and possibilities beyond native hardware partitioning or basic time-slicing. 

2.​ Its existence and adoption underscore the significant real-world demand for 
more flexible and efficient GPU resource management than what is often 
provided by standard Kubernetes or default vendor tools. The documented use 
cases highlight tangible economic and operational benefits. 

3.​ By actively pursuing heterogeneous device support, HAMI provides a unique 
lens into the challenges and potential solutions for unifying the management of 
diverse AI accelerators under the Kubernetes umbrella, moving beyond a 
single-vendor ecosystem. 

4.​ Its integrations with advanced schedulers like Koordinator and Volcano 
showcase how specialized device virtualization can complement and enhance 
sophisticated scheduling systems, creating powerful combined solutions. 



Final Thoughts: 
The field of GPU management in Kubernetes is dynamic and rapidly evolving. Trends point 
towards increased standardization (e.g., Dynamic Resource Allocation - DRA), greater 
scheduler intelligence for AI/ML workloads, and a relentless pursuit of efficiency and broader 
hardware compatibility. HAMI is a noteworthy and impactful project within this landscape, 
pushing the boundaries of software-based GPU virtualization and sharing. Its commitment to 
open source, heterogeneous support, and fine-grained control makes it a valuable tool for many 
organizations. 
Future success for HAMI will likely depend on continued robust development, active 
community engagement, clear and comprehensive documentation, and transparent 
demonstration of its performance and isolation characteristics across an expanding 
range of hardware and demanding workloads. As Kubernetes and its ecosystem 
mature, HAMI's core virtualization technology (HAMi-core) may become an even more 
critical building block, potentially integrating with DRA-compliant resource drivers and 
next-generation schedulers to deliver the flexible, efficient, and multi-vendor GPU 
management that modern AI infrastructure demands. 
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